Nuitka Release 0.6.16

This release is mostly polishing and new features. Optimization looked only at threading performance, and
LTO improvements on Windows.

Bug Fixes

* Fix, the pkg-r esour ces failed to resolve versions for i nportli b. met adat a from its standard
library at compile time. Fixed in 0.6.15.1 already.

« Standalone: Fix, - - i ncl ude- nodul e was not including the module if it was an extension modules,
but only for Python modules. Fixed in 0.6.15.1 already.

« Standalone: Added missing implicit dependencies for gi . over ri des. Fixed in 0.6.15.1 already.

» Python3.9: Fix, could crash when using generic aliases in certain configurations. Fixed in 0.6.15.2
already.

* Fix, the tensorflow plugin needed an update due to changed API. Fixed in 0.6.15.3 already.
* When error exiting Nuitka, it now closes any open progress bar for cleaner display.
« Standalone: Added missing dependency for ski nage.

« Standalone: The nunpy plugin now automatically includes Qt backend if any of the Qt binding plugins
is active.

New Features

» Pyton3.5+: Added support for onefile compression. This is using zst d which is known to give very
good compression with very high decompression, much better than e.g. zI i b.

» macOS: Added onefile support.
» FreeBSD: Added onefile support.

* Linux: Added method to use tempdir onefile support as used on other platforms as an alternative to
Appl mage based.

» Added support for recursive addition of files from directories with patterns.
* Attaching the payload to onefile now has a progress bar too.

» Windows: Prelimary support for the yet unfinished Nuitka-Python that allows static linking and higher
performance on Windows, esp. with Nuitka.

» Windows: In acceleration mode, for uninstalled Python, now a CMD file is created rather than copying
the DLL to the binary directory. That avoids conflicts with architectures and of course useless file
copies.

* New abilities for plugin ant i - bl oat allow to make it an error when certain modules are imported.
Added more specific options for usual trouble makes, esp. set upt ool s, pyt est are causing an
explosion for some programs, while being unused code. This makes it now easier to oversee this.

* It's now possible to override appdi rs decision for where cache files live with an environment
variable NUI TKA CACHE DI R.

» The - o option now also works with onefile mode, it previously rejected anything but acceleration
mode. Fixed in 0.6.15.3 already.

* Plugins: It's now possible for multiple plugins to provide pre or post load code for the same module.

» Added indications for compilation modes st andal one and onefile to the _ conpiled_ _
attribute.

* Plugins: Give nicer error message in case of colliding command line options.

Optimization

» Faster threading code is now using for Python3.8 or higher and not only 3.9, giving a performance
boost, esp. on Windows.

» Using - - | t 0 is now the default with MSVC 2019 or higher. This will given smaller and faster binaries.
It has been available for some time, but not been the default yet.

Cleanups

« Using different progress bar titles for C compilation of Python code and C compilation of onefile
bootstrap.

» Moved platform specific detections, for FreeBSD/OpenBSD/macOS out of the Scons file and to
common Nuitka code, sometimes eliminating duplications with one version being more correct than
the other.

» Massive cleanup of datafile plugin, using pattern descriptions, so more code duplication can be
removed.

» More cleanup of the scons files, sharing more common code.

Organisational

» Under the name Nuitka-Python we are now also developing a fork of CPython with enhancements,
you can follow and joint it at https://github.com/Nuitka/Nuitka-Python but at this time it is not yet ready
for prime time.

 Onefile under Windows now only is temporary file mode. Until we figure out how to solve the
problems with locking and caching, the mode where it installs to the AppData of the user is no longer
available.

» Renamed the plugin responsible for PyQt5 support to match the names of others. Note however, that
at this time, PySide2 or PySide6 are to be recommended.

» Make it clear that PySide 6.1.2 is actually going to be the supported version of PySide6.
* Use MSVC in Github actions.

Summary

This release had a massive focus on expanding existing features, esp. for onefile, and plugins API, such
that we can now configure ant i - bl oat with yaml, have really nice datafile handling options, and have
onefile on all OSes practically.

Nuitka Release 0.6.15

This release polished previous work with bug fixes, but there are also important new things that help make
Nuitka more usable, with one important performance improvement.

Bug Fixes

* Fix, hard imports were not automatically used in code generation leading to errors when used. Fixed
in 0.6.14.2 already.

» Windows: Fix, cl cache was disabled by mistake. Fixed in 0.6.14.2 already.

» Standalone: Added data files for j sonschema to be copied automatically.

https://github.com/Nuitka/Nuitka-Python

« Standalone: Support for pendul um wasn't working anymore with the last release due to plugin
interface issues.

» Retry downloads without SSL if that fails, as some Python do not have working SSL. Fixed in 0.6.14.5
already.

* Fix, the ccache path wasn't working if it contained spaces. Fixed in 0.6.14.5 already.

* Onefile: For Linux and ARM using proper download off appimage. Fixed in 0.6.14.5 already.
« Standalone: Added support for pyr eadst at . Fixed in 0.6.14.5 already.

« Standalone: Added missing dependencies for pandas. Fixed in 0.6.14.6 already.

« Standalone: Some preloaded packages from . pt h do not have a __pat h__, these can and must be
ignored.

* Onefile: On Linux, the sys. ar gv[0] was not the original file as advertised.

« Standalone: Do not consider . mesh and . f r ag files as DLIs in the Qt bindings when including the
gml support. This was causing errors on Linux, but was generally wasteful.

* Fix, project options could be injected twice, which could lead to errors with options that were only
allowed once, e.g. - - | i nux-onefil e-icon.

» Windows: When updating the resources in created binaries, treat all kinds of OSError with
information output.

 Onefile: Remove onefile target binary path at startup as well, so it cannot cause confusion after error
exit.

« Onefile: In case of error exit from Appl nage, preserve its outputs and attempt to detect if there was a
locking issue.

« Standalone: Scan package folders on Linux for DLLs too. This is necessary to properly handle PyQ 5
in case of Qtinstalled in the system as well.

 Standalone: On Linux, standard QML files were not found.

« Standalone: Enforce C locale when detecting DLLs on Linux, otherwise whitelisting messages didn't
work properly on newer Linux.

» Standalone: Added support for t zdat a package data files.
« Standalone: Added support for exchangel i b.
» Python3.9: Fix, type subscripts could cause optimization errors.

 Ul: Project options didn't properly handle quoting of arguments, these are normally removed by the
shell.

* Linux: The default icon for Python in the system is now found with more version specific names and
should work on more systems.

» Standalone: Do not include | i bst dc++ as it should come from the system rather.

New Features

» Added plugin anti - bl oat plugin, intended to fight bloat. For now it can make including certain

modules an error, a warning, or force | mport Error, e.g.
- - noi ncl ude- set upt ool s- node=nof ol | ow is very much recommended to limit compilation
size.

» The pkg-r esour ces builtin now covers net adat a and importlib_metadata packages for compile
time version resolution as well.

» Added support for PySi de2 on Python version before 3.6, because the patched code needs no
workarounds. Fixed in 0.6.14.3 already.

» Windows: Convert images to icon files on the fly. So now you can specify multiple PNG files, and
Nuitka will create an icon out of that automatically.

» macOS: Automatically download ccache binary if not present.
* Plugins: New interface to query the main script path. This allows plugins to look at its directory.
« Ul: Output the versions of Nuitka and Python during compilation.

» Ul: Added option to control static linking. So far this had been enabled only automatically for cases
where we are certain, but this allows to force enable or disable it. Now an info is given, if Nuitka
thinks it might be possible to enable it, but doesn't do it automatically.

» Ul: Added - - no- onefi | e to disable - - onef i | e from project options.
Optimization
* Much enhanced GIL interaction with Python3.9 giving a big speed boost and better threading
behaviour.

» Faster conversion of iterables to | i st , if size can be know, allocation ahead saves a lot of effort.

» Added support for Generi cAl i as objects as compile time constants.

Organisational

» Enhanced Github issue raising instructions.
» Apply r st f nt to all documentation and make it part of the commit hook.

» Make sure to check Scons files as well. This would have caught the code used to disable cl cache
temporarily.

» Do not mention Travis in PR template anymore, we have stopped using it.

» Updated requirements to latest versions.

» Bump requirements for development to 3.7 at least, toosl like black do not work with 3.6 anymore.

« Started work on Nuitka Python, a CPython fork intended for enhanced performance and standalone
support with Nuitka.

Cleanups

» Determine system prefix without virtualenv outside of Scons, such that plugins can share the code.
There was duplication with the nunpy plugin, and this will only be more complete using all
approaches. This also removes a lot of noise from the scons file moving it to shared code.

» The Qt plugins now collect QML files with cleaner code.

Tests

* Nicer error message if a wrong search mode is given.

» Windows: Added timeout for determining run time traces with dependency walker, sometimes this
hangs.

» Added test to cover the zip importer.

» Making use of project options in onefile tests, making it easier to execute them manually.

Summary

For Windows, it's now easier than ever to create an icon for your deployment, because you can use PNG
files, and need not produce ICO files anymore, with Nuitka doing that for you.

The onefile for Linux had some more or less severe problems that got addressed, esp. also when it came
to QML applications with PySide.

On the side, we are preparing to greatly improve the caching of Nuitka, starting with retaining modules that
were demoted to bytecode. There are changes in this release, to support that, but it's not yet complete. We
expect that scalability will then be possible to improve even further.

Generally this is mostly a maintenance release, which outside of the threading performance improvement
has very little to offer for faster execution, but that actually does a lot. Unfortunately right now it's limited to
3.9, but some of the newer Python's will also be supported in later releases.

Nuitka Release 0.6.14

This release has few, but important bug fixes. The main focus was on expanding standalone support, esp.
for PySide2, but also and in general with plugins added that workaround pkg resources usage for
version information.

Also an important new features was added, e.g. the project configuration in the main file should prove to
be very useful.

Bug Fixes

» Compatibility: Fix, modules that failed to import, should be retried on next import.

So far we only ever executed the module body once, but that is not how it's supposed to be. Instead,
only if it's in sys. nodul es that should happen, which is the case after successful import.

» Compatibility: Fix, constant Fal se values in right hand side of and/or conditions were generating
wrong code if the left side was of known bool shape too.

« Standalone: Fix, add st yl es Qt plugins to list of sensible plugins.
Otherwise no mouse hover events are generated on some platforms.

» Compatibility: Fix, relative f r omimports beyond level 1 were not loadingg modules from packages if
necessary. Fixed in 0.6.13.3 already.

« Standalone: The cr ypt o DLL check for Qt bindings was wrong. Fixed in 0.6.13.2 already.
« Standalone: Added experimental support for PySide6, but for good results, 6.1 will be needed.
« Standalone: Added support for newer matplotlib. Fixed in 0.6.12.1 already.

« Standalone: Reverted changes related to pkg_r esour ces that were causing regressions. Fixed in
0.6.13.1 already.

« Standalone: Adding missing implicit dependency for cyt ool z package. Fixed in 0.6.13.1 already.

« Standalone: Matching for package names to not suggest recompile for was broken and didn't match.
Fixed in 0.6.13.1 already.

New Features

» Added support for project options.

When found in the filename provided, Nuitka will inject options to the commandline, such that it
becomes possible to do a complex project with only using

pyt hon -m nui tka fil enane. py

Conpi |l ati on node, support OS specific.

nui tka-project-if: {OS} in ("Wndows", "Linux"):

nui t ka- project: --onefile

nui tka-project-if: {OS} not in ("Wndows", "Linux"):
nui t ka- proj ect: --standal one

The PySi de2 plugin covers qt-plugins

nui tka- project: --enable-plugi n=pysi de2

nui tka-project: --include-qt-plugins=sensible, qm

The pkg-resources plugin is not yet automatic
nui tka-proj ect: --enabl e-plugi n=pkg-resources

Nui tka Commercial only features follow

Protect the constants from bei ng readabl e.

nui tka- project: --enable-plugi n=dat a-hi di ng

Include datafiles for @ into the binary directory.
nui t ka-project: --enabl e-plugin=datafile-inclusion
nui tka-project: --qt-datadir={MA N D RECTORY}

nuitka-project: --qt-datafile-pattern=*.js

nuitka-project: --qgt-datafil e-pattern=*.qm

nuitka-project: --qgt-datafile-pattern=*.svg

nuitka-project: --qgt-datafile-pattern=*.png

Refer to the user manual for a table of directives and the variables allowed to be used.
» Added option to include whole data directory structures in standalone.

The new option - -i ncl ude- dat a- di r was added and is mostly required for onefile mode, but
recommended for standalone too.

» Added pkg- r esour ces plugin.

This one can resolve code like this at compile time without any need for pip metadata to be present or
used.

pkg_resources. get _distribution("nodul e_nane"). version
pkg_resources. get _distribution("nodul e nane"). parsed_versi on
 Standalone: Also process early imports in optimization.

Otherwise plugins cannot work on standard library modules. This makes it possible to handle them as
well.

Optimization

« Faster binary operations.

Applying lessons learnt during the enhancements for in-place operations that initially gave worse
results than some manual code, we apply the same tricks for all binary operations, which speeds
them up by significant margins, e.g. 30% for float addition, 25% for Python int addition, and still 6%
for Python int addition.

» More direct optimization of unary operations on constant value.

Without this, - 1 was not directly a constant value, but had to go through the unary - operation, which
it still does, but now it's done at tree building time.

» More direct optimization for not in branches.

Invertible comparisons, i.e. i s/i s not andi n/not i n do not have do be done during optimization.
This mainly avoids noise during optimization from such unimportant steps.

» More direct optimization for constant slices.

These are used in Python3 for all subscripts, e.g. a[1: 2] will use slice(1, 2) effectively. For
Python2 they are used less often, but still. This also avoids a lot of noise during optimization, mostly
on Python3

 Scons: Avoid writing database to disk entirely.

This saves a bit of disk churn and makes it unnecessary to specify the location such that it doesn't
collide between Python versions.

 For optimization passes, use previous max total as minimum for next pass. That will usually be a
more accurate result, rather than starting from 1 again. Part of 0.6.13.1 already.

» Enhancements to the branch merging improve the scalability of Nuitka somewhat, although the
merging itself is still not very scalable, there are some modules that are very slow to optimize still.

» Use or der set if available over the inline copy for Or der edSet which is much faster and improves
Nuitka compile times.

» Make pkguti | a hard import too, this is in preparation of more optimization for its functions.

Organisational

» Upstream patches for PySi de6 have been contributed and merged into the development branch
dev. Full support should be available once this is released as part of 6.1 which is waiting for Qt 6.1
naturally.

» Patches for PySi de2 are available to commercial customers, see PySide2 support page.

» Formatted all documents with r st f nt and made that part of the commit hook for Nuitka. It now
works for all documents we have.

» Updated inline copy of t qdmto 4.59.0 which ought to address spurious errors given.

