
SWI-Prolog C++ Proxy

Jan Wielemaker
HCS,

University of Amsterdam
The Netherlands

E-mail: wielemak@science.uva.nl

August 15, 2008

Abstract

This document describes an infrastructure for calling Prolog from C++ that allows for con-
trolled access from C++ based on a generated proxy class. In our first target the proxy class talks
to a multi-threaded Prolog server using TCP/IP sockets. In future versions this will be extended
with SSL sockets, pipes and native DLL embedding. The C++ and Prolog sourcecode for all these
scenarios is identical, except for the code that initialises the system.

1

Contents

1 Introduction 3

2 Overview 3

3 Related techniques 4
3.1 Prolog Portability . 4

4 Defining the interface 5

5 Compound data as seen from C++ 6

6 Generating the C++ proxy 7

7 Using the proxy classes 7
7.1 Passing primitive datatypes . 7
7.2 Passing compound data . 7
7.3 Non-deterministic queries . 7
7.4 Nesting queries . 8

8 Running the server 9

9 Putting it all together: a complete example 10

10 Status 10
10.1 Portability . 10

11 Installation 10
11.1 Unix systems . 10
11.2 Windows system . 11

2

1 Introduction

SWI-Prolog is well suitable for writing a wide range of complete applications without introducing
other languages into the system and an even wider range when linking C/C++ coded shared objects to
access external resources, in real-life Prolog is often embedded in systems written in other languages.
The reasons vary. Re-use of existing code, expertise in the development team or external requirements
are commonly encountered motivations.

Embedding Prolog is not a logical choice in our view. An important part of the power of Prolog
can be found in its development system where retrying goals and reloading patched code on the
running system speedup development considerably. In embedded system these features are often lost
or severely limited due to lack of access to the interactive Prolog toplevel or inability of the rest of the
application to stay synchronised with the dynamic nature of the Prolog part of the application.

If you have to embed there are several options for doing so, each with specific advantages and
disadvantages.

• Linking as library
Linking Prolog as a library is attractive as it allows for two-way communication at very low
overhead. It is also the most complicated approach, often loosing access to the Prolog toplevel
entirely, introducing possibly threading and (on POSIX systems) signal synchronisation prob-
lems, link conflicts and difficulty to localise bugs.

• Using pipes
By using anonymous pipes between the hosting system and Prolog we introduce a seperation
that makes it easier to localise problems and reliably stop and start Prolog. The price is -again-
loosing the Prolog toplevel, slower communication and pipes only provide a single communi-
cation channal.

• Using sockets
Using sockets connecting to a continuously running multi-threaded Prolog server does keep
access to the Prolog toplevel, offers very short startup times and allows to distribute the ap-
plications over multiple hosts on the network. The price is that it is way harder to setup the
communication (something must ensure the server is running and allocate a port for it) and the
server must be written thread-safe.

2 Overview

This packages consists of the following components:

• Interface definition
The library cpp_interface.pl and typedef.pl define directives that allow you to spec-
ify the predicates that are callable from C++ and their types. Only specified predicates can be
called and only with matching types. Restricting what can be called greatly improves security
when used in a server setting. Section 4 describes these declarations.

• Code generation
The library cpp_codegen.pl defines the code generator. The code generator is used to
create the C++ source for a proxy class that is used in the C++ client to talk to Prolog. Section 6
describes generating the C++ proxy.

3

• Prolog server
When using sockets, the library cpp_server.pl defines the Prolog server. See section 8 for
details.

• C++ client library
The file SWI-proxy.cpp and SWI-Proxy.h provide the base classes for the client proxy.

3 Related techniques

The technique used in this package are not new nor unique. Inter-language communication has been
a topic in ICT for a long period, resulting in various widespread and well established solutions. The
power of this solution is that it is tailured to Prolog’s features such as non-deterministic predicates,
lightweight, simple and fast. The weakness is of course being bound to Prolog and, currently, C++.
Proxy generators can be defined for other languages, reusing most of the infrastructure except for the
details of the code generation.

