
CMB
The SML/NJ Bootstrap Compiler

(for SML/NJ version 110.35 and later)

User Manual

Matthias Blume
Lucent Technologies, Bell Labs

July 27, 2022

Contents

1 Introduction 2

2 Basic usage 2

2.1 Requirements . 2

2.2 Invoking the bootstrap compiler . 3

2.3 Booting a new interactive system . 4

2.4 Testing the newly booted system . 4

2.5 Installing a newly booted system . 4

3 Differences between CMB and CM 5

3.1 Code sharing . 5

3.2 Init library . 5

3.2.1 Linkage to runtime system . 6

3.3 BOOTLIST file . 6

3.4 PIDMAP file . 6

3.5 Cross-compiling . 6

4 Structure CMB 7

5 File naming—the role of path anchors 8

5.1 Anchoring requirement . 8

5.2 Different anchor mappings at different times . 8

6 Scripts 9

6.1 The makeml script . 9

6.2 The testml script . 10

6.3 The installml script . 10

6.4 The fixpt script . 10

6.5 The allcross script . 10

1

1 Introduction

With the exception of the runtime system which is written in C, compiler and interactive system for Standard ML of New
Jersey (SML/NJ) [AM91] are themselves implemented in Standard ML [MTHM97]. When the new Compilation and
Library Manager (CM) [Blu00] was introduced, all ML code of SML/NJ was reorganized in such a way that the system
itself works like any other stand-alone ML program compiled by SML/NJ.

However, there are a few important differences between compiling an ordinary ML program using CM and (re-)compiling
the interactive system itself. These differences are handled by a special-purpose version of the compilation manager: the
bootstrap compiler. Its interface is structure CMB, exported from library $smlnj/cmb.cm.

This document describes how to use the bootstrap compiler and also explains how bootstrapping the SML/NJ compiler
differs from compiling ordinary ML code.

2 Basic usage

2.1 Requirements

To be able to use the bootstrap compiler, one must first install SML/NJ (i.e., the interactive system that contains the
compiler) as well as both ML-Yacc and ML-Lex.

It is further necessary to have all ML source code for the system available. If the basic installation did not install this
source code, then one must now fetch all source archives and unpack them. (There is an option for the SML/NJ installer
that lets it install all source trees automatically. However, by default this feature is turned off.)

The following list shows all required source packages. (Path names are shown relative to the SML/NJ installation direc-
tory.)

src/system This archive contains the sources for the SML Standard Basis library as well as lots of “glue” code. The glue
is used for assembling a complete system from all its other parts. Directory src/system must be the current
working directory at the time the bootstrap compiler is started.

src/MLRISC This is the implementation of the MLRISC backend (the low-level optimizer and code generator) used by
SML/NJ.

src/cm This source tree contains most of CM’s (and CMB’s) implementation.

src/compiler This is the implementation of the frontend (parser, type checker, etc.) of the compiler as well as its high-
level optimizer (FLINT).

src/ml-yacc This source tree contains the implementation of ML-Yacc and its library ($/ml-yacc-lib.cm). Techni-
cally, the sources of ML-Yacc itself are not needed (provided a working executable for ML-Yacc has been installed),
but the library sources are.

src/smlnj-lib This source tree hosts several sub-trees, each of which implements one of the libraries in the SML/NJ
library collection. For bootstrap compilation, the following sub-trees are required:

src/smlnj-lib/Util This directory holds the sources for $/smlnj-lib.cm.

src/smlnj-lib/PP This directory holds the sourcse for $/pp-lib.cm, i.e., the pretty-printing library.

src/smlnj-lib/HTML This directory holds the sources for $/html-lib.cm, a library for handling HTML files.
The need for this library arises from the fact that $/pp-lib.cm statically depends on it. (The compiler does
not actually use any services from this library.)

2

2.2 Invoking the bootstrap compiler

To invoke the bootstrap compiler, first one has to change the current working directory to src/system:

$ cd src/system

The next step is to start the interactive system and load the bootstrap compiler. This can be done in one of two ways:

1. Start the interactive system and then issue a CM.autoload command that causes the bootstrap compiler to be
loaded. The resulting session could look like this:

$ sml
Standard ML of New Jersey ...
- CM.autoload "$smlnj/cmb.cm";
...
val it = true : bool
-

2. Start the interactive system and specify $smlnj/cmb.cm on the command line:

$ sml ’$smlnj/cmb.cm’
Standard ML of New Jersey ...
-

Note for frequent compiler hackers: The makeml script (see below) builds the the interactive system in such a way
that $smlnj/cmb.cm is already pre-registered for autoloading. Therefore, when using an interactive system built by
makeml (as opposed to the original config/install.sh) there is no need for loading the bootstrap compiler explicitly.