» User Manual: Remove --show- progress from the tutoral. The default progress bar is then
disabled, and is actually much nicer to use.

 Developer Manual: Added description of how context managers should be named.
» Cleanup language for some warnings and outputs.

It was still using obsolete "recursion" language rather than talking about "following imports", which is
the new one.

Cleanups

» Remove dead code related to constants marshal, the data composer has replaced this.

« Avoid internal API usage for loading extension modules on Linux, there is a function in sys module to
get the Id flags.

Tests

* Fix, the onl y mode wasn't working properly.

https://nuitka.net/pages/pyside2.html

» Use new project options feature for specific options in basic tests allowing to remove them from the
test runner.

Summary

For PySide2 things became more perfect, but it takes upstream patches unfortunately such that only
PySide6.1 will be working out of the box outside of the commercial offering. We will also attempt to provide
workarounds, but there are some things that cannot be done that way.

This release added some more scalability to the optimization process, however there will be more work
needed to make efficient branch merges.

For onefile, a feature to include whole directories had been missing, and could not easily be achieved with
the existing options. This further rounds this up, now what's considered missing is compression and
macOS support, both of which should be coming in a future release.

For the performance side of things, the binary operator work can actually yield pretty good gains, with
double digit improvements, but this covers only so much. Much more C types and better type tracing would
be needed, but there was no progress on this front. Future releases will have to revisit the type tracing to
make sure, we know more about loop variables, etc. so we can achieve the near C speed we are looking
for, at least in the field of i nt performance.

This release has largely been driven by the Nuitka Commercial offering and needs for compatibility with
more code, which is of course always a good thing.

Nuitka Release 0.6.13

This release follows up with yet again massive improvement in many ways with lots of bug fixes and new
features.

Bug Fixes

» Windows: Icon group entries were not still not working properly in some cases, leading to no icon or
too small icons being displayed. Fixed in 0.6.12.2 already.

» Windows: Icons and version information were copied from the standalone executable to the onefile
executable, but that failed due to race situations, sometimes reproducible. Instead we now apply
things to both independently. Fixed in 0.6.12.2 already.

« Standalone: Fixup scanning for DLLs with | dconfig on Linux and newer versions making
unexpected outputs. Fixed in 0.6.12.2 already.

* Ul: When there is no standard input provided, prompts were crashing with EOFEr r or when
--assune-yes-for - downl oads is not given, change that to defaulting to " no" instead. Fixed in
0.6.12.2 already.

» Windows: Detect empty strings for company name, product name, product and file versions rather
than crashing on them later. Them being empty rather than not there can cause a lot of issues in
other places. Fixed in 0.6.12.2 already.

» Scons: Pass on exceptions during execution in worker threads and abort compilation immediately.
Fixed in 0.6.12.2 already.

» Python3.9: Still not fully compatible with typing subclasses, the enhanced check is now closely
matching the CPython code. Fixed in 0.6.12.2 already.

* Linux: Nicer error message for missing | i bf use requirement.

» Compatibility: Lookups on dictionaries with None value giving a KeyEr r or exception, but with no
value, which is not what CPython does.

» Python3.9: Fix, future annotations were crashing in debug mode. Fixed in 0.6.12.3 already.

file:///pages/commercial.html

« Standalone: Corrections to the gl f wwere made. Fixed in 0.6.12.3 already.
« Standalone: Added missing implicit dependency for py. t est . Fixed in 0.6.12.3 already.
« Standalone: Adding missing implicit dependency for pyr eadst at .

» Windows: Added workaround for common clcache locking problems. Since we use it only inside a
single Scons process, we can avoiding using Windows mutexes, and use a process level lock
instead.

* Plugins: Fix plugin for support for event | et . Fixed in 0.6.12.3 already.
« Standalone: Added support for latest zng on Windows.
» Scons: the - - qui et flag was not fully honored yet, with Scons still making a few outputs.

« Standalone: Added support for alternative DLL name for newer PyGIK3 on Windows. Fixed in
0.6.12.4 already.

* Plugins: Fix plugin for support for gevent . Fixed in 0.6.12.4 already.
« Standalone: Added yet another missing implicit dependency for pandas.
* Plugins: Fix, the gt - pl ugi ns plugin could stumble over . nesh files.

» Windows: Fix, dependency walker wasn't properly working with unicode %°ATHY which could e.g.
happen with a virtualenv in a home directory that requires them.

» Python3: Fixed a few Python debug mode warnings about unclosed files that have sneaked into the
codebase.

New Features

» Added new options - - Wi ndows- f or ce- st dout - spec and - - wi nhdows- f or ce- st derr - spec to
force output to files. The paths provided at compile time can resolve symbolic paths, and are
intended to e.g. place these files near the executable. Check the User Manual for a table of the
currently supported values. At this time, the feature is limited to Windows, where the need arose first,
but it will be ported to other supported OSes eventually. These are most useful for programs run as
- -w ndows- di sabl e- consol e or with - - pl ugi n- enabl e=wi ndows- ser vi ce.

» Windows: Added option - - wi ndows- onefi |l e-tenpdi r- spec to provide the temporary directory
used with - - wi ndows- onefi | e-t enpdi r in onefile mode, you can now select your own pattern,
and e.g. hardcode a base directory of your choice rather than %aEMP.

» Added experimental support for PySi de2 with workarounds for compiled methods not being
accepted by its core. There are known issues with Py Si de?2 still, but it's working fine for some people
now. Upstream patches will have to be created to remove the need for workarounds and full support.

Optimization

» Use binary operation code for their in-place variants too, giving substantial performance
improvements in all cases that were not dealt with manually already, but were covered in standard
binary operations. Until now only some string, some float operations were caught sped up, most often
due to findings of Nuitka being terribly slower, e.g. not reusing string memory for inplace
concatenation, but now all operations have code that avoids a generic code path, that is also very
slow on Windows due calling to using the embedded Python via API being slow.

» For mixed type operations, there was only one direction provided, which caused fallbacks to slower
forms, e.g. with | ong and f | oat values leading to inconsistent results, suchthata - 1andl - a
being accelerated or not.

» Added C boolean optimization for a few operations that didn't have it, as these allow to avoid doing
full computation of what the object result would have to do. This is not exhausted fully yet.

» Python3: Faster +/- /+=/- = binary and in-place operations with i nt values providing specialized code
helpers that are much faster, esp. in cases where no new storage is allocated for in-place results and
where not a lot of digits are involved.

» Python2: The Python3 i nt code is the Python2 | ong type and benefits from the optimization of
+/- [+=/- = code as well, but of course its use is relatively rare.

e Improved __ future_
them.

imports to become hard imports, so more efficient code is generated for

» Counting of instances had a runtime impact by providing a __del __ that was still needed to be
executed and limits garbage collection on types with older Python versions.

» Ul: Avoid loading t gdm module before it's actually used if at all (it may get disabled by the user),
speeding up the start of Nuitka.

» Make sure to optimize internal helpers only once and immediately, avoiding extra global passes that
were slowing down Python level compilation by of large programs by a lot.

» Make sure to recognize the case where a module optimization can provide no immediate change, but
only after a next run, avoiding extra global passes originating from these, that were slowing down
compilation of large programs by a lot. Together with the other change, this can improve scalability by
a lot.

 Plugins: Remove implicit dependencies for pkg_r esources. extern and use aliases instead.
Using one of the packages, was causing all that might be used, to be considered as used, with some
being relatively large. This was kind of a mistake in how we supported this so far.

* Plugins: Revamped the event | et plugin, include needed DNS modules as bytecode rather than as
source code, scanning them with pkguti | rather than filesystem, with much cleaner code in the

plugin.

Organisational

» Removed support for pef i | e dependency walker choice and inline copy of the code. It was never as
good giving incomplete results, and after later improvements, slower, and therefore has lost the
original benefit over using Dependency Walker that is faster and more correct.

» Added example for onefile on Windows with the version information and with the temporary directory
mode.

» Describe difference in file access with onefile on Windows, where sys.argv[0] and
os. path.dirnanme(__file__) will be different things.

» Added inline copy of t gdmto make sure it's available for progress bar output for 2.7 or higher.
Recommend having it in the Debian package.

» Added inline copy of col or ana for use on Windows, where on some terminals it will give better
results with the progress bar.

« Stop using old PyLint for Python2, while it would be nice to catch errors, the burden of false alarms
seems to high now.

» Ul: Added even more checks on options that make no sense, made sure to do this only after a
possible restart in proper environment, so warnings are not duplicated.

* For Linux onefile, keep appimage outputs in case of an error, that should help debugging it in case of
issues.

« Ul: Added traces for plugin provided implicit dependencies leading to inclusions.

» Added inline copy of zst d C code for use in decompression for the Windows onefile bootstrap, not
yet used though.

» Added checks to options that accept package names for obvious mistakes, such that
--include-package-data --mi ngwb4 will not swallow an option, as that is clearly not a
package name, that would hide that option, while also not having any intended effect.

» Added ignore list for decision to recompile extension modules with available source too. For now,
Nuitka will not propose to recompile Cyt hon modules that are very likely not used by the program
anyway, and also not for | xm until it's clear if there's any benefit in that. More will be added in the
future, this is mostly for cases, where Cython causes incompatibilities.

» Added support for using abstract base classes in plugins. These are not considered for loading, and
allow nicer implementation of shared code, e.g. between PyQ 5 and Py Si de2 plugins, but allow e.g.
to enforce the provision of certain overloads.

» User Manual: Remove the instruction to install cl cache, since it's an inline copy, this makes no
sense anymore and that was obsolete.

» Updated PyLint to latest versions, and our requirements in general.

Cleanups

» Started removal of PyLint annotations used for old Python2 only. This will be a continuous action to
remove these.

« Jinja2 based static code generation for operations was cleaned up, to avoid code for static
mismatches in the result C, avoiding language constructs like i f (1 && 0) with sometimes larger
branches, replacing it with Jinja2 branches of the {% i f ... % form.

« Jinja2 based Python2 i nt code was pioniering the use of macros, but this was expanded to allow
kinds of types for binary operations, allow their reuse for in-place operation, with these macros
making returns via goto exits rather than return statements in a function. Landing pads for these exits
can then assign target values for in-place different from what those for binary operation result return
do.

» Changed the interfacing of plugins with DLL dependency detection, cleaning up the interactions
considerably with more unified code, and faster executing due to cached plugin decisons.

* Integrate manually provided slot function for uni code and str into the standard static code
generation. Previously parts were generated and parts could be generated, but also provided with
manual code. The later is now all gone.

» Use a less verbose progress bar format with less useless infos, making it less likely to overflow.

» Cleanup how payload data is accessed in Windows onefile bootstrap, preparing the addition of
decompression, doing the reading from the file in only one dedicated function.

» When Jinja2 generated exceptions in the static code, it is now done via proper Jinja2 macros rather
than Python code, and these now avoid useless Python version branches where possible, e.g.
because a type like bytes is already Python version specific, with the goal to get rid of
PyErr _For mat usage in our generated static code. That goal is future work though.

» Move safe strings helpers (cannot overflow) to a dedicated file, and remove the partial duplication on
the Windows onefile bootstrap code.

» The Jinja2 static code generation was enhanced to track the usage of labels used as goto targets, so
that error exits, and value typed exits from operations code no longer emitted when not used, and
therefore labels that are not used are not present.

« For implicit dependencies, the parsing of the . pyi file of a module no longer emits a dependency on
the module itself. Also from plugins, these are now filtered away.

Tests

« Detect if onefile mode has required downloads and if there is user consent, otherwise skip onefile
tests in the test runner.

* Need to also allow accesses to files via short paths on Windows if these are allowed long paths.
 The standalone tests on Windows didn't actually take run time traces and therefore were ineffective.
» Added standalone test for gl f wcoverage.

 Construct based tests for in-place operations are now using a value for the first time, and then a
couple more times, allowing for real in-place usage, so we are sure we measure correctly if that's
happening.

Summary

Where the big change of the last release were optimization changes to reduce the global passes, this
release addresses remaining causes for extra passes, that could cause these to still happen. That makes
sure, Nuitka scalability is very much enhanced in this field again.

The new features for forced outputs are at this time Windows only and make a huge difference when it
comes to providing a way to debug Windows Services or programs in general without a console, i.e. a GUI
program. These will need even more specifiers, e.g. to cover program directory, rather than exe filename
only, but it's a very good start.

On the tooling side, not a lot has happened, with the clcache fix, it seems that locking issues on Windows
are gone.

The plugin changes from previous releases had left a few of them in a state where they were not working,
but this should be restored. Interaction with the plugins is being refined constantly, and this releases
improved again on their interfaces. It will be a while until this becomes stable.

Adding support for PySide2 is a headline feature actually, but not as perfect as we are used to in other
fields. More work will be needed, also in part with upstream changes, to get this to be fully supported.

For the performance side of things, the in-place work and the binary operations work has taken proof of
concept stuff done for Python2 and applied it more universally to Python3. Until we cover all long
operations, esp. * seems extremely important and is lacking, this cannot be considered complete, but it
gives amazing speedups in some cases now.

Future releases will revisit the type tracing to make sure, we know more about loop variables, to apply
specific code helpers more often, so we can achieve the near C speed we are looking for in the field of
i nt performance.

Nuitka Release 0.6.12

This release is yet again a massive improvement in many ways with lots of bug fixes and new features.
Bug Fixes

» Windows: Icon group entries were not working properly in some cases, leading to no icon or too small
icons being displayed.

« Standalone: The PyQt implicit dependencies were broken. Fixed in 0.6.11.1 already.
« Standalone: The datafile collector plugin was broken. Fixed in 0.6.11.3 already.

» Standalone: Added support for newer forms of mat pl ot | i b which need a different file layout and
config file format. Fixed in 0.6.11.1 already.

* Plugins: If there was an error during loading of the module or plugin, it could still be attempted for
use. Fixed in 0.6.11.1 already.

» Disable notes given by gcc, these were treated as errors. Fixed in 0.6.11.1 already.

» Windows: Fix, spaces in gcc installation paths were not working. Partially fixed in 0.6.11.4 already.
* Linux: Fix, missing onefile icon error message was not complete. Fixed in 0.6.11.4 already.

« Standalone: Workaround zng problem on Windows by duplicating a DLL in both expected places.
Fixed in 0.6.11.4 already.

» Standalone: The di I | - conpat plugin wasn't working anymore. Fixed in 0.6.11.4 already.

» Windows: Fix mistaken usage of si zeof for wide character buffers. This caused Windows onefile
mode in temporary directory. Fixed in 0.6.11.4 already.

» Windows: Fix, checking subfolder natured crashed with different drives on Windows. Fixed in
0.6.11.4 already.

» Windows: Fix, usage from MSVC prompt was no longer working, detect used SDK properly. Fixed in
0.6.11.4 already.

» Windows: Fix, old clcache installation uses pth files that prevented our inline copy from working,
workaround was added.