• CORBA
CORBA generates language specific proxies from a language neutral (IDL) specification. There
are no bindings for Prolog. We once wrote a proxy generator between the C++ proxy and
Prolog. This design is fairly elegant and produces fast interprocess communication. CORBA
however is a complicated big system that require considerable resources for doing even the
smallest tasks.

• HTTP (optionally with SOAP)
Using the Prolog HTTP server is another alternative. HTTP provides the basic message enve-
lope. The message content is still undefined. SOAP (an XML based content format) can be used
here. Backtracking over solutions is hard to implement based on the stateless HTTP protocol.
The approach is much more complicated and the various protocol layers require much more
data and processing time. Experience show latency times of approx. a few milliseconds, where
our server shows latency times of approx. 0.1 millisecond (AMD 1600+, SuSE Linux).

• InterProlog
InterProlog is a stream-based connection to Java. I have no experience with it.

• SWI-Prolog C++ interface
Using the native SWI-Prolog C++ interface does not provide network transparency and is much
harder to program. The advantage is that it allows for mutual calling, more threading alterna-
tives and many more.

3.1 Prolog Portability

The design can work with other Prolog systems. The server exploits multi-threading, but with some
limitations this can be changed to run in a single thread. The proxy generator is portable with some
effort and it is also possible to generate the proxy with SWI-Prolog and use it with a server written in
another Prolog system. The proxy itself is pure C++, knowing nothing about Prolog.

4

4 Defining the interface

The interface definition defines the C++ callable predicates as well as their types and modes. The
interface only deals with ground terms. The type language syntax is defined in the library typedef.
pl and is based on the Mycroft/O’Keefe type language.

:- type(TypeSpec)
If TypeSpec is of the form Alias = Type, Alias is an alias for the type named Type. If TypeSpec
is of the form Type -> Def, Def is the definition of Type. Polymorphism is expressed using
multiple definitions seperated by the | (vertical bar) symbol.1 A single definition is a term
whose arguments define the types of the arguments.

There are three primitive types: integer, float and atom.

Valid type declarations for our C++ interface do not use polymorphism and a fully expanded type
definition consists of structures and primitive types. The argument names for compound types are
derived from the type-name and usually bound to a real type using a type-alias. Here is an example:

:- type first_name = atom.
:- type last_name = atom.
:- type age = integer.

:- type person -> person(first_name, last_name, age).

The callable predicates are specified using the library cpp_interface.pl, which defines two
directives.

:- cpp callable(Head [= Attributes], ...)
Defines Head to be callable from C++. Head has the same number of argument as the predicate
that must be callable. Each argument is of the form +Type or -Type for resp. an input and output
argument. Attributes is a list of attributes. Currently defined attributes are:

one
Predicate succeeds exactly ones. Failure is an error. If the predicate succeeds non-
deterministically the choicepoints are discarded (cut). Such predicates are mapped to a
void method on the C++ proxy class. If the predicate fails this is mapped to a C++
exception. This is the default.

zero or one
Predicates fails or succeeds ones. If the predicate succeeds non-deterministically the
choicepoints are discarded (cut). Such predicates are mapped to an int method on the
C++ proxy class returning FALSE if the predicate fails and TRUE if it succeeds.

zero or more
Predicate is non-deterministic. Such predicates are mapped to a subclass of class PlQuery.

as(Name)
If present, the predicate is mapped to a C++ method or query class named Name instead
of the name of the predicate. This allows for mapping different calling patterns of the
same predicate to different C++ methods or classes.

1The design allows for limited polymorphism, but this is not yet part of the current implementation.

5

:- cpp type(CName = Functor)
Specifies that the Prolog type Functor is represented by the C++ class CName. This allows for
different naming conventions in the Prolog and C++ world.

The examples below depend on the type examples above.