At this point one can invoke the bootstrap compiler by simply issuing the command CMB.make():

- CMB.make ();

If CMB.make() does not run to successful completion, you do not have to start from the beginning. Instead, fix the
problem at hand and re-issue CMB.make() without terminating the interactive session in between. This tends to be a lot
faster than starting over.

This process can be repeated arbitrarily many times until CMB.make() is successful.

A successful run looks like this:

- CMB.make ();
...
New boot directory has been built.
val it = true : bool
-

The return value of true indicates success. This means that (as indicated by the message above the return value) a
directory with stable libraries and some other special files that are needed for “booting” a new interactive system has been
created.

The name of the boot directory depends on circumstances. A part of it can be chosen freely, other parts depend on current
architecture and operating system. For example, on a Sparc system running some version of Unix, the default name of the
directory is sml.boot.sparc-unix.

There is also a similarly-named em binfile directory which is used by CMB.make() itself but which is not required for
the purpose of subsequent “boot” steps.

3

2.3 Booting a new interactive system

Once CMB.make() has completed its work successfully (indicated by its return value of true), the next step is to build
a new heap image. To do so, issue the command makeml at the shell prompt:

$./makeml
...
Standard ML of New Jersey ...
./makeml: Heap image generated.

The makeml command generates a new heap image and also prepares stable libraries to be used by this image. Neither
the heap image nor the libraries will at this time be installed for permanent use though. This means that invoking sml still
starts the old system.

Again, the name of the generated heap image is variable and depends on programmer choice, current architecture, and
current operating system. For example, on an Intel x86 Linux machine, the default would be sml.x86-linux.1

2.4 Testing the newly booted system

To test-drive a newly booted system without installing it, issue the testml command at the shell prompt:

$./testml

This starts an interactive system in a way very similar to sml, but it uses the heap image and libraries from a previous run
of makeml.

2.5 Installing a newly booted system

Once one is sure that a newly booted system is good enough to replace the old system, issuing the installml command
will replace old heap image and old libraries with those generated by the previous run of makeml.

$./installml

This command will replace the system’s heap image in ../../bin/.heap and its libraries in ../../lib. However,
it will leave alone any unrelated libraries in ../../lib.

Sometimes changes to the compiler will render any previously installed libraries unusable. In this case one should erase
them prior to issuing the installml command:

$ rm ../../lib/*
$./installml

Libraries that were installed as part of the SML/NJ installation process but which are unrelated to bootstrap compilation
(e.g., $/inet-lib.cm, CML, eXene) can be recovered (once they had been removed) by going back to the installation
directory and issuing the config/install.sh command again:

$ cd ../..
$ config/install.sh

Since some changes to the compiler also render old binfiles unusable, one will occasionally have to remove those first
(prior to re-running config/install.sh). Binfiles for libraries unrelated to bootstrapping are handled by CM (and
not CMB), so the usual CM rules for locating them apply. (This means that in such a case the binfile for d/f.sml will
be in d/CM/arch-os/f.sml where arch is a string describing the CPU architecture and os is a string describing the
operating system kind. Example: x86-unix.)

1The operating-system dependent portion of the name of a heap image is more discriminating than the operating-system dependent portion of boot-
or binfile directories. On the same Intel x86 Linux machine, the name of the boot directory is sml.boot.x86-unix.

4

3 Differences between CMB and CM

In this section we discuss why compiling the compiler is different from compiling other ML programs. Each of the
following sub-sections focuses on one particular aspect.

3.1 Code sharing

CM keeps compiled code within the same directory tree that contains the corresponding ML source code. Thus, there is a
fixed function that maps the names of source files to the names of corresponding binfiles and the names of CM description
files (for libraries) to their corresponding stable files.