» Windows: Also specify stack size to be used when compiling with gcc or clang.
* Fix, claim of Python 3.9 support also in PyPl metadata was missing. Fixed in 0.6.11.5 already.
» Python3.9: Subscripting t ype for annotations wasn't yet implemented.

» Python3.9: Better matching of types for metaclass selection, generic aliases were not yet working,
breaking some forms of type annotations in base classes.

» Windows: Allow selecting - - nsvc- ver si on when a MSVC prompt is currently activated.

» Windows: Do not fallback to using gcc when - - nsvc- ver si on has been specified. Instead it's an
error if that fails to work.

» Python3.6+: Added support for del () statements, these have no effect, but were crashing Nuitka.

del a # standard form

del a, b # sane as del a; del b

del (a, b) # braces are allowed

del () # allowed for consistency, but wasn't worKking.
 Standalone: Added support for gl f wthrough a dedicated plugin.

* macOS: Added support for Python3 from system and CPython official download for latest OS version.

New Features

« Ul: With t gqdminstalled alongside Nuitka, experimental progress bars are enabled. Do not use ™
--show-progress’™ or - - ver bose as these might have to disable it.

* Plugins: Added APIs for final processing of the result and onefile post processing.

* Onefile: On Windows, the Python process terminates with Keyboar dl nt er rupt when the user
sends CTRL-break, CTRL-C, shutdown or logoff signals.

» Onefile: On Windows, in case of the launching process terminating unexpectedly, e.g. due to
Taskmanager killing it, or a os. si gki | | resulting in that, the Python process still terminates with
Keyboar dl nt errupt .

» Windows: Now can select icons by index from files with multiple icons.

Optimization

» Avoid global passes caused by module specific optimization. The variable completeness os now
traced per module and function scope, allowing a sooner usage. Unused temporary variables and
closure variables are remove immediately. Recognizing possible auto releases of parameter
variables is also instantly.

This should bring down current passes from 5-6 global passes to only 2 global passes in the normal
case, reducing frontend compile times in some cases massively.

» Better unary node handling. Dedicated nodes per operation allow for more compact memory usage
and faster optimization.

» Detect flow control and value escape for the repr of node based on type shape.

» Enhanced optimization of caught exception references, these never raise or have escapes of control
flow.

» Exception matching operations are more accurately annotated, and may be recognized to not raise in
more cases.

» Added optimization for the i ssubcl ass built-in.

» Removed scons caching as used on Windows entirely. We should either be using cl cache or
ccache automatically now.

» Make sure to use __slots__ for all node classes. In some cases, mixins were preventing the
feature from being it. We now enforce their correct specification of slots, which makes sure we can't
miss it anymore. This should again gain more speed and save memory at frontend compile time.

» Scons: Enhanced gcc version detection with improved caching behavior, this avoids querying the
same gcc binary twice.

Organisational

» The description of Nuitka on PyPI was absent for a while. Added back by adding long description of
the project derived from the README file.

» Avoid terms bl acklist, whilelist and slave in the Nuitka code preferring bl ockl i st,
i gnorelist and chil d instead, which are actually more clear anyway. We follow a general trend
to do this.

» Configured the inline copy of Scons so pylance has an easier time to find it.

» The git commit hook had stopped applying diffs with newest git, improved that.
» Updated description for adding new CPython test suite.

* Using https URLs for downloading dependency walker, for it to be more secure.

» The commit hook can now be disabled, it's in the Developer Manual how to do it.

Cleanups

» Moved unary operations to their own module, the operators module was getting too crowded.

» The scons files for Python C backend and Windows onefile got cleaned up some more and moved
more common code to shared modules.

» When calling external tools, make sure to provide null input where possible.

« Unified calling i nstal | _nane_t ool into a single method for adding rpath and name changes both
at the same time.

« Unified how tools like r eadel f, | dconfi g etc. are called and error exits and outputs checked to
make sure we don't miss anything as easily.

Tests

» Adapted for some openSUSE specific path usages in standalone tests.

* Basic tests for onefile operation and with termination signal sent were added.

Summary

The big changes in this release are the optimization changes to reduce the global passes and the memory
savings from other optimization. These should again make Nuitka more scalable with large projects, but
there definitely is work remaining.

Adding nice stopping behaviour for the Onefile mode on Windows is seemingly a first, and it wasn't easy,
but it will make it more reliable to users.

Also tooling of gcc and MSVC on Windows got a lot more robust, covering more cases, and macOS
support has been renewed and should be a lot better now.

The progress bar is a nice touch and improves the overall feel of the compilation process, but obviously we
need to aim at getting faster overall still. For projects using large dependencies, e.g. Pandas the
compilation is still far too slow and that will need work on caching frontend results, and better optimization
and C code generation for the backend.

Nuitka Release 0.6.11

This release is a massive improvement in many ways with lots of bug fixes and new features.
Bug Fixes

* Fix, the . pyi file parser didn't handle relative imports. Fixed in 0.6.10.1 already.

» Windows: Fix, multiprocessing plugin was not working reliable following of imports from the additional
entry point. Fixed in 0.6.10.1 already.

* Pipenv: Workaround parsing issue with our set up. py to allow installation from Github. Fixed in
0.6.10.1 already.

» Merging of branches in optimization could give indetermistic results leading to more iterations than
necessary. Fixed in 0.6.10.1 already.

» Windows: Avoid profile powershell when attempting to resolve symlinks. Fixed in 0.6.10.1 already.

» Windows: Fix, always check for stdin, stdout, and stderr presence. This was so far restricted to gui
mode applications, but it seems to be necessary in other situations too. Fixed in 0.6.10.1 already.

» Python2: Fix, --trace- executi on was not working for standalone mode but can be useful for
debugging. Fixed in 0.6.10.1 already.

» Windows: Onefile could run into path length limits. Fixed in 0.6.10.3 already.
* Windows: The winlib gcc download link became broken and was updated. Fixed in 0.6.10.3 already.
* Plugins: The "__main__" module was not triggering all plugin hooks, but it needs to for completeness.

« Standalone: Fix, symlinked Python installations on Windows were not working, with dependency
walker being unable to look into these. Fixed in 0.6.10.4 already.

« Standalone: Fix support for numpy on Windows and macOS, the plugin failed to copy important
DLLs. Fixed in 0.6.10.4 already.

» Python3: For versions before 3.7, the symlink resolution also needs to be done, but wasn't handling
the bytes output yet. Fixed in 0.6.10.4 already.

* Fix, folder based inclusion would both pick up namespace folders and modules of the same name,
crashing the compilation due to conflicts. Fixed in 0.6.10.4 already.

* Fix, the - - | t 0 wasn't used for clang on non-Windows yet.

* Fix, the order of locals dict releases wasn't enforced, which could lead to differences that break
caching of C files potentially. Fixed in 0.6.10.5 already.

* Fix, hash nodes didn't consider if their argument was raising, even if the type of the argument was
st r and therefore the operation should not. Fixed in 0.6.10.5 already.

* Fix, need to copy type shape and escape description for the replacement inverted comparisons when
used with not , otherwise the compilation can crash as these are expected to be present at all times.
Fixed in 0.6.10.5 already.

* Fix, some complex constant values could be confused, e.g. - 0j and 0j . These corner cases were
not properly considered in the constant loading code, only for f | oat so far.

« Standalone: Fix, bytecode only standard library modules were not working. This is at least used with
Fedora 33.

* Linux: Fix, extension modules compiled with - - | t o were not working.
» Windows: Retry if updating resources fails due to Virus checkers keeping files locked.

* Plugins: Pre- and postload code of modules should not be allowed to cause | mport Err or, as these
will be invisible to the other parts of optimization, instead make them unraisable error traces.

« Standalone: Adding missing import for SciPy 1.6 support.

» Windows: Fix, only export required symbols when using MinGW64 in module mode.

New Features

» Python3.9: Added official support for this version.

 Onefile: Added command line options to include data files. These are - - i ncl ude- package- dat a
which will copy all non-DLLs and non-Python files of package names matching the pattern given. And
--include-data-fil e takes source and relative target file paths and copies them. For onefile this
is the only way to include files, for standalone mode they are mostly a convenience function.

* Onefile: Added mode where the file is unpacked to a temporary folder before running instead of doing
it to appdata.

* Onefile: Added linux specific options - - | i nux- onefi | e-i con to allow provision of an icon to use
in onefile mode on Linux, so far this was only available as the hard coded path to a Python icon,
which also didn't exist on all platforms.

» Ul: Major logging cleanup. Everything is now using our tracing classes and even error exits go
through there and are therefore colored if possible.

* Plugins: Make it easier to integrate commercial plugins, now only an environment variable needs to
point to them.

« Ul: Enhanced option parsing gives notes. This complains about options that conflict or that are
implied in others. Trying to catch more usage errors sooner.

* Plugins: Ignore exceptions in buggy plugin code, only warn about them unless in debug mode, where
they still crash Nuitka.

» Scons: More complete scons report files, includes list values as well and more modes used.
» Windows: The ¢l cache is now included and no longer used from the system.

* Qutput for cl cache and ccache results got improved.

» Enhanced support for cl ang, on Windows if present near a gcc. exe like it is the case for some
winlibs downloads, it will be used. To use it provide - - m ngwé4 - -cl ang both. Without the first
one, it will mean cl angcl . exe which uses the MSVC compiler as a host.

Optimization

» Some modules had very slow load times, e.qg. if they used many list objects due to linear searches for
memory deduplication of objects. We now have dictionaries of practically all constant objects loaded,
making these more instant.

» Use less memory at compile time due using __sl ot s__ for all node types, finally figured out, how to
achieve this with multiple inheritance.

» Use hedley for compiler macros like unl i kel y as they know best how to do these.
* Special case the merging of 2 branches avoiding generic code and being much faster.

» Hard imports have better code generated, and are being optimized into for the few standard library
modules and builtin modules we handle, they also how annotate the type shape to be module.

* No longer annotate hard module import attribute lookups as control flow escapes. Not present
attributes are changed into static raises. Trust for values is configured for a few values, and
experimental.

» Avoid preloaded packages for modules that have no side effects and are in the standard library,
typically . pt h files will use e.g. os but that's not needed to be preserved.

» Use i nchi n for including binary data through inline assembly of the C compiler. This covers many
more platforms than our previous linker option hacks, and the fallback to generated C code. In fact
everything but Windows uses this now.

Organisational

» Windows: For Scons we now require a Python 3.5 or higher to be installed to use it.

» Windows: Removed support for gcc older than version 8. This specifically affects CondaCC and older
MinGW64 installations. Since Nuitka can now download the MinGW64 10, there is no point in having
these and they cause issues.

» We took over the maintenance of clcache as Nuitka/clcache which is not yet ready for public
consumption, but should become the new source of clache in the future.

* Include an inline copy of clcache in Nuitka and use it on Windows for MSVC and ClangCL.

* Removed compatibility older aliases of follow option, - -recurse-* and require --foll ow*
options to be used instead.

« For pylint checking, the tool now supports a - - di f f mode where only the changed files get checked.
This is much faster and allows to do it more often before commit.

» Check the versions of isort and black when doing the autoformat to avoid using outdated versions.
» Handling missing pylint more gracefully when checking source code quality.

» Make sure to use the codespell tool with Python3 and make sure to error exit when spelling problems
were found, so we can use this in Github actions too.

* Removed Travis config, we now only use Github actions.
* Removed landscape config, it doesn't really exist anymore.
» Bumped all PyPI dependnecies to their latest versions.

« Recommend ccache on Debian, as we now consider the absence of ccache something to warn
about.

* Plugins: The DLLs asked for by plugins that are not found are no longer warned about.

» Allow our checker and format tools to run on outside of tree code. We are using that for
Nuitka/clcache.

» Added support for Fedora 33 and openSUSE 15.3, as well as Ubuntu Groovy.
» Windows: Check if Windows SDK is installed for MSVC and ClangCL.

» Windows: Enhanced wording in case no compiler was found. No longer tell people how to manually
install MinGW®64, that is no longer necessary and pyw n32 is not needed to detect MSVC, so it's not
installed if not found.

« Detect "embeddable Python" by missing include files, and reject it with proper error message.

» Added onefile and standalone as a use case to the manual and put also the DLL and data files
problems as typically issues.

Cleanups

 Avoid decimal and string comparisons for Python versions checks, these were lazy and are going to
break once 3.10 surfaces. In testing we now use tuples, in Nuitka core hexacimal values much like
CPython itself does.

« Stop using subnode child getters and setters, and instead only use subnode attributes. This was
gradually changed so far, but in this release all remaining uses have migrated. This should also make
the optimization stage go faster.

» Change node constructors to not use a decorator to resolve conflicts with builtin names, rather
handle these with manual call changes, the decorator only made it difficult to read and less
performant.

» Move safe string helpers to their own dedicated helper file, allowing for reuse in plugin code that
doesn't want to use all of Nuitka C helpers.

» Added utils code for inline copy imports, as we use that for quite a few things now.
* Further restructured the Scons files to use more common code.

* Plugins: The module name objects now reject many st r specific APIs that ought to not be used, and
the code got changed to use these instead, leading to cleaner and more correct usages.

» Using named tuples to specify included data files and entry points.

» Use pkguti | in plugins to scan for modules rather than listing directories.

Tests

* New option to display executed commands during comparisons.

» Added test suite for onefile testing.

Summary

This release has seen Python3.9 and Onefile both being completed. The later needs compression added
on Windows, but that can be added in a coming release, for now it's fully functional.

The focus clearly has been on massive cleanups, some of which will affect compile time performance.
There is relatively little new optimization otherwise.

The adoption of clcache enables a very fast caching, as it's now loaded directly into the Scons process,
avoiding a separate process fork.

Generally a lot of polishing has been applied with many cleanups lowering the technical debt. It will be
interesting to see where the hard module imports can lead us in terms of more optimization. Static

optimization of the Python version comparisons and checks is heeded to lower the amount of imports to be
processed.

Important fixes are also included, e.g. the constants loading performance was too slow in some cases. The
mul ti processi ng on Windows and nunpy plugins were regressed and finally everything ought to be
back to working fine.

Future work will have to aim at enhanced scalability. In some cases, Nuitka still takes too much time to
compile if projects like Pandas include virtually everything installed as an option for it to use.

Nuitka Release 0.6.10

This release comes with many new features, e.g. onefile support, as well as many new optimization and
bug fixes.

Bug Fixes

* Fix, was memory leaking arguments of all complex call helper functions. Fixed in 0.6.9.6 already.
* Plugins: Fix, the dill-compat code needs to follow APl change. Fixed in 0.6.9.7 already.

» Windows: Fixup for multiprocessing module and complex call helpers that could crash the program.
Fixed in 0.6.9.7 already.

* Fix, the frame caching could leak memory when using caching for functions and generators used in
multiple threads.