:- cpp_callable
version(-atom) = [one],
find_person_younger_than(+age, -person) = [zero_or_more].

version(’0.0’).

find_person_younger_than(MaxAge, person(FirstName, LastName, Age)) :-
person(FirstName, LastName, Age),
Age =< MaxAge.

5 Compound data as seen from C++

Compound data that is to be communicated to Prolog is represented as a C++ class. This class must
provide methods to fetch the components for use as a predicate input argument and with a method to
create fill an instance of this class for predicate output arguments. These methods are:

void initialize(t1 a1, t2 a2, ...)
The initialize method is called with as many objects of the proper type as there are arguments
in the Prolog term. The primitive types are long, (for Prolog integers) double (for Prolog
floats) and the C++ std class string for atoms.

Type get field()
For each named field (see section 4) a function must be provided that extracts the field and
returns the appropriate type. For atom typed fields the return value can be an std string or a
plain C char*.

Below is a possible implementation for the above defined person class.

class person
{
public:

char *first_name;
char *last_name;
int age;

person()
{ first_name = NULL;

last_name = NULL;
age = -1;

};
˜person()

6

{ if (first_name) free(first_name);
if (last_name) free(last_name);

}

char *get_first_name() const { return first_name; }
char *get_last_name() const { return last_name; }
long get_age() const { return age; }

void initialize(string fn, string ln, long years)
{ if (first_name) free(first_name);

if (last_name) free(last_name);

first_name = strdup(fn.c_str());
last_name = strdup(ln.c_str());
age = years;

}
};

6 Generating the C++ proxy

The C++ proxy class is automatically generated from the Prolog declarations using the library
cpp_codegen.pl. To generate the code load this library in a Prolog process that has all the
cpp callable/1 and type declarations in place and invoke the predicate cpp server code/2:

cpp server code(+File, +Options)
Generate the C++ proxy class to access the deterministic predicates and the query classes for
the non-deterministic predicates and write them to the given File. Options consists of

server class(Name)
Name of the proxy class. If omitted it is called MyProxy.

7 Using the proxy classes

7.1 Passing primitive datatypes

Primitive data are the Prolog types integer, float and atom.

7.2 Passing compound data

Compound data is represented as a compound term in Prolog and, unless renamed using
cpp type/2, an equally named class in C++.

7.3 Non-deterministic queries

The proxy for a non-deterministic predicates is a subclass of PlQuery. The name of the class is
the name of the predicate, unless modified using the as(Name) attribute with cpp callable/1. A

7

query is started by creating an instance of this class using a pointer to the proxy as argument. The
only method defined on this class is ::next solution(). This method uses the same arguments as the
proxy methods that represent deterministic queries. The following example fetches all functors with
arity 3 defined in Prolog:

:- use_module(library(typedef)).
:- use_module(library(cpp_interface)).

:- cpp_callable
current_functor(-atom, +integer) = [zero_or_more].

#include <iostream>
#include "myproxy.h>

int
main(int argc, char **argv)
{ MyProxy proxy("localhost", 4224);

try
{ between q(&proxy);

string name;

while (q.next_solution(name, 3))
{ cout << name << endl;
}

} catch (PlException &ex)
{ cerr << (char *)ex;
}

return 0;
}

7.4 Nesting queries

Non-deterministic queries are initiated by creating an instance of its class. The query is said to be open
as long as the query object is not destroyed. New queries, both deterministic and non-deterministic
can be started while another query is still open. The nested query however must be closed before more
solutions can be asked from the query it is nested in.

The example below computes a table of all square roots for the numbers 1 to 100 using prolog to
generate the numbers on backtracking using between/3 and access to sqrt/2. First the Prolog
code, followed by the C++ code.

:- use_module(library(typedef)).
:- use_module(library(cpp_interface)).

:- cpp_callable

8

between(+integer, +integer, -integer) = [zero_or_more],
sqrt(+float, -float).

sqrt(In, Out) :- Out is sqrt(In).