As a result, these files will be shared between programs that use the same libraries. Moreover, CM will let different
programs that are loaded into an interactive session at the same time share their in-memory copies of common compiled
modules. (There is also an issue of state-sharing, but this does not concern CMB because the bootstrap compiler only
compiles code without linking it.)

Sharing of code is useful for ordinary usage, but when compiling the compiler itself, it is not desirable. During bootstrap
compilation, it is often the case that several different versions of compiled code have to coexist. Some, or even all of these
versions can differ significantly from those of the currently running system.

Therefore, CMB keeps binfiles and stable files in separate directory trees. The names of the directories where these
trees are rooted at are constructed from three parts; the binfile directory’s name is u.bin.arch-os and the stablefile
directory’s name is u.boot.arch-os. As mentioned before, arch is a string describing the current CPU architecture
and os is a string describing the current operating system kind. Component u is a string that can be selected freely when
the bootstrap compiler is invoked. When using CMB.make it defaults to sml, otherwise it is the argument given to
CMB.make’. (The u component is kept variable to make it possible to keep and use several compiled versions of the
system at the same time.)

The auxiliary script makeml (which is responsible for bootstrapping a new system) also accepts a parameters to select u.
If the parameter is missing, it defaults to sml (in accordance with CMB.make’s behavior).

3.2 Init library

The init library ($smlnj/internal/init.cmi) is a library that is used implicitly by all programs. This library is
“special” in several ways and cannot be described using an ordinary CM description file. It is the bootstrap compiler’s
responsibility to properly prepare a stable version.

Ordinary programs (those managed by CM) do not have to worry about the special aspects of how to construct this library;
they just have to be able to use its stable version.

There are several reasons why the library cannot be described as an ordinary CM library:

• The library exports the pervasive environment which normally is imported implicitly by every compilation unit.
Within the init library, no pervasive environment is available yet.

• One binding in the above-mentioned pervasive environment is a binding for structure Core. The symbol
Core is not a legal SML identifier, and the bootstrap compiler has to take special action to create a binding for it

anyway.

• One of the compilation units in this library is merely a placeholder which at link time has to be replaced by the
SML/NJ runtime system (which is written in C).

5

3.2.1 Linkage to runtime system

The ML source file dummy.sml (located in directory src/system/smlnj/init) contains a carefully constructed
module whose signature matches that of the runtime system’s binary API. This file is being compiled as part of construct-
ing the init library, but it has been marked specially as runtime system placeholder. During compilation, this file pretends
to be the runtime system; other modules that use the runtime system “think” they are using dummy.sml.

At link time (i.e., bootstrap time—when makeml is run), the boot loader will ignore dummy.sml and use the actual
runtime system in its place. This trick makes it possible that (from the point of view of all other modules) using services
from the runtime system appears to be no different than using services from an ordinary ML compilation unit.

3.3 BOOTLIST file

Linking of SML/NJ programs involves executing the code of each of the concerned compilation units. The code of each
compilation unit is technically a closed function; all its imports have been turned into arguments and all exports have been
turned into return values.

For ordinary programs, this process is under control of CM; CM will take care of properly passing the exports of one
compilation unit to the imports of the next.

When booting a stand-alone program, though, there is no CM available yet. Thus, executing module-level code and
passing exports to imports has to be done by the (bare) runtime system. The runtime system understands enough about the
layout of binfiles and library files so that it can do that—provided there is a special bootlist file that contains instructions
about which modules to load in what order.

The bootlist mechanism is not restricted to building SML/NJ. Ordinary ML code can also be turned into stand-alone
programs, and as far as the runtime system is concerned, the mechanisms are the same. The bootlist file used by such
ordinary stand-alone ML programs will be constructed by CM; only in the case of bootstrapping SML/NJ itself it will be
constructed by CMB.

The name of the bootlist file is BOOTLIST, and it is located at the root of the directory tree that contains stable files (i.e.,
its name is u.boot.arch-os/BOOTLIST).

3.4 PIDMAP file

The last file to be loaded by the bootstrap process contains module-level code which will trigger the self-initialization of
the interactive system—including CM. One job of CM is to manage sharing of link-time state (i.e., dynamic state created
by module-level code at link time). Link-time state of a module used by the interactive system should be shared with any
program using the same module. The file u.boot.arch-os/PIDMAP contains information that enables CM to relate
existing link-time state to particular library modules and also to identify any link-time state that will never be shared and
which can therefore be dropped. It is CMB’s responsibility to construct the PIDMAP file.