» Python3: Fix, importing an extension module below a compiled module was not possible in
accelerated mode.

» Python3: Fix, keyword arguments for open built-in were not fully compatible.

* Fix, the scons python check should also not accept directories, otherwise strange misleading error
will occur later.

* Windows: When Python is installed through a symbolic link, MinGW64 and Scons were having
issues, added a workaround to resolve it even on Python2.

» Compatibility: Added support for co_f r eevar s in code objects, e.g. newer matplotlib needs this.
« Standalone: Add needed data files for gooey. Fixed in 0.6.9.4 already.

 Scons: Fix, was not respecting - - qui et option when running Scons. Fixed in 0.6.9.3 already.

* Scons: Fix, wasn't automatically detecting Scons from promised paths. Fixed in 0.6.9.2 already.

* Scons: Fix, the clcache output parsing wasn't robust enough. Fixed in 0.6.9.1 already.

» Python3.8: Ignore all non-strings provided in doc-string fashion, they are not to be considered.

* Fix,getattr,setattr and hasattr could not be used in finally clauses anymore. Fixed in 0.6.9.1
already.

* Windows: For Python3 enhanced compatibility for Windows no console mode, they need a
sys. stdi norelse e.g. i nput will not be compatible and raise Runt i meErr or .

New Features

» Added experimental support for Python 3.9, in such a way that the CPython3.8 test suite passes now,
the 3.9 suite needs investigation still, so we might be missing new features.

» Added experimental support for Onefile mode with - - onefi | e that uses Appl nage on Linux and
our own bootstrap binary on Windows. Other platforms are not supported at this time. With this, the
standalone folder is packed into a single binary. The Windows variant currently doesn't yet do any
compression yet, but the Linux one does.

» Windows: Added downloading of ccache. exe, esp. as the other sources so far recommended were
not working properly after updates. This is taken from the official project and should be good.

» Windows: Added downloading of matching MinGW64 C compiler, if no other was found, or that was
has the wrong architecture, e.g. 32 bits where we need 64 bits.

* Windows: Added ability to copy icon resources from an existing binary with new option
--wi ndows-i con-from exe.

» Windows: Added ability to provide multiple icon files for use with different desktop resolutions with
new option - - Wi ndows-i con-fromi co that got renamed to disambiguate from other icon options.

» Windows: Added support for requesting UAC admin right with new option - - wi ndows- uac- adni n.

* Windows: Added support for requesting "uiaccess" rights with yet another new option
- - Wi ndows- uac- ui access.

 Windows: Added ability to specify version info to the binary. New options
- - W ndows- conpany- nane, - -w ndows- pr oduct - nane, --wi ndows-fil e-version,
--w ndows- product - ver si on, and - - wi ndows-fi | e-descri pti on have been added. Some
of these have defaults.

» Enhanced support for using the Win32 compiler of MinGW®64, but it's not perfect yet and not
recommended.

» Windows: Added support for LTO mode for MSVC as well, this seems to allow more optimization.

* Plugins: The numpy plugin now handles matplotlib3 config files correctly.
Optimization

» Use less C variables in dictionary created, not one per key/value pair. This improved scalability of C
compilation.

» Use common code for module variable access, leading to more compact code and enhanced
scalability of C compilation.

» Use error exit during dictionary creation to release the dictionary, list, tuple, and set in case of an
error occurring while they are still under construction. That avoids releases of it in error exists,
reducing the generated code size by a lot. This improves scalability of C compilation for generating
these.

» Annotate no exception raise for local variables of classes with know dict shape, to avoid useless error
exits.

» Annotate no exception exit for stati cmet hod and cl assnet hod as they do not check their
arguments at all. This makes code generated for classes with these methods much more compact,
mainly improving their scalability in C compilation.

* In code generation, prefer bool over nuit ka_bool which allows to annotate exception result,
leading to more compact code. Also cleanup so that code generation always go through the C type
objects, rather than doing cases locally, adding a C type for bool .

» Use common code for C code handling const None return only, to cases where there is any
immutable constant value returned, avoid code generation for this common case. Currently mutable
constants are not handled, this may be added in the future.

» Annotate no exception for exception type checks in handlers for Python2 and no exception if the
value has exception type shape for Python3. The exception type shape was newly added. This
avoids useless exception handlers in most cases, where the provided exception is just a built-in
exception name.

» Improve speed of often used compile time methods on nodes representing constant values, by
making their implementation type specific to improve frontend compile time speed, we check e.g.
mutable and hashable a lot.

* Provide truth value for variable references, enhancing loop optimization and merge value tracing, to
also decide this correctly for values only read, and then changed through attribute, e.g. append on
lists. This allows many more static optimization.

» Use st ati cnet hod for methods in Nuitka nodes to achieve faster frontend compile times where
possible.

» Use dedicated helper code for calls with single argument, avoiding the need have a call site local C
array of size one, just to pass a pointer to it.

» Added handling of hash slot, to predict hashable keys for dictionary and sets.

» Share more slot provision for built-in type shapes from mixin classes, to get them more universally
provided, even for special types, where their consideration is unusual.

* Trace "user provided" flag only for constants where it really matters, i.e. for containers and generally
potentially large values, but not for every number or boolean value.

» Added lowering of byt earray constant values to byt es value iteration, while handling constant
values for this optimization with dedicated code for improved frontend compilation speed.

* The dict built-in now annotates the dictionary type shape of its result.

» The wrapping side-effects hode now passes on the type shape of the wrapped value, allowing for
optimization of these too.

* Split sl i ce nodes into variants with 1, 2 or 3 arguments, to avoid the overhead of determining which
case we have, as well as to save a bit of memory, since these are more frequently used on Python3
for subscript operations. Also annotate their type shape, allowing more optimization.

« Faster dictionary lookups, esp. in cases where errors occur, because we were manually recreating a
KeyEr r or that is already provided by the dict implementation. This should also be faster, as it avoids
a CPython API call overhead on the DLL and they can provide a reference or not for the returned
value, simplifying using code.

« Faster dictionary containment checks, with our own dedicated helper, we can use code that won't
create an exception when an item is not present at all.

» Faster hash lookups with our own helper, separating cases where we want an exception for
non-hashable values or not. These should also be faster to call.

» Avoid acquiring thread state in exception handling that checks if a St opl t erati on occurred, to
improved speed on Python3, where is involves locking, but this needs to be applied way more often.

» Make sure checks to debug mode and full compatibility mode are done with the variables introduced,
to avoid losing performance due to calls for Nuitka compile time enhancements. This was so far only
done partially.

* Split constant references into two base classes, only one of them tracking if the value was provided
by the user. This saves compile time memory and avoids the overhead to check if sizes are
exceeded in cases they cannot possibly be so.

* The truth value of container creations is now statically known, because the empty container creation
is no longer a possibility for these nodes, allowing more optimization for them.

» Optimize the bool built-in with no arguments directory, allow to simplify the node for single argument
form to avoid checks if an argument was given.

» Added iteration handles for xranges, and make them faster to create by being tied to the node type,
avoiding shared types, instead using the mixin approach. This is in preparation to using them for
standard iterator tracing as well. So far they are only used for any and al | decision.

» Added detection if a iterator next can raise, using existing iterator checking which allows to remove
needless checks and exception traces. Adding a code variant for calls to next that cannot fail, while
tuning the code used for next and unpacking next, to use faster exception checking in the C code.
This will speed up unpacking performance for some forms of unpacking from known sizes.

» Make sure to use the fastest tuple API possible in all of Nuitka, many place e.g. used
PyTupl e_Si ze, and one was in a performance critical part, e.g. in code that used when compiled
functions as called as a method.

» Added optimized variant for _PyLi st _Ext end for slightly faster unpacking code.
» Added optimized variant for PyLi st _Append for faster list contractions code.

 Avoid using RenoveFi | eSpec and instead provide our own code for that task, slightly reducing file
size and avoiding to use the Shl api link library.

Tests

» Made reflected test use common cleanup of test folder, which is more robust against Windows
locking issues.

» Only output changed CPython output after the forced update of cached value was done, avoiding
duplicate or outdated outputs.

» Avoid complaining about exceptions for in-place operations in case they are lowered to non-inplace
operations and then raise unsupported, not worth the effort to retain original operator.

» Added generated test for subscript operations, also expanding coverage in generated tests by
making sure, conditional paths are both taken by varying the cond value.

» Use our own code helper to check if an object has an attribute, which is faster, because it avoids
creating exceptions in the first place, instead of removing them afterwards.

Cleanups

» Make sure that code generation always go through the C type objects rather than local el i f casing
of the type. This required cleaning up many of the methods and making code more abstract.

» Added base class for C types without reference counting, so they can share the code that ignores
their handling.

* Remove get Const ant for constant value nodes, use the more general
get Conpi | eTi neConst ant instead, and provide quick methods that test for empty tuple or dict, to
use for checking concrete values, e.g. with call operations.

« Unified container creation into always using a factory function, to be sure that existing container
creations are not empty.

 Stop using @al | edW t hBui | t i nAr gunent NanesDecor at or where possible, and instead make
explicit wrapping or use correct names. This was used to allow e.g. an argument named | i st to be
passed from built-in optimization, but that can be done in a cleaner fashion. Also aligned no attributes
and the argument names, there was inconsistency there.

» Name mangling was done differently for attribute names and normal names and with non-shared
code, and later than necessary, removing this as a step from variable closure taking after initial tree
build.

* As part of the icon changes, now handled in Python code, we stop using the r ¢ binary and handle all
resources ourselves, allowing to remove that code from the Scons side of things.

» Moved file comparison code of standalone mode into file utils function for use in plugins as well.

 Unified how path concatenation is done in Nuitka helper code, there were more or less complete
variants, this is making sure, the most capable form is used in all cases.

» Massive cleanup to our scons file, by moving out util code that only scons uses, hacks we apply to
speed up scons, and more to separate modules with dedicated interfaces.

* When using enuner at e we now provide start value of 1 where it is appropriate, e.g. when counting
source code lines, rather than adding count +1 on every usage, making code more readable.

Organisational

* Do not recommend Anaconda on Windows anymore, it seems barely possible to get anything
installed on it with a fresh download, due to the resolver literally working for days without finishing,
and then reporting conflicts, it would only we usable when starting with Miniconda, but that seems
less interesting to users, also gcc 5.2 is way too old these days.

» The commit hook should be reinstalled, since it got improved and adapted for newer git versions.
» Added link to donations to funding document, following a Github standard.
» Bumped requirements for development to the latest versions, esp. newer isort.

» Added a rough description of tests to do to add a new CPython test suite, to allow others to take this
task in the future.

» Updated the git hook so that Windows and newest git works.

» Make it more clear in the documentation that Microsoft Appstore Python is not supported.

Summary

This is the big release in terms of scalability. The optimization in this release mostly focused on getting
things that cause increased compile times sorted out. A very important fix avoids loop optimization to leak
into global passes of all modules unnecessarily, but just as important, generated code now is much better
for the C compiler to consume in observed problematic cases.

More optimization changes are geared towards reducing Nuitka frontend compile time, which could also
be a lot in some cases, ending up specializing more constant nodes and how they expose themselves to
optimization.

Other optimization came from supporting Python 3.9 and things come across during the implementation of
that feature, e.g. to be able to make differences with unpacking error messages, we provide more code to
handle it ourselves, and to manually optimize how to interact with e.g. | i st objects.

For Windows, the automatic download of ccache and a matching MinGW®64 if none was found, is a new
step, that should lower the barrier of entry for people who have no clue what a C compiler is. More
changes are bound to come in this field with future releases, e.g. making a minimum version requirement
for gcc on Windows that excludes unfit C compilers.

All in all, this release should be taken as a major cleanup, resolving many technical debts of Nuitka and
preparing more optimization to come.

Nuitka Release 0.6.9

This releases contains important bug fixes for regressions of the 0.6.8 series which had relatively many
problems. Not all of these could be addressed as hotfixes, and other issues were even very involved,
causing many changes to be necessary.

There are also many general improvements and performance work for tracing and loops, but the full
potential of this will not be unlocked with this release yet.

Bug Fixes

* Fix, loop optimization sometimes didn't determinate, effectively making Nuitka run forever, with no
indication why. This has been fixed and a mechanism to give up after too many attempts has been
added.

* Fix, closure taking object allowed a brief period where the garbage collector was exposed to
uninitialized objects. Fixed in 0.6.8.1 already.

» Python3.6+: Fix corruption for exceptions thrown into asyncgen. Fixed in 0.6.8.1 already.

* Fix, deleting variables detected as C type bool could raise an UnboundLocal Err or that was wrong.
Fixed in 0.6.8.1 already.

» Python3.8.3+: Fix, future annotations parsing was using hard coded values that were changed in
CPython, leading to errors.

» Windows: Avoid encoding issues for Python3 on more systems, by going from wide characters to
unicode strings more directly, avoiding an encoding as UTF8 in the middle. Fixed in 0.6.8.2 already.

» Windows: Do not crash when warning about uninstalled MSVC using Python3. This is a Scons bug
that we fixed. Fixed in 0.6.8.3 already.

« Standalone: The output of dependency walker should be considered as "latin1" rather than UTFS8.
Fixed in 0.6.8.3 already.

« Standalone: Added missing hidden dependencies for f | ask. Fixed in 0.6.8.1 already.
« Standalone: Fixed wi n32com cl i ent on Windows. Fixed in 0.6.8.1 already.

« Standalone: Use pkguti| to scan encoding modules, properly ignoring the same files as Python
does in case of garbage files being there. Fixed in 0.6.8.2 already.

* Plugins: Enabling a plugin after the filename to compile was given, didn't allow for arguments to the
passed, causing problems. Fixed in 0.6.8.3 already.

« Standalone: The certi fi data file is now supported for all modules using it and not only some.

« Standalone: The bytecode for the standard library had filenames pointing to the original installation
attached. While these were not used, but replaced at runtime, they increased the size of the binary,
and leaked information.

« Standalone: The path of sys. execut abl e was not None, but pointing to the original executable,
which could also point to some temporary virtualenv directory and therefore not exist, also it was
leaking information about the original install.

» Windows: With the MSVC compiler, elimination of duplicate strings was not active, causing even
unused strings to be present in the binary, some of which contained file paths of the Nuitka
installation.

» Standalone: Added support for pyglet.
* Plugins: The command line handling for Pmw plugin was using wrong defaults, making it include
more code than necessary, and to crash if it was not there.

New Features

» Windows: Added support for using Python 2.7 through a symlink too. This was already working for
Python3, but a scons problem prevented this from working.

» Caching of compiled C files is now checked with ccache and clcache, and added automatically where
possible, plus a report of the success is made. This can accelerate the re-compile very much, even if
you have to go through Nuitka compilation itself, which is not (yet) cached.

» Added new - - qui et option that will disable informational traces that are going to become more.