#include <iostream>
#include "myproxy.h>

int
main(int argc, char **argv)
{ SqrtProxy proxy("localhost", 4224);

try
{ between q(&proxy);

long l = 1;
long h = 100;
long i;

while (q.next_solution(l, h, i))
{ double ifloat = (double)i;

double rval;

proxy.sqrt(ifloat, rval);
cout << "sqrt(" << i << ") = " << rval << endl;

}
} catch (PlException &ex)
{ cerr << ex;
}

return 0;
}

8 Running the server

For running the server we need a Prolog process with the actual predicates and their declarations
loaded. We load the library cpp_server and invoke cpp server/1:

cpp server(+Options)
Start the C++ server in the current process. This creates a small thread with the alias
cpp accept that accepts new connections and, for each new connection, starts a new thread
that handles the queries for the client. Options include:

port(Port)
Port on which to bind the server. Default is 4224.

9

9 Putting it all together: a complete example

The base-classes for the runtime system are installed in the SWI-Prolog include directory as
SWI-proxy.cpp and its header SWI-proxy.h. These files are not compiled into a library. Con-
sidering compatibility between different compilers and compilation models (threading, etc.) it is
thought to be easier to include this code into the target project using the source-code.

The directory examples (installed as .../pl/doc/packages/examples/cppproxy)
contains some stand-alone examples as well as a README explaining how to compile and run the
examples.

10 Status

The current implementation is a demonstrator. Issues to be resolved in future versions of this package
include

• Handle arrays
Provide automatic conversion of C++ arrays and/or std library vectors to Prolog lists. Currently
sets can be extracted from Prolog by enumerating a non-deterministic predicate and send to
Prolog using repetitive calls. Both imply sending many small packages over the wire.

• Authentication and security
Currently the server is ‘wide open’, Limiting the IP for connecting hosts is a first step. Other
steps are login using password challenge/response. Sequence numbers to avoid man-in-the-
middle attacks and the use of SSL.

• Alternative communication channals
Currently only the TCP/IP version is implemented. See introduction.

• Error recovery
Protocol errors (which can be caused by incompatible proxy and Prolog server type decla-
rations) crash the connection. Re-synchronisation is difficult to implement. We could do a
version check by computing a hash from the Prolog interface specification and validate this on
communication startup.

10.1 Portability

The system is designed to be portable using any modern C++ compiler. It has been tested on Linux
using g++ 3.3.4 and MS-Windows using MSVC 6.

11 Installation

11.1 Unix systems

Installation on Unix system uses the commonly found configure, make and make install sequence.
SWI-Prolog should be installed before building this package. If SWI-Prolog is not installed as pl, the
environment variable PL must be set to the name of the SWI-Prolog executable. Installation is now
accomplished using:

10

% ./configure
% make
% make install

This installs the foreign library serialize in $PLBASE/lib/$PLARCH and the Prolog library
files in $PLBASE/library and the files SWI-proxy.cpp and SWI-proxy.h in $PLBASE/
include, where $PLBASE refers to the SWI-Prolog ‘home-directory’.

11.2 Windows system

If you have successfully installed the system from source you can install this package using

% nmake /f Makefile.mak
% nmake /f Makefile.mak install

If not, compile serialize.c using the command below and install the files by hand or using the makefile
after setting the variable PLBASE to the base of the installed Prolog system.

% plld -o serialize serialize.c

11

Index
between/3, 8

cpp callable/1, 5, 7
cpp server/1, 9
cpp server code/2, 7
cpp type/1, 6
cpp type/2, 7

get field(), 6

initialize(), 6

PlQuery class, 5

sqrt/2, 8

type/1, 5

12

	Introduction
	Overview
	Related techniques
	Prolog Portability

	Defining the interface
	Compound data as seen from C++
	Generating the C++ proxy
	Using the proxy classes
	Passing primitive datatypes
	Passing compound data
	Non-deterministic queries
	Nesting queries

	Running the server
	Putting it all together: a complete example
	Status
	Portability

	Installation
	Unix systems
	Windows system