3.5 Cross-compiling

Several different versions of the bootstrap compiler can coexist—each being responsible for targeting another CPU-
OS combination. Structure CMB is the default bootstrap compiler that targets the current system; it is exported from
$smlnj/cmb.cm. The following table lists the names of other structures—those corresponding to various cross-
compilers. All these structures share the same signature.

The table also shows the names of libraries that the structures are exported from as well as those arch and os strings that
are used to name binfile- and stablefile-directory.

6

library structure architecture OS arch os
$smlnj/cmb.cm
$smlnj/cmb/current.cm

CMB current current

$smlnj/cmb/alpha32-unix.cm Alpha32UnixCMB Alpha Unix alpha32 unix
$smlnj/cmb/hppa-unix.cm HPPAUnixCMB HP-PA Unix hppa unix
$smlnj/cmb/ppc-macos.cm PPCMacOSCMB Power-PC Mac-OS ppc macos
$smlnj/cmb/ppc-unix.cm PPCUnixCMB Power-PC Unix ppc unix
$smlnj/cmb/sparc-unix.cm SparcUnixCMB Sparc Unix sparc unix
$smlnj/cmb/x86-unix.cm X86UnixCMB Intel x86 Unix x86 unix
$smlnj/cmb/x86-win32.cm X86Win32CMB Intel x86 Win32 x86 win32

$smlnj/cmb/all.cm all of the above (except CMB)

As an example, consider targeting a Sparc/Unix system. The first step is to load the library that exports the corresponding
cross-compiler:

CM.autoload "$smlnj/cmb/sparc-unix.cm";

Once this is done, run the equivalent of CMB.make:

SparcUnixCMB.make ();

This will recompile the compiler, producing object code for a Sparc. Binfiles will be stored under sml.bin.sparc-unix
and stable libraries under sml.boot.sparc-unix.

4 Structure CMB

This section describes the signature of structure CMB. Since structures representing cross-compilers have the same
signature, everything said here applies (mutatis mutandis) to them as well.

The primary function to invoke the bootstrap compiler is CMB.make’:

val make’ : string option -> bool

This (re-)compiles the interactive system’s entire source tree, constructing stable versions for all libraries involved. In the
process, binfiles are placed under directory u.bin.arch-os where arch and os are strings describing target architecture
and target OS, respectively. The string u is the optional argument to CMB.make’. If set to NONE, it defaults to "sml".

An alternative equivalent to invoking CMB.make’ with NONE is to use CMB.make:

val make : unit -> bool

CMB—like CM—maintains a lot of internal state to speed up repeated invocations. (Between sessions, much of this state
is preserved in those binfile- and stablefile-directories. However, reloading is still quite a bit more expensive than directly
using existing in-core information.)

Information that CMB keeps in memory can be completely erased by issuing the CMB.reset command:

val reset : unit -> unit

After a CMB.reset(), the next CMB.make (or CMB.make’) will have to re-load everything from the file system.

CMB has its own registry of “CM identifiers”—named values that can be queried by using the conditional compilation
facility. This registry is initialized according to CM’s rules. Of course, initial values are not based on current architec-
ture and OS but on those of the target system. To explicitly set or erase the values of specific variables, one can use
CMB.symval (which acts in a way analogous to CM.symval):

val symval : string ->
{ get : unit -> int option, set : int option -> unit}

7

5 File naming—the role of path anchors

Under normal operation of CM, the mapping from path names to the files they denote is supposed to be a fixed one. The
path anchor mechanism is merely a means of configuring this mapping according to the actual filesystem layout.

The bootstrap compiler and the associated boot procedure, however, use path anchors extensively for other purposes. In
particular, the above-mentioned mapping will vary over time.

The “casual” compiler hacker does not actually need to remember all the details because these details are mostly taken
care of automatically by CMB and its various scripts (makeml, testml, installml). But it is useful to have a rough
idea of what rôles are being played by various files and directories that are being used or created.

5.1 Anchoring requirement

During bootstrap compilation it is necessary that all pathnames be either anchored or relative to another anchored path-
name. This rule guarantees that every path name can be mapped to different locations in the filesystem at different times.
(Technically, this restriction is necessary only for library description files.)