» The Clang from MSVC installation is now picked up for both 32 and 64 bits and follows the new
location in latest Visual Studio 2019.

» Windows: The ccache from Anaconda is now supported as well as the one from msys64.

Optimization

 The value tracing has become more correct with loops and in general less often inhibits optimization.
Escaping of value traces is how a separate trace state allowing for more appropriate handling of
actual unknowns.

» Memory used for value tracing has been lowered by removing unnecessary states for traces, that we
don't use anymore.

» Windows: Prevent scons from scanning for MSVC when asked to use MinGW64. This avoids a
performance loss doing something that will then end up being unused.

» Windows: Use function level linking with MSVC, this will allow for smaller binaries to be created, that
don't have to include unused helper functions.

Cleanups

 The scons file now uses Nuitka utils functions and is itself split up into several modules for enhanced
readability.

* Plugin interfaces for providing extra entry points have been cleaned up and now named tuples are
used. Backward compatibility is maintained though.

Organisational

» The use of the logging module was replaced with more of our custom tracing and we now have the
ability to write the optimization log to a separate file.

* Old style plugin options are now detected and reported as a usage error rather than unknown plugin.

» Changed submodules to use git over https, so as to not require ssh which requires a key registered
and causes problems with firewalls too.

» More correct Debian copyright file, made formatting of emails in source code consistent.

» Added repository for Ubuntu focal.

Summary

The main focus of this release has been bug fixes with only a little performance work due to the large
amount of regressions and other findings from the last release.

The new constants loading for removes a major scalability problem. The checked and now consistently
possible use of ccache and cl cache allows for much quicker recompilation. Nuitka itself can still be slow
in some cases, but should have seen some improvements too. Scalability will have to remain a focus for
the next releases too.

The other focus, was to make the binaries contain no original path location, which is interesting for
standalone mode. Nuitka should be very good in this area now.

For optimization, the new loop code is again better. But it was also very time consuming, to redo it, yet
again. This has prevented other optimization to be added.

And then for correctness, the locals scope work, while very invasive, was necessary, to handle the usage
of locals inside of contractions, but also will be instrumental for function inlining to become generally
available.

So, ultimately, this release is a necessary intermediate step. Upcoming releases will be able to focus more
clearly on run time performance again as well as on scalability for generated C code.

Nuitka Release 0.6.8

This releases contains important general improvements and performance improvements and enhanced
optimization as well as many bug fixes that enhance the Python 3.8 compatibility.

Bug Fixes

» Python3.5+: Fix, coroutines and asyncgen could continue iteration of awaited functions, even after
their return, leading to wrong behaviour.

» Python3.5+: Fix, absolute imports of names might also refer to modules and need to be handled for
module loading as well.

* Fix, the from i st of imports could loose references, potentially leading to corruption of contained
strings.

» Python3.8: Fix, positional only arguments were not enforced to actually be that way.

» Python3.8: Fix, complex calls with star arguments that yielded the same value twice, were not yet
caught.

 Python3.8: Fix, evaluation order for nested dictionary contractions was not followed yet.

» Windows: Use short paths, these work much better to load extension modules and TCL parts of
Tkinter cannot handle unicode paths at all. This makes Nuitka work in locations, where normal
Python cannot.

» Windows: Fixup dependency walker in unicode input directories.

« Standalone: Use frozen module loader only at |i bpython initialisation and switch to built-in
bytecode loader that is more compatible afterwards, increasing compatibility.

» Standalone: Fix for pydanctic support.
» Standalone: Added missing hidden dependency of uvicorn.
* Fix, the parser for . pyi files couldn't handle multiline imports.

» Windows: Derive linker arch of Python from running binary, since it can happen that the Python
binary is actually a script.

* Fixup static linking with | i bpyt hon. a that contains mai n. o by making our colliding symbols for
Py Get Ar gcAr gv weak.

» Python3.7: Fix misdetection as asyncgen for a normal generator, if the iterated value is async.
« Distutils: Fix bui | d_nui t ka for modules under nested hamespaces.

» OpenBSD: Follow usage of clang and other corrections to make accelerated mode work.

» macOS: Fixup for standalone mode library scan.

* Fix, the logging of - - show nodul es was broken.

» Windows: Enable / bi gobj mode for MSVC for large compilations to work.

» Windows: Fixup crash in warning with pefile dependency manager.

» Windows: Fixup wi n32com standalone detection of other Python version wi n32comis in system
PATH.

* Fix, the python flag for static hashes didn't have the intended effect.
* Fix, generators may be resurrected in the cause of their destruction, and then must not be released.

* Fix, method objects didn't implement the methods __reduce__ and __reduce_ex__ necessary for
pickling them.

» Windows: Fix, using a Python installation through a symlink was not working.
» Windows: Fix, icon paths that were relative were not working anymore.
» Python3.8: Detect duplicate keywords yielded from star arguments.

* Fix, methods could not be pickled.

* Fix, generators, coroutines and asyncgen might be resurrected during their release, allow for that.

* Fix, frames need to traverse their attached locals to be released in some cases.

New Features

* Plugin command line handling now allows for proper opt par se options to be used, doing away with
special parameter code for plugins. The arguments now also become automatically passed to the
instantiations of plugins.

Loading and creation of plugins are now two separate phases. They are loaded when they appear on
the command line and can add options in their own group, even required ones, but also with default
values.

» Started using logging with name-spaces. Applying logging per plugin to make it easier to recognize
which plugin said what. Warnings are now colored in red.

» Python3.5+: Added support for two step module loading, making Nuitka loading even more
compatible.

» Enhanced import tracing to work on standalone binaries in a useful manner, allow to compare with
normal binaries.

* Fix, the set at t r built-in was leaking a reference to the None value.
Optimization

* Proper loop SSA capable of detecting shapes with an incremental initial phase and a final result of
alternatives for variables written in the loop. This detects shapes of manual integer incrementing
loops correctly now, it doesn't see through iterators yet, but this will come too.

» Added type shapes for all operations and all important built-in types to allow more compile time
optimization and better target type selection.

 Target type code generation was expanded from manual usage with conditions to all operations
allowing to get at bool target values more directly.

* For in-place operations, there is the infrastructure to generate them for improved performance, but so
far it's only used for Python2 int, and not for the many types normal operations are supported.

* Force usage of C boolean type for all indicator variables from the re-formulation. In some cases, we
are not yet there with detections, and this gives instant benefit.

» Complex constants didn't annotate their type shape, preventing compile time optimization for them.

» Python3.8: Also support vectorcall for compiled method objects. These are rarely used in new
Python, but can make a difference.

* Remove loops that have only a final break. This happens in static optimization in some cases, and
allows more optimization to be done.

* Avoid using a preparing a constant tuple value for calls with only constant arguments.

» Avoid using PyErr _For mat where it's not necessary by adding specialized helpers for common
cases.

 Detect del statements that will raise an exception and replace with that.

» Exception matching is boolean shape, allowing for faster code generation.

» Disable recursion checks outside of full compat mode.

* Avoid large blocks for conditional statements that only need to enclose the condition evaluation.

» Added shortcuts for interactions between compiled generator variants, to avoid calls to their C
methods with argument passing, etc.

Organisational

» Updated developer manual with changes that happened, remvoing the obsolete language choice
section.

» Added 3.8 support mentions is even more places.
» The mailing list has been deleted. We now prefer Gitter chat and Github issues for discussions.

« Visual Code recommended extensions are now defined as such in the project configuration and you
will be prompted to install them.

« Visual Code environents for Py38 and Py27 were added for easier switch.

« Catch usage of Python from the Microsoft App Store, it is not supported and seems to limit access to
the Python installation for security reasons that make support impossible.

» Make it clear that - - f ul | - conpat should not be used in help output.

» Added instructions for MSVC runtimes and standalone compilation to support Windows 7.
» More complete listing of copyright holders for Debian.

» Updated to newer black and PyLint.

» Enhanced gcc version check, properly works with gcc 10 and higher.

Tests

* Pylint cleanups for some of the tests.
» Added test for loading of user plugins.

» Removed useless outputs for sear ch mode skipping non-matches.

Cleanups

* Limit command line handling for multiprocessing module to when the plugin is actually used, avoiding
useless code of Windows binaries.

* Pylint cleanup also foreign code like oset and odi ct .

« In preparation of deprecating the alternative, - - pl ugi n- enabl e has become the only form used in
documentation and tests.

* Avoid numeric pylint symbols more often.

« Distutils: Cleanup module name for distutils commands, these are not actually enforced by distutils,
but very ugly in our coding conventions.

» The "cannot get here" code to mark unreachable code has been improved and no longer needs an
identifier passed, but uses the standard C mechanism for that.

* Removed accessors for lookup sources from nodes, allowing for faster usage and making sure,
lookups are only done where needed.

Summary

This release is huge in terms of bugs fixed, but also extremely important, because the new loop SSA and
type tracing, allows for many more specialized code usages. We now can trace the type for some loops to
be specifically an integer or long value only, and will become able to generate code that avoids using
Python objects, in these cases.

Once that happens, the performance will make a big jump. Future releases will have to consolidate the
current state, but it is expected that at least an experimental addition of C type f | oat or C | ong can be

added, add to that i t er at or type shape and value analsis, and an actual jump in performance can be
expected.

Nuitka Release 0.6.7

This release contains bug fixes and improvements to the packaging, for the RPM side as well as for
Debian, to cover Python3 only systems as they are now becoming more common.

Bug Fixes

» Compatibility: The value of _ nodul e__ for extension modules was not dependent into which
package the module was loaded, it now is.

» Anaconda: Enhanced detection of Anaconda for Python 3.6 and higher.
» CentOS6: Detect gcc version to allow saving on macro memory usage, very old gcc didn't have that.

* Include Python3 for all Fedora versions where it works as well as for openSUSE versions 15 and
higher.

» Windows: Using short path names to interact with Scons avoids problems with unicode paths in all
cases.

* macOS: The usage of i nstal |l _nane_t ool could sometimes fail due to length limits, we now
increase it at link time.

* macOS: Do not link against | i bpyt hon for module mode. This prevented extension modules from
actually being usable.

* Python3.6: Follow coroutine fixes in our asyncgen implementation as well.

* Fix, our version number handling could overflow with minor versions past 10, so we limited it for now.

New Features

» Added support for Python 3.8, the experimental was already there and pretty good, but now added
the last obscure features too.

* Plugins can now provide C code to be included in the compilation.

» Distutils: Added targets bui | d_nui t ka and i nst al | _nui t ka to complement bdi st _nui t ka, so
we support software other than wheels, e.g. RPM packaging that compiles with Nuitka.

» Added support for | | db the Clang debugger with the - - debugger mode.
Optimization

» Make the file prefix map actually work for gcc and clang, and compile files inside the build folder,
unless we are running in debugger mode, so we use ccache caching across different compilations
for at least the static parts.

 Avoid compilation of __f r ozen. ¢ in accelerated mode, it's not used.

* Prefer using the inline copy of scons over systems scons. The later will only be slower. Use the
fallback to external scons only from the Debian packages, since there we consider it forbidden to
include software as a duplicate.

Organisational

» Added recommended plugins for Visual Code, replacing the list in the Developer Manual.

» Added repository for Fedora 30 for download.

» Added repository for CentOS 8 for download.

» Updated inline copy of Scons used for Python3 to 3.1.2, which is said to be faster for large
compilations.

* Removed Eclipse setup from the manual, it's only infererior at this point and we do not use it
ourselves.

 Debian: Stop recommending PyQt5 in the package, we no longer use it for built-in GUI that was
removed.

» Debian: Bumped the standards version and modernized the packaging, solving a few warnings
during the build.

Cleanups

* Scons: Avoid to add Unix only include paths on Windows.

» Scons: Have the static source code in a dedicated folder for clarity.

Tests

» Added tests to Github Actions, for the supported Python versions for all of Linux, macOS and
Windows, covering the later publicly for the first time. We use Anaconda on macOS for the tests now,
rather than Homebrew.

» Enable 10 encoding to make sure we use UTF8 for more test suites that actually need it in case of
problems.

» Comparing module outputs now handles segfaults by running in the debugger too.

Summary

This release adds full support for Python 3.8 finally, which took us a while, and it cleans up a lot on the
packaging side. There aren't that many important bug fixes, but it's still nice to this cleaned up.

We have important actual optimization in the pipeline that will apply specialization to target types and for
comparison operations. We expect to see actual performance improvements in the next release again.

Nuitka Release 0.6.6

This release contains huge amounts of crucial bug fixes all across the board. There is also new
optimization and many organisational improvements.

Bug Fixes

* Fix, the top level module must not be bytecode. Otherwise we end up violating the requirement for an
entry point on the C level.

* Fix, avoid optimizing calls with default values used. This is not yet working and needed to be disabled
for now.

» Python3: Fix, missing keyword only arguments were not enforced to be provided keyword only, and
were not giving the compatible error message when missing.

* Windows: Find wi n32comDLLs too, even if they live in sub folders of site-packages, and otherwise
not found. They are used by other DLLs that are found.

« Standalone: Fixup for problem with standard library module in most recent Anaconda versions.

* Scons: Fix, was using CXXFLAGS and CPPFLAGS even for the C compiler, which is wrong, and could
lead to compilation errors.

» Windows: Make - - cl ang limited to cl ang- cl . exe as using it inside a MinGW64 is not currently
supported.

« Standalone: Added support for using | i b2t 02. pgen.
» Standalone: Added paths used by openSUSE to the Tcl/Tk plugin.

» Python3.6+: Fix, the __nmai n__ package was None, but should be
from itself.

which allows relative imports

» Python2: Fix, compile time optimization of floor division was using normal division.

» Python3: Fix, some run time operations with known type shapes, were falsely reporting error
message with uni code or | ong, which is of course not compatible.

* Fix, was caching parent package, but these could be replaced e.g. due to bytecode demotion later,
causing crashes during their optimization.

* Fix, the value of _ conpil ed__ could be corrupted when being deleted, which some modules
wrappers do.

* Fix, the value of __package__ could be corrupted when being deleted.

» Scons: Make sure we can always output the compiler output, even if it has a broken encoding. This
should resolve MSVC issues on hon-English systems, e.g. German or Chinese.

« Standalone: Support for newest skl ear n was added.
» macOS: Added resolver for run time variables in ot ool output, that gets PyQt5 to work on it again.

* Fix, floor division of run time calculations with float values should not result in i nt, but f | oat values
instead.

» Standalone: Enhanced support for bot 03 data files.
» Standalone: Added support for osgeo and gdal .

» Windows: Fix, there were issues with spurious errors attaching the constants blob to the binary due to
incorrect C types provided.

« Distutils: Fix, need to allow / as separator for package names too.

» Python3.6+: Fix reference losses in asyncgen when throwing exceptions into them.
» Standalone: Added support for di | | .

» Standalone: Added support for sci ki t -i mage and ski nage.

« Standalone: Added support for weasypri nt .

» Standalone: Added support for dask.

« Standalone: Added support for pendul um

« Standalone: Added support for pyt z and pyt zdat a.

* Fix, - - pyt hon- f | ags=no_docst ri ngs no longer implies disabling the assertions.

New Features

» Added experimental support for Python 3.8, there is only very few things missing for full support.

» Distutils: Added support for packages that are in a namespace and not just top level.

« Distutils: Added support for single modules, not only packages, by supporting py_nodul es as well.
» Distutils: Added support for distinct namespaces.

» Windows: Compare Python and C compiler architecture for MSVC too, and catch the most common
user error of mixing 32 and 64 bits.

 Scons: Output variables used from the outside, so the debugging is easier.

» Windows: Detect if clang installed inside MSVC automatically and use it if requested via - - cl ang
option. This is only the 32 bits variant, but currently the easy way to use it on Windows with Nuitka.

Optimization

 Loop variables were analysed, but results were only available on the inside of the loop, preventing
many optimization in these cases.

» Added optimization for the abs built-in, which is also a numerical operator.

» Added optimization for the al | built-in, adding a new concept of iteration handle, for efficient
checking that avoids looking at very large sequences, of which properties can still be known.

all (range(1, 100000)) # no need to look at all of them

» Added support for optimizing | mpor t Er r or construction with keyword-only arguments. Previously
only used without these were optimized.

raise InportError(path="1ala", nane="lele") # now optini zed
» Added manual specialization for single argument calls, sovling a TODO, as these will be very
frequent.

» Memory: Use single child form of node class where possible, the general class now raises an error if
used with used with only one child name, this will use less memory at compile time.

* Memory: Avoid list for non-local declarations in every function, these are very rare, only have it if
absolutely necessary.

* Generate more compact code for potential NanmeEr r or exceptions being raised. These are very
frequent, so this improves scalability with large files.

* Python2: Annotate comparison of None with i nt and st r types as not raising an exception.
» Shared empty body functions and generators.

One shared implementation for all empty functions removes that burden from the C compiler, and
from the CPU instruction cache. All the shared C code does is to release its arguments, or to return
an empty generator function in case of generator.

* Memory: Added support for automatic releases of parameter variables from the node tree. These are
normally released in a try finally block, however, this is now handled during code generation for much
more compact C code generated.

» Added specialization for i nt and | ong operations % <<, >>,| , & ", **, @
» Added dedicated nodes for representing and optimizing based on shapes for all binary operations.
» Disable gcc macro tracing unless in debug mode, to save memory during the C compilation.

» Restored Python2 fast path for i nt with unknown object types, restoring performance for these.

Cleanups

* Use dedicated Modul eNane type that makes the tests that check if a given module name is inside a
namespace as methods. This was hard to get right and as a result, adopting this fixed a few bugs and
or inconsistent results.

» Expand the use of nui t ka. Post Pr ocessi ng to cover all actions needed to get a runnable binary.
This includes using i nst al | _name_t ool on macOS standalone, as well copying the Python DLL
for acceleration mode, cleaning the x bit for module mode. Previously only a part of these lived there.

 Avoid including the definitions of dynamically created helper functions in the C code, instead just
statically declare the ones expected to be there. This resolves Visual Code complaining about it, and
should make life also easier for the compiler and caches like ccache.

» Create more helper code in closer form to what cl ang- f or mat does, so they are easier to compare
to the static forms. We often create hard coded variants for few arguments of call functions, and
generate them for many argument variations.

» Moved setter/getter methods for Nuitka nodes consistently to the start of the node class definitions.
» Generate C code much closer to what cl ang- f or mat would change it to be.

« Unified calling i nstal | _nanme_t ool on macOS into one function that takes care of all the things,
including e.g. making the file writable.

» Debug output from scons should be more consistent and complete now.
« Sort files for compilation in scons for better reproducible results.

» Create code objects version independent, avoiding python version checks by pre-processor, hiding
new stuff behind macros, that ignore things on older Python versions.

Tests

» Added many more built-in tests for increased coverage of the newly covered ones, some of them
being generic tests that allow to test all built-ins with typical uses.

» Many tests have become more PyLint clean as a result of work with Visual Code and it complaining
about them.

» Added test to check PyPI health of top 50 packages. This is a major GSoC 2019 result.
* Output the standalone directory contents for Windows too in case of a failure.

» Added generated tests to fully cover operations on different type shapes and their errors as well as
results for typical values.

» Added support for testing against installed version of Nuitka.

* Cleanup up tests, merging those for only Python 3.2 with 3.3 as we no longer support that version
anyway.
» Execute the Python3 tests for macOS on Travis too.

Organisational

» The donation sponsored machine called donat i x had to be replaced due to hardware breakage. It
was replaced with a Raspberry-Pi 4.

» Enhanced plugin documentation.
» Added description of the git workflow to the Developer Manual.

» Added checker script check- nui t ka-wi t h-codespel | that reports typos in the source code for
easier use of codespel | with Nuitka.

» Use newest PyLint and clang-format.

» Also check plugin documentation files for ReST errors.

» Much enhanced support for Visual Code configuration.

* Trigger module code is now written into the build directory in debug mode, to aid debugging.

» Added deep check function that descends into tuples to check their elements too.

Summary

This release comes after a long time of 4 months without a release, and has accumulated massive
amounts of changes. The work on CPython 3.8 is not yet complete, and the performance work has yet to
show actual fruit, but has also progressed on all fronts. Connecting the dots and pieces seems not far
away.

Nuitka Release 0.6.5

This release contains many bug fixes all across the board. There is also new optimization and many
organisational improvements.

Bug Fixes

» Python3.4+: Fixed issues with modules that exited with an exception, that could lead to a crash,
dealing with their __spec__ value.

» Python3.4+: The __| oader __ method i s_package had the wrong signature.
» Python3.6+: Fix for async wi t h being broken with uncompiled generators.

» Python3.5+: Fix for cor out i nes that got their awaited object closed behind their back, they were
complaining with Runt i neEr r or should they be closed themselves.

* Fix, constant values None in a bool target that could not be optimized away, lead to failure during
code generation.

if x() and None:

* Standalone: Added support for sha224, sha384, sha512 in crypto package.
» Windows: The icon wasn't properly attached with MinGW64 anymore, this was a regression.

» Windows: For compiler outputs, also attempt preferred locale to interpret outputs, so we have a better
chance to not crash over MSVC error messages that are not UTF-8 compatible.

» macOS: Handle filename collisions for generated code too, Nuitka now treats all filesystems for all
OS as case insensitive for this purpose.

» Compatibility: Added support for tolerant del in class exception handlers.

class C
try:
exce|.o'.[. Exception as e:
del e
At exception handler exit, "e" is deleted if still assigned

We already were compatible for functions and modules here, but due to the special nature of class
variables really living in dictionaries, this was delayed. But after some other changes, it was now
possible to solve this TODO.

« Standalone: Added support for Python3 variant of Pmw.
* Fix, the NumPy plugin now handles more installation types.

* Fix, the gt plugin now handles multiple library paths.

* Fix, need | i bmfor some Anaconda variants too.
* Fix, left over bytecode from plugins could crash the plugin loader.

* Fix, pkguti | .iter_packages is now working for loaded packages.

New Features

» Python3.8: Followed some of the changes and works with beta2 as a Python 3.7, but none of the new
features are implemented yet.

» Added support for Torch, Tensorflow, Gevent, Sklearn, with a new Nuitka plugin.
» Added support for "hinted" compilation, where the used modules are determined through a test run.

» Added support for including TCL on Linux too.
Optimization

» Added support for the any built-in. This handles a wide range of type shapes and constant values at
compile time, while also having optimized C code.

» Generate code for some CLONG operations in preparation of eventual per expression C type
selection, it then will allow to avoid objects in many instances.

» Windows: Avoid creating link libraries for MinGW64 as these have become unnecessary is the mean
time.

» Packages: Do not export entry points for all included packages, only for the main package name it is
importable as.

Organisational

» Added support for Visual Studio 2019 as a C compiler backend.
« Improved plugin documentation describing how to create plugins for Nuitka even better.

» The is now a mode for running the tests called al | which will execute all the tests and report their
errors, and only fail at the very end. This doesn't avoid wasting CPU cycles to report that e.g. all tests
are broken, but it allows to know all errors before fixing some.

» Added repository for Fedora 30 for download.
» Added repository for openSUSE 15.1 for download.

» Ask people to compile hello world program in the Github issue template, because many times, they
have setup problems only.

* Visual Studio Code is now the recommended IDE and has integrated configuration to make it
immediately useful.

» Updated internal copy of Scons to 3.1.0 as it incorporates many of our patches.
» Changed wordings for optimization to use "lowering" as the only term to describe an optimization that
simplifies.

Cleanups

* Plugins: Major refactoring of Nuitka plugin API.
* Plugins: To locate module kind, use core Nuitka code that handles more cases.

* The test suite runners are also now autoformatted and checked with PyLint.

» The Scons file is now PyLint clean too.

» Avoid bui | d_def i ni ti ons. h to be included everywhere, in that it's only used in the main program
part. This makes C linter hate us much less for using a non-existent file.

Tests

* Run the tests using Travis on macOS for Python2 too.

» More standalone tests have been properly whitelisting to cover openSSL usage from local system.
» Disabled PySide2 test, it's not useful to fail and ignore it.

» Tests: Fixups for coverage testing mode.

 Tests: Temporarily disable some checks for constants code in reflected tests as it only exposes
mar shal not being deterministic.

Summary

This release is huge again. Main points are compatibility fixes, esp. on the coroutine side. These have
become apparently very compatible now and we might eventually focus on making them better.

Again, GSoC 2019 is also showing effects, and will definitely continue to do soin the next release.

Many use cases have been improved, and on an organizational level, the adoption of Visual Studio Code
seems an huge improvement to have a well configured IDE out of the box too.

In upcoming releases, more built-ins will be optimized, and hopefully the specialization of operations will hit
more and more code with more of the infrastructure getting there.

Nuitka Release 0.6.4

This release contains many bug fixes all across the board. There is also new optimization and many
organisational improvements.

Bug Fixes

* When linking very large programs or packages, with gcc compiler, Scons can produce commands
that are too large for the OS. This happens sooner on the Windows OS, but also on Linux. We now
have a workaround that avoids long command lines by using @our ces. t np syntax.

 Standalone: Remove temporary module after its use, instead of keeping it in sys. nodul es where
e.g. Quart code tripped overits __fil e__ value that is illegal on Windows.

* Fixed non-usage of our enhanced detection of gcc version for compilers if given as a full path.
* Fixed non-detection of gnu- cc as a form of gcc compiler.

» Python3.4: The __spec__ value corrections for compiled modules was not taking into account that
there was a __spec__ value, which can happen if something is wrapping imported modules.

« Standalone: Added implicit dependencies for passl i b.

* Windows: Added workaround for OS command line length limit in compilation with MinGW64.
» Python2: Revive the enumplugin, there are backports of the buggy code it tries to patch up.

» Windows: Fixup handling of SxS with non zero language id, these occur e.g. in Anaconda.

* Plugins: Handle multiple PyQt plugin paths, e.g. on openSUSE this is done, also enhanced finding
that path with Anaconda on Windows.

* Plugins: For mul ti processi ng on Windows, allow the . exe suffix to not be present, which can
happen when ran from command line.

» Windows: Better version checks for DLLs on Python3, the ctypes helper code needs more
definitions to work properly.

« Standalone: Added support for both pycr ypt odone and pycr ypt odonex.
* Fix, the chr built-in was not giving fully compatible error on non number input.
* Fix, the i d built-in doesn't raise an exception, but said otherwise.

» Python3: Proper C identifiers for names that fit into | at i n- 1, but are not asci i encodings.

New Features

» Windows: Catch most common user error of using compiler from one architecture against Python
from another. We now check those and compare it, and if they do not match, inform the user directly.
Previously the compilation could fail, or the linking, with cryptic errors.

» Distutils: Using setuptools and its runners works now too, not merely only pure distutils.
» Distutils: Added more ways to pass Nuitka specific options via distutils.

» Python3.8: Initial compatibility changes to get basic tests to work.

Organisational

* Nuitka is participating in the GSoC 2019 with 2 students, Batakrishna and Tommy.

* Point people creating PRs to using the pr e- commi t hook in the template. Due to making the style
issues automatic, we can hope to encounter less noise and resulting merge problems.

» Many improvements to the pr e- conmi t hook were done, hopefully completing its development.

» Updated to latest pyl i nt, bl ack, and i sort versions, also added codespel | to check for typos in
the source code, but that is not automated yet.

» Added description of how to use experimental flags for your PRs.

* Removed mirroring from Bitbucket and Gitlab, as we increasingly use the Github organisation
features.

» Added support for Ubuntu Disco, removed support for Ubuntu Artful packages.
Optimization
» Windows: Attach data blobs as Windows resource files directly for programs and avoid using C data

files for modules or MinGW64, which can be slow.

» Specialization of helper codes for + is being done for more types and more thoroughly and fully
automatic with Jinja2 templating code. This does replace previously manual code.

» Added specialization of helper codes for * operation which is entirely new.
» Added specialization of helper codes for - operation which is entirely new.

» Dedicated nodes for specialized operations now allow to save memory and all use type shape based
analysis to predict result types and exception control flow.

» Better code generation for boolean type values, removing error checks when possible.

» Better static analysis for even more type operations.

Cleanups

» Fixed many kinds of typos in the code base with codespel I .

 Apply automatic formatting to more test runner code, these were previously not done.

» Avoid using shuti | . copyt r ee which fails to work when directory already exists, instead provide
nuitka.util.FileQperations.copyTree and use that exclusively.

Tests

» Added new mode of operation to test runners, onl y that executes just one test and stops, useful
during development.

» Added new mechanism for standalone tests to expression modules that need to be importable, or
else to skip the test by a special comment in the file, instead of by coded checks in the test runner.

» Added also for more complex cases, another form of special comment, that can be any expression,
that decides if the test makes sense.

» Cover also setuptools in our distutils tests and made the execution more robust against variable
behavior of distutils and setuptools.

» Added standalone test for Urllib3.
» Added standalone test for rsa.
» Added standalone test for Pmw.

» Added standalone test for passlib.

Summary

Again this release is a sign of increasing adoption of Nuitka. The GSoC 2019 is also showing effects,
definitely will in the next release.

This release has a lot of new optimization, called specialization, but for it to really used, in many instances,
we need to get away from working on C types for variables only, and get to them beig used for expressions
more often. Otherwise much of the new special code is not used for most code.

The focus of this release has been again to open up development further and to incorporate findings from
users. The number of fixes or new use cases working is astounding.

In upcoming releases, new built-ins will be optimized, and specialization of operations will hit more and
more code now that the infrastructure for it is in place.