5.2 Different anchor mappings at different times

We can distinguish between four different anchor configurations which will be in effect at different times:

compilation: At the time CMB.make runs, the anchor configuration is taken from file pathconfig.2 This configu-
ration maps anchors to their respective directories in the actual source tree. At the same time the policy which
determines the names of binfiles and stablefiles is modified in such a way that all binfiles will be created in di-
rectory u.bin.arch-os and all stablefiles will be created in u.boot.arch-os. In particular, if $a is the root
anchor name controlling the path leading to an ML source file $a/· · ·/file.sml, then the corresponding binfile
will be created as u.bin.arch-os/a/· · ·/CM/arch-os/file.sml. Similarly, the stablefile for the library descrip-
tion $a/· · ·/file.cm controlled by root anchor $a gets written to u.boot.arch-os/a/· · ·/CM/arch-os/file.cm.
(Notice how the anchor name $a is being incorporated into the resulting pathnames.)

boot: At bootstrap time (e.g., when the makeml script is invoked), CM scans the contents of u.boot.arch-os, and
for each directory name a it finds there it maps the anchor $a to that directory. The result is that the location for
library description $a/· · ·/file.cm is considered to be u.bin.arch-os/a/· · ·/file.cm, which means that—under
the usual rules of CM— the corresponding stablefile is going to be u.bin.arch-os/a/· · ·/CM/arch-os/file.cm.
This is precisely where CMB.make created it. (Of course, the libary description file itself does not exist, but this is
not a problem because the stablefile does.)

The resulting mapping for anchors is the one that is being saved to the newly generated heap image.

test: After generating a new heap image v.arch-osname3, the makeml script will copy the hierarchy of directories under
u.boot.arch-os to a new directory v.lib and generate a path configuration file v.lib/pathconfig for it.
Files in this hierarchy will be re-created as hard links. The prefix v can be chosen at the time makeml is invoked
(see section 6.1)—just like u can be chosen at the time CMB.make is invoked. The default for v is sml. Copying
the directory prevents any future CMB.make from clobbering the libraries that belong to the newly generated heap
image.

Running the testml script will start the runtime system, instruct it to load heap image v.arch-osname, and
arrange for the path configuration file v.lib/pathconfig to take effect. This will cause any anchor a to be
resolved within the v.lib hierarchy. Thus, the new system can be tested in a way that is completely independent
from any existing installation. (Again, v can be specified as a parameter to testml.)

2All relative pathnames shown here are relative to src/system.
3As mentioned earlier, we distinguish between os which describes the kind of operating system and osname which is the name of a particular

operating system. For example, on a Linux machine osname is linux while os is still unix.

8

install: When testing has been satisfactory, the new system can be installed permamently, replacing the old heap image
and its old libraries with their newly created counterparts. To do so, one should run the installml script. It
will move the heap image v.arch-osname to ../../bin/.heap/sml.arch-osname and all stablefiles from
v.lib to their usual place under ../../lib. It then proceeds to edit ../../lib/pathconfig (the main
path configuration file of the installation) to reflect the new situation. (Library files in ../../lib that have
nothing to do with the bootstrap process will remain untouched.)

6 Scripts

This section gives a detailed description for each script, its function, and its options. All scripts described here are located
in the src/system directory.4

6.1 The makeml script

This script is used after a successful run of CMB.make (or CMB.make’). It links the compiler and its interactive system,
forming a corresponding heap image. In addition to that, it prepares a new directory containing stable CM libraries to be
used with the new image.

One way of thinking about this is to view makeml as a function mapping a bootfile directory b to a pair consisting of a
heap image v.arch-osname and a library directory v.lib. The strings b and v are optional parameters; the defaults are
sml.boot.arch-os for b and sml for v.

The script accepts a number of options as follows:

-o v specifies a v other than the default sml.

-boot b specifies a b other than the default sml.boot.arch-os.

-quiet instructs makeml to greatly reduce its diagnostic output. In particular, the names of files being linked are not
shown. The default for this can be controlled via a boolean-valued environment variable MAKEML VERBOSITY. If
the variable is not set, then the default is true (meaning “verbose”).

-verbose is the opposite of -quiet.