Nuitka Release 0.6.3

This has a focus on organisational improvements. With more and more people joining Nuitka, normal
developers as well as many GSoC 2019 students, the main focus was to open up the development tools
and processes, and to improve documentation.

That said, an impressive amount of bug fixes was contributed, but optimization was on hold.
Bug Fixes

» Windows: Added support for running compiled binaries in unicode path names.

« Standalone: Added support for crytodomex and pycparser packages.

« Standalone: Added support for OpenSSL support in PyQt on Windows.

« Standalone: Added support for OpenGL support with QML in PyQt on Windows.

« Standalone: Added support for SciPy and extended the NumPy plugin to also handle it.
» Ul: The option - - pl ugi n-1i st still needed a positional argument to work.

» Make sure sys. base_prefi x is set correctly too.

» Python3: Also make sure sys. exec_prefi x and sys. base_exec_prefi x are set correctly.
« Standalone: Added platform plugins for PyQt to the default list of sensible plugins to include.

* Fix detection of standard library paths that include . . path elements.
Optimization
» Avoid static C++ runtime library when using MinGW64.

New Features

* Plugins: A plugin may now also generate data files on the fly for a given module.

» Added support for FreeBSD/PowerPC arch which still uses gcc and not cl ang.

Organisational

* Nuitka is participating in the GSoC 2019.

» Added documentation on how to create or use Nuitka plugins.

» Added more API doc to functions that were missing them as part of the ongoing effort to complete it.
» Updated to latest PyLint 2.3.1 for checking the code.

 Scons: Using newer Scons inline copy with Python 2.7 as, the old one remains only used with Python
2.6, making it easier to know the relevant code.

 Autoformat was very much enhanced and handles C and ReST files too now. For Python code it
does pylint comment formatting, import statement sorting, and blackening.

» Added script mi sc/install-git-hooks. py that adds a commit hook that runs autoformat on
commit. Currently it commits unstaged content and therefore is not yet ready for prime time.

» Moved adapted CPython test suites to Github repository under Nuitka Organisation.

» Moved Nuitka-website repository to Github repository under Nuitka Organisation.

» Moved Nuitka-speedcenter repository to Github repository under Nuitka Organisation.
* There is now a Gitter chat for Nuitka community.

» Many typo and spelling corrections on all the documentation.

» Added short installation guide for Nuitka on Windows.

Cleanups

» Moved commandline parsing helper functions from common code helpers to the main program where
of course their only usage is.

» Moved post processing of the created standalone binary from main control to the freezer code.
« Avoid using chnod binary to remove executable bit from created extension modules.

» Windows: Avoid using rt . exe and nt . exe to deal with copying the manifest from the pyt hon. exe
to created binaries. Instead use new code that extracts and adds Windows resources.

* Fixed many Resour ceWar ni ngs on Python3 by improved ways of handling files.
» Fixed deprecation warnings related to not using col | ect i ons. abc.

» The runners in bi n directory are now formatted with bl ack too.

https://github.com/Nuitka/Nuitka-CPython-tests
https://github.com/Nuitka/Nuitka-website
https://github.com/Nuitka/Nuitka-speedcenter
https://gitter.im/Nuitka-chat/community

Tests

 Detect Windows permission errors for two step execution of Nuitka as well, leading to retries should
they occur.

» The salt value for CPython cached results was improved to take more things into account.

» Tests: Added more trick assignments and generally added more tests that were so far missing.

Summary

With the many organisational changes in place, my normal work is expected to resume for after and yield
quicker improvements now.

It is also important that people are now enabled to contribute to the Nuitka web site and the Nuitka
speedcenter. Hope is to see more improvements on this otherwise neglected areas.

And generally, it's great to see that a community of people is now looking at this release in excitement and
pride. Thanks to everybody who contributed!

Nuitka Release 0.6.2

This release has a huge focus on organizational things. Nuitka is growing in terms of contributors and
supported platforms.

Bug Fixes

* Fix, the Python flag - - pyt hon- f | ag=- O was removing doc strings, but that should only be done
with - - pyt hon- f | ag=- OOwhich was added too.

* Fix, accelerated binaries failed to load packages from the vi rt ual env (not venv) that they were
created and ran with, due to not propagating sys. prefi x.

« Standalone: Do not include pl at - * directories as frozen code, and also on some platforms they can
also contain code that fails to import without error.

« Standalone: Added missing implicit dependency needed for newer NumPy versions.

New Features

» Added support for Alpine Linux.
» Added support for MSYS2 based Python on Windows.
» Added support for Python flag - - pyt hon f 1 ag=- OO, which allows to remove doc strings.

» Added experimental support for pefi | e based dependency scans on Windows, thanks to Orsiris for
this contribution.

» Added plugin for proper Tkinter standalone support on Windows, thanks to Jorj for this contribution.

* There is now a __conpi | ed__ attribute for each module that Nuitka has compiled. Should be like
this now, and contains Nuitka version information for you to wuse, similar to what
sys. ver si on_i nf o gives as a namedt upl e for your checks.

__nuitka_version__(mgjor=0, mnor=6, mcro=2, rel easel evel ="rel ease")

Optimization

» Experimental code for variant types for i nt and | ong values, that can be plain C value, as well as
the PyQbj ect *. This is not yet completed though.

 Minor refinements of specialized code variants reducing them more often the actual needed code.

Organisational

» The Nuitka Github Organisation that was created a while ago and owns the Nuitka repo now, has
gained members. Check out https://github.com/orgs/Nuitka/people for their list. This is an exciting
transformation for Nuitka.

* Nuitka is participating in the GSoC 2019 under the PSF umbrella. We hope to grow even further.
Thanks to the mentors who volunteered for this important task. Check out the GSoC 2019 page and
thanks to the students that are already helping out.

» Added Nuitka internal APl documentation that will receive more love in the future. It got some for this
release, but a lot is missing.

» The Nuitka code has been bl ack-ened and is formatted with an automatic tool now all the way,
which makes contributors lives easier.

» Added documentation for questions received as part of the GSoC applications and ideas work.

» Some proof reading pull requests were merged for the documentation, thanks to everybody who
addresses these kinds of errors. Sometimes typos, sometimes broken links, etc.

» Updated inline copy of Scons used for Python3 to 3.0.4, which hopefully means more bugs are fixed.

Summary

This release is a sign of increasing adoption of Nuitka. The GSoC 2019 is showing early effects, as is more
developers joining the effort. These are great times for Nuitka.

This release has not much on the optimization side that is user visible, but the work that has begun is
capable of producing glorious benchmarks once it will be finished.

The focus on this and coming releases is definitely to open up the Nuitka development now that people are
coming in as permanent or temporary contributors in (relatively) high numbers.

Nuitka Release 0.6.1

This release comes after a relatively long time, and contains important new optimization work, and even
more bug fixes.

Bug Fixes

* Fix, the options - -[no] f ol | ow- i nmport -t o=package_nanme was supposed to not follow into the
given package, but the check was executed too broadly, so that e.g. package_nanme2 was also
affected. Fixed in 0.6.0.1 already.

* Fix, wasn't detecting multiple recursions into the same package in module mode, when attempting to
compile a whole sub-package. Fixed in 0.6.0.1 already.

* Fix, constant values are used as C boolean values still for some of the cases. Fixed in 0.6.0.1
already.

* Fix, referencing a function cannot raise an exception, but that was not annotated. Fixed in 0.6.0.2
already.

* macOS: Use standard include of C bool type instead of rolling our own, which was not compatible
with newest Clang. Fixed in 0.6.0.3 already.

» Python3: Fix, the byt es built-in type actually does have a __f | oat __ slot. Fixed in 0.6.0.4 already.

https://github.com/orgs/Nuitka/people
https://nuitka.net/pages/gsoc2019.html#mentors
https://nuitka.net/apidoc

» Python3.7: Types that are also sequences still need to call the method __cl ass_getitem _ for
consideration. Fixed in 0.6.0.4 already.

» Python3.7: Error exits from program exit could get lost on Windows due to __spec__ handling not
preserving errors. Fixed in 0.6.0.4 already.

» Windows: Negative exit codes from Nuitka, e.g. due to a triggered assertion in debug mode were not
working. Fixed in 0.6.0.4 already.

* Fix, conditional and expressions were mis-optimized when not used to not execute the right hand
side still. Fixed in 0.6.0.4 already.

» Python3.6: Fix, generators, coroutines, and asyncgen were not properly supporting annotations for
local variables. Fixed in 0.6.0.5 already.

» Python3.7: Fix, class declarations had memory leaks that were untestable before 3.7.1 fixed
reference count issues in CPython. Fixed in 0.6.0.6 already.

» Python3.7: Fix, asyncgen expressions can be created in normal functions without an immediate
awaiting of the iterator. This new feature was not correctly supported.

* Fix, star imports on the module level should disable built-in name optimization except for the most
critical ones, otherwise e.g. names like al | or pow can become wrong. Previous workarounds for
pow were not good enough.

* Fix, the scons for Python3 failed to properly report build errors due to a regression of the Scons
version used for it. This would mask build errors on Windows.

» Python3.4: Fix, packages didn't indicate that they are packages in their __spec__ value, causing
issues with i nportli b_resour ces module.

» Python3.4: The _ spec__ values of compiled modules didn't have compatible ori gi n and
has_| ocati on values preventing i nport!|i b_resour ces module from working to load data files.

* Fix, packages created from . pt h files were also considered when checking for sub-packages of a
module.

« Standalone: Handle cases of conflicting DLLs better. On Windows pick the newest file version if
different, and otherwise just report and pick randomly because we cannot really decide which ought
to be loaded.

« Standalone: Warn about collisions of DLLs on non-Windows only as this can happen with wheels
apparently.

« Standalone: For Windows Python extension modules . pyd files, remove the SxS configuration for
cases where it causes problems, not needed.

* Fix: The exec statement on file handles was not using the proper filename when compiling, therefore
breaking e.g. i nspect . get sour ce on functions defined there.

« Standalone: Added support for OpenGL platform plugins to be included automatically.
« Standalone: Added missing implicit dependency for zng module.

» Python3.7: Fix, using the - X ut f 8 flag on the calling interpreter, aka - - pyt hon- f | ag=ut f 8_node
was not preserved in the compiled binary in all cases.

New Optimization

» Enabled C target type voi d which will catch creating unused stuff more immediately and give better
code for expression only statements.

» Enabled in-place optimization for module variables, avoiding write back to the module dict for
unchanged values, accelerating these operations.

» Compile time memory savings for the yi el d node of Python2, no need to track if it is in an exception
handler, not relevant there.

« Using the single child node for the yi el d nodes gives memory savings at compile time for these,
while also making them operate faster.

» More kinds of in-place operations are now optimized, e.g. i nt += i nt and the byt es ones were
specialized to perform real in-place extension where possible.

 Loop variables no longer loose type information, but instead collect the set of possible type shapes
allowing optimization for them.

Organizational

* Corrected download link for Arch AUR link of develop package.

» Added repository for Ubuntu Cosmic (18.10) for download.

» Added repository for Fedora 29 for download.

» Describe the exact format used for cl ang- f or mat in the Developer Manual.

» Added description how to use CondaCC on Windows to the User Manual.

Cleanups

» The operations used for async for, async wth, and await were all doing a look-up of an
awaitable, and then executing the yi el d f r omthat awaitable as one thing. Now this is split into two
parts, with a new Expr essi onYi el dFr omAwai t abl e as a dedicated node.

» The yi el d node types, now 3 share a base class and common computation for now, enhancing the
one for awaitiable, which was not fully annotating everything that can happen.

* In code generation avoid statement blocks that are not needed, because there are no local C
variables declared, and properly indent them.

Tests

* Fixups for the manual Valgrind runner and the Ul changes.

* Test runner detects lock issue of cl cache on Windows and considers it a permission problem that
causes a retry.

Summary

This addresses even more corner cases not working correctly, the out of the box experience should be
even better now.

The push towards C level performance for integer operation was held up by the realization that loop SSA
was not yet there really, and that it had to be implemented, which of course now makes a huge difference
for the cases where e.g. bool are being used. There is no C type for i nt used yet, which limits the impact
of optimization to only taking shortcuts for the supported types. These are useful and faster of course, but
only building blocks for what is to come.

Most of the effort went into specialized helpers that e.g. add a f | oat and and i nt value in a dedicated
fashion, as well as comparison operations, so we can fully operate some minimal examples with
specialized code. This is too limited still, and must be applied to ever more operations.

What's more is that the benchmarking situation has not improved. Work will be needed in this domain to
make improvements more demonstrable. It may well end up being the focus for the next release to
improve Nuitka speedcenter to give more fine grained insights across minor changes of Nuitka and graphs
with more history.

Nuitka Release 0.6.0

This release adds massive improvements for optimization and a couple of bug fixes.
It also indicates reaching the mile stone of doing actual type inference, even if only very limited.

And with the new version numbers, lots of Ul changes go along. The options to control recursion into
modules have all been renamed, some now have different defaults, and finally the filenames output have
changed.

Bug Fixes

» Python3.5: Fix, the awaiting flag was not removed for exceptions thrown into a coroutine, so next time
it appeared to be awaiting instead of finished.

» Python3: Classes in generators that were using built-in functions crashed the compilation with C
errors.

» Some regressions for XML outputs from previous changes were fixed.
* Fix, hasat t r was not raising an exception if used with non-string attributes.

* For really large compilations, MSVC linker could choke on the input file, line length limits, which is
now fixed for the inline copy of Scons.

« Standalone: Follow changed hidden dependency of PyQ 5 to PyQ 5. si p for newer versions

« Standalone: Include certificate file using by r equest s module in some cases as a data file.

New Optimization

» Enabled C target type nui t ka_bool for variables that are stored with boolean shape only, and
generate C code for those

* Using C target type nui t ka_bool many more expressions are now handled better in conditions.
* Enhancedi s andi s not to be C source type aware, so they can be much faster for them.
» Use C target type for bool built-in giving more efficient code for some source values.

» Annotate the not result to have boolean type shape, allowing for more compile time optimization with
it.

» Restored previously lost optimization of loop break handling St opl t er at i on which makes loops
much faster again.

* Restore lost optimization of subscripts with constant integer values making them faster again.

» Optimize in-place operations for cases where left, right, or both sides have known type shapes for
some values. Initially only a few variants were added, but there is more to come.

* When adjacent parts of an f-string become known string constants, join them at compile time.
* When there is only one remaining part in an f-string, use that directly as the result.

» Optimize empty f-strings directly into empty strings constant during the tree building phase.

» Added specialized attribute check for use in re-formulations that doesn't expose exceptions.

* Remove locals sync operation in scopes without local variables, e.g. classes or modules, making
exec and the like slightly leaner there.

* Remove t r y nodes that did only re-raise exceptions.

» The del of variables is now driven fully by C types and generates more compatible code.