-rebuild u puts makeml into a different mode: After loading the executable section of all binfiles and linking them, it
will not read any static environments, will not initialize the usual interactive system and will not produce a heap
image. Instead, it internally invokes the equivalent of CMB.make’ (SOME "u"), thus recompiling everything
again. When recompilation is complete, makeml stops; the newly-built system must be linked using a separate
explicit invocation of makeml. Notice that u.boot.arch-os must be different from b.

-rebuildlight u is the same as -rebuild u except that the symbol LIGHTwill be defined (using CMB.symval) for the
duration of the compilation. The effect of this is that no cross-compilers will be built (which can save considerable
time). Alternative names for -rebuildlight are -light and -lightrebuild.

-bare causes makeml to build a reduced version of the system without the compilation manager CM included. This is
useful for people who are interested in an interactive system only.

-run r selects the executable for the SML/NJ runtime system. The default is ../../bin/.run/run.arch-osname.

-alloc a specifies the size of the SML/NJ garbage-collector’s allocation area. The default depends on the current machine
architecture.

The most common usage is to simply say ./makemlwithout any arguments, taking advantage of the defaults as described
above.

4If the current directory . is not on the shell’s search path, then each script must be invoked using an explicit ./-prefix. Example: ./makeml.

9

6.2 The testml script

The testml script launches a newly-built and newly-linked interactive system. It requires a previous run of the makeml
script because it uses the heap image v.arch-osname and libraries in v.lib.

If no arguments are given, v defaults to sml. If at least one argument is given, then v is assumed to be the first one. All
other arguments are passed to the initialization routine of the interactive system just like normal arguments to the sml
command would.

This means that one must specify a v unless there are no command-line arguments at all.

6.3 The installml script

The installml script moves a heap image v.arch-osname to ../../bin/.heap/sml.arch-osname. Moreover,
it moves the libraries under v.lib to ../../lib and updates ../../lib/pathconfig accordingly.

The script takes one optional argument which specifies v. If no argument is given, v defaults to sml.

6.4 The fixpt script

One good test of whether a new version of the compiler is working properly is to see if it compiles to a fixed point. For
this, the compiler is compiled n times with the result of the (k− 1)st compilation being responsible for compiling the kth
version. A fixed point is reached if two consecutive compilations produce identical results.

The fixpt script automates the task of compiling to a fixed point. It internally uses the sml command for the first
compilation and the makeml script with its -rebuild parameter for all subsequent runs. This produces a series
of bin-directories u.bin.arch-os, u1.bin.arch-os, u2.bin.arch-os,. . . and boot-directories u.boot.arch-os,
u1.boot.arch-os, u2.boot.arch-os,. . . where u is a common “stem” that is used for naming the whole series.

The fixpt script accepts the following options:

-iter n limits the number of iterations to n. The default for n is 3. If no fixed point is found after n iterations, then fixpt
terminates with an error message.

-base u selects the “stem” u (see above). The default is sml.

-light causes LIGHT to be defined during compilation. (See the discussion of makeml’s -rebuildlight option.)

Failure to reach a fixed point after 2 iterations usually indicates some serious problem within the compiler.

6.5 The allcross script

Finally, the allcross script is handy for building bin- and boot-files for all architectures. The script currently takes no
arguments and compiles (and cross-compiles) for 6 supported combinations of arch and os: alpha32-unix, hppa-unix,
ppc-unix, sparc-unix, x86-unix, and x86-win32.

10

References

[AM91] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In Martin Wirsing, editor, 3rd
International Symp. on Prog. Lang. Implementation and Logic Programming, pages 1–13, New York, August
1991. Springer-Verlag.

[Blu00] Matthias Blume. CM: The SML/NJ compilation and library manager. Manual accompanying SML/NJ
software, 2000.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML (Revised).
MIT Press, Cambridge, MA, 1997.

11

	Introduction
	Basic usage
	Requirements
	Invoking the bootstrap compiler
	Booting a new interactive system
	Testing the newly booted system
	Installing a newly booted system

	Differences between CMB and CM
	Code sharing
	Init library
	Linkage to runtime system

	BOOTLIST file
	PIDMAP file
	Cross-compiling

	Structure CMB
	File naming—the role of path anchors
	Anchoring requirement
	Different anchor mappings at different times

	Scripts
	The makeml script
	The testml script
	The installml script
	The fixpt script
	The allcross script