* Removed useless double exception exits annotated for expressions of conditions and added code
that allows conditions to adapt themselves to the target shape bool during optimization.

New Features

» Added support for using . egg files in PYTHONPATH, one of the more rare uses, where Nuitka wasn't
yet compatible.

 Qutput binaries in standalone mode with platform suffix, on non-Windows that means no suffix. In
accelerated mode on non-Windows, use . bi n as a suffix to avoid collision with files that have no
suffix.

* Windows: It's now possible to use cl ang-cl . exe for CC with Nuitka as a third compiler on
Windows, but it requires an existing MSVC install to be used for resource compilation and linking.

» Windows: Added support for using ccache. exe and cl cache. exe, so that object files can now be
cached for re-compilation.

» For debug mode, report missing in-place helpers. These kinds of reports are to become more
universal and are aimed at recognizing missed optimization chances in Nuitka. This features is still in
its infancy. Subsequent releases will add more like these.

Organizational

« Disabled comments on the web site, we are going to use Twitter instead, once the site is migrated to
an updated Nikola.

» The static C code is now formatted with cl ang-format to make it easier for contributors to
understand.

» Moved the construct runner to top level binary and use it from there, with future changes coming that
should make it generally useful outside of Nuitka.

» Enhanced the issue template to tell people how to get the devel op version of Nuitka to try it out.
» Added documentation for how use the object caching on Windows to the User Manual.

» Removed the included GUI, originally intended for debugging, but XML outputs are more powerful
anyway, and it had been in disrepair for a long time.

* Removed long deprecated options, e.g. - - exe which has long been the default and is no more
accepted.

* Renamed options to include plugin files to --include-plugin-directory and
--include-pl ugi n-fil es for more clarity.

» Renamed options for recursion control to e.g. --fol | owi nports to better express what they
actually do.

* Removed - - pyt hon- ver si on support for switching the version during compilation. This has only
worked for very specific circumstances and has been deprecated for a while.

* Removed - - code- gen- no- st at enent - | i nes support for not having line numbers updated at run
time. This has long been hidden and probably would never gain all that much, while causing a lot of
incompatibilty.

Cleanups

» Moved command line arguments to dedicated module, adding checks was becoming too difficult.

» Moved rich comparison helpers to a dedicated C file.

» Dedicated binary and unary node bases for clearer distinction and more efficient memory usage of
unuary nodes. Unary operations also no longer have in-place operation as an issue.

» Major cleanup of variable accesses, split up into multiple phases and all including module variables
being performed through C types, with no special cases anymore.

« Partial cleanups of C type classes with code duplications, there is much more to resolve though.

» Windows: The way exec was performed is discouraged in the subpr ocess documentation, so use a
variant that cannot block instead.

» Code proving information about built-in names and values was using not very portable constructs,
and is now written in a way that PyPy would also like.

Tests

* Avoid using 2t 03 for basic operators test, removing test of some Python2 only stuff, that is covered
elsewhere.

» Added ability to cache output of CPython when comparing to it. This is to allow CI tests to not execute
the same code over and over, just to get the same value to compare with. This is not enabled yet.

Summary

This release marks a point, from which on performance improvements are likely in every coming release.
The C target types are a major milestone. More C target types are in the work, e.g. voi d is coming for
expressions that are done, but not used, that is scheduled for the next release.

Although there will be a need to also adapt optimization to take full advantage of it, progress should be
quick from here. There is a lot of ground to cover, with more C types to come, and all of them needing
specialized helpers. But as soon as e.g. i nt, str are covered, many more programs are going to
benefiting from this.

Nuitka Release 0.5.33

This release contains a bunch of fixes, most of which were previously released as part of hotfixes, and
important new optimization for generators.

Bug Fixes

* Fix, nested functions with local classes using outside function closure variables were not registering
their usage, which could lead to errors at C compile time. Fixed in 0.5.32.1 already.

* Fix, usage of built-in calls in a class level could crash the compiler if a class variable was updated
with its result. Fixed in 0.5.32.1 already.

» Python 3.7: The handling of non-type bases classes was not fully compatible and wrong usages were
giving At t ri but eErr or instead of TypeEr r or . Fixed in 0.5.32.2 already.

» Python 3.5: Fix, awai t expressions didn't annotate their exception exit. Fixed in 0.5.32.2 already.

» Python3: The enummodule usages with __new__ in derived classes were not working, due to our
automatic st ati cnet hod decoration. Turns out, that was only needed for Python2 and can be
removed, making enum work all the way. Fixed in 0.5.32.3 already.

* Fix, recursion into __mai n__ was done and could lead to compiler crashes if the main module was
named like that. This is not prevented. Fixed in 0.5.32.3 already.

» Python3: The name for list contraction's frames was wrong all along and not just changed for 3.7, so
drop that version check on it. Fixed in 0.5.32.3 already.

* Fix, the hashing of code objects has creating a key that could produce more overlaps for the hash
than necessary. Using a C1 on line 29 and Con line 129, was considered the same. And that is what
actually happened. Fixed in 0.5.32.3 already.

» macOS: Various fixes for newer Xcode versions to work as well. Fixed in 0.5.32.4 already.

» Python3: Fix, the default __annot ati ons__ was the empty dict and could be modified, leading to
severe corruption potentially. Fixed in 0.5.32.4 already.

» Python3: When an exception is thrown into a generator that currently does a yi el d fromis not to
be normalized.

» Python3: Some exception handling cases of yi el d fr omwere leaking references to objects. Fixed
in 0.5.32.5 already.

» Python3: Nested namespace packages were not working unless the directory continued to exist on
disk. Fixed in 0.5.32.5 already.

« Standalone: Do not include i cuuc. dl | which is a system DLL. Fixed in 0.5.32.5 already.
» Standalone: Added hidden dependency of newer version of si p. Fixed in 0.5.32.5 already.

« Standalone: Do not copy file permissions of DLLs and extension modules as that makes deleting and
modifying them only harder. Fixed in 0.5.32.6 already.

» Windows: The multiprocessing plugin was not always properly patching the run time for all module
loads, made it more robust. Fixed in 0.5.32.6 already.

« Standalone: Do not preserve permissions of copied DLLs, which can cause issues with read-only
files on Windows when later trying to overwrite or remove files.

» Python3.4: Make sure to disconnect finished generators from their frames to avoid potential data
corruption. Fixed in 0.5.32.6 already.

» Python3.5: Make sure to disconnect finished coroutines from their frames to avoid potential data
corruption. Fixed in 0.5.32.6 already.

» Python3.6: Make sure to disconnect finished asyncgen from their frames to avoid potential data
corruption. Fixed in 0.5.32.6 already.

» Python3.5: Explicit frame closes of frames owned by coroutines could corrupt data. Fixed in 0.5.32.7
already.

» Python3.6: Explicit frame closes of frames owned by asyncgen could corrupt data. Fixed in 0.5.32.7
already.

 Python 3.4: Fix threaded imports by properly handling i ni ti al i zi ng in compiled modules " spec
attributes. Before it happen that another thread attempts to use an unfinished module. Fixed in
0.5.32.8 already.

* Fix, the options - - i ncl ude- nodul e and - - i ncl ude- package were present but not visible in the
help output. Fixed in 0.5.32.8 already.

» Windows: The multiprocessing plugin failed to properly pass compiled functions. Fixed in 0.5.32.8
already.

» Python3: Fix, optimization for in-place operations on mapping values are not allowed and had to be
disabled. Fixed in 0.5.32.8 already.

» Python 3.5: Fixed exception handling with coroutines and asyncgen t hr ow to not corrupt exception
objects.

 Python 3.7: Added more checks to class creations that were missing for full compatibility.

» Python3: Smarter hashing of unicode values avoids increased memory usage from cached converted
forms in debug mode.

Organizational

» The issue tracker on Github is now the one that should be used with Nuitka, winning due to easier
issue templating and integration with pull requests.

» Document the threading model and exception model to use for MinGW64.

* Removed the enumplug-in which is no longer useful after the improvements to the st at i cnet hod
handling for Python3.

» Added Python 3.7 testing for Travis.
» Make it clear in the documentation that pyenv is not supported.

» The version output includes more information now, OS and architecture, so issue reports should
contain that now.

» On PyPI we didn't yet indicated Python 3.7 as supported, which it of course is.

New Features

» Added support for MiniConda Python.
Optimization

 Using goto based generators that return from execution and resume based on heap storage. This
makes tests using generators twice as fast and they no longer use a full C stack of 2MB, but only 1K
instead.

e Conditionala i f cond else b,a and b ,a or b expressions of which the result value is are
now transformed into conditional statements allowing to apply further optimizations to the right and
left side expressions as well.

* Replace unused function creations with side effects from their default values with just those,
removing more unused code.

« Put all statement related code and declarations for it in a dedicated C block, making things slightly
more easy for the C compiler to re-use the stack space.

» Avoid linking against | i bpyt hon in module mode on everything but Windows where it is really
needed. No longer check for static Python, not needed anymore.

» More compact function, generator, and asyncgen creation code for the normal cases, avoid
gualname if identical to name for all of them.

» Python2 class dictionaries are now indeed directly optimized, giving more compact code.

» Module exception exits and thus its frames have become optional allowing to avoid some code for
some special modules.

» Uncompiled generator integration was backported to 3.4 as well, improving compatibility and speed
there as well.

Cleanups

» Frame object and their cache declarations are now handled by the way of allocated variable
descriptions, avoid special handling for them.

» The interface to "forget" a temporary variable has been replaced with a new method that skips a
number for it. This is done to keep expression use the same indexes for all their child expressions,
but this is more explicit.

* Instead of passing around C variables names for temporary values, we now have full descriptions,
with C type, code name, storage location, and the init value to use. This makes the information more
immediately available where it is needed.

« Variable declarations are now created when needed and stored in dedicated variable storage objects,
which then in can generate the code as necessary.

* Module code generation has been enhanced to be closer to the pattern used by functions,
generators, etc.

 There is now only one spot that creates variable declaration, instead of previous code duplications.

» Code objects are now attached to functions, generators, coroutines, and asyncgen bodies, and not
anymore to the creation of these objects. This allows for simpler code generation.

» Removed fiber implementations, no more needed.

Tests

« Finally the asyncgen tests can be enabled in the CPython 3.6 test suite as the corrupting crash has
been identified.

» Cover ever more cases of spurious permission problems on Windows.

» Added the ability to specify specific modules a comparison test should recurse to, making some
CPython tests follow into modules where actual test code lives.

Summary
This release is huge in many ways.

First, finishing "goto generators” clears an old scalability problem of Nuitka that needed to be addressed.
No more do generators/coroutines/asyncgen consume too much memory, but instead they become as
lightweight as they ought to be.

Second, the use of variable declarations carying type information all through the code generation, is an
important pre-condition for "C types" work to resume and become possible, what will be 0.6.0 and the next
release.

Third, the improved generator performance will be removing a lot of cases, where Nuitka wasn't as fast, as
its current state not using "C types" yet, should allow. It is now consistently faster than CPython for
everything related to generators.

Fourth, the fibers were a burden for the debugging and linking of Nuitka on various platforms, as they
provided deprecated interfaces or not. As they are now gone, Nuitka ought to definitely work on any
platform where Python works.

From here on, C types work can take it, and produce the results we are waiting for in the next major
release cycle that is about to start.

Also the amount of fixes for this release has been incredibly high. Lots of old bugs esp. for coroutines and
asyncgen have been fixed, this is not only faster, but way more correct. Mainly due to the easier
debugging and interface to the context code, bugs were far easier to avoid and/or find.

Nuitka Release 0.5.32

This release contains substantial new optimization, bug fixes, and already the full support for Python 3.7.
Among the fixes, the enhanced coroutine work for compatibility with uncompiled ones is most important.

Bug Fixes

* Fix, was optimizing write backs of attribute in-place assignments falsely.

* Fix, generator stop future was not properly supported. It is now the default for Python 3.7 which
showed some of the flaws.

» Python3.5: The __qual nane__ of coroutines and asyncgen was wrong.

» Python3.5: Fix, for dictionary unpackings to calls, check the keys if they are string values, and raise
an exception if not.

» Python3.6: Fix, need to check assignment unpacking for too short sequences, we were giving
| ndexEr r or instead of Val ueErr or for these. Also the error messages need to consider if they
should refer to "at least" in their wording.

* Fix, outline nodes were cloned more than necessary, which would corrupt the code generation if they
later got removed, leading to a crash.

» Python3.5: Compiled coroutines awaiting uncompiled coroutines was not working properly for
finishing the uncompiled ones. Also the other way around was raising a Runt i meEr r or when trying
to pass an exception to them when they were already finished. This should resolve issues with
asynci o module.

* Fix, side effects of a detected exception raise, when they had an exception detected inside of them,
lead to an infinite loop in optimization. They are now optimized in-place, avoiding an extra step later
on.

New Features

 Support for Python 3.7 with only some corner cases not supported yet.
Optimization

« Delay creation of St opl t er ati on exception in generator code for as long as possible. This gives
more compact code for generations, which now pass the return values via compiled generator
attribute for Python 3.3 or higher.

» Python3: More immediate re-formulation of classes with no bases. Avoids noise during optimization.

» Python2: For class dictionaries that are only assigned from values without side effects, they are not
converted to temporary variable usages, allowing the normal SSA based optimization to work on
them. This leads to constant values for class dictionaries of simple classes.

* Explicit cleanup of nodes, variables, and local scopes that become unused, has been added, allowing
for breaking of cyclic dependencies that prevented memory release.

Tests

» Adapted 3.5 tests to work with 3.7 coroutine changes.
» Added CPython 3.7 test suite.

Cleanups

* Removed remaining code that was there for 3.2 support. All uses of version comparisons with 3.2
have been adapted. For us, Python3 now means 3.3, and we will not work with 3.2 at all. This
removed a fair bit of complexity for some things, but not all that much.

» Have dedicated file for import released helpers, so they are easier to find if necessary. Also do not
have code for importing a name in the header file anymore, not performance relevant.

« Disable Python warnings when running scons. These are particularly given when using a Python
debug binary, which is happening when Nuitka is run with - - pyt hon- debug option and the inline
copy of Scons is used.

» Have a factory function for all conditional statement nodes created. This solved a TODO and handles
the creation of statement sequences for the branches as necessary.

« Split class reformulation into two files, one for Python2 and one for Python3 variant. They share no
code really, and are too confusing in a single file, for the huge code bodies.

* Locals scopes now have a registry, where functions and classes register their locals type, and then it
is created from that.

» Have a dedicated helper function for single argument calls in static code that does not require an
array of objects as an argument.

Organizational

» There are now r equi r enent s-devel .txt and requi renents. t xt files aimed at usage with
scons and by users, but they are not used in installation.

Summary

This releases has this important step to add conversion of locals dictionary usages to temporary variables.
It is not yet done everywhere it is possible, and the resulting temporary variables are not yet propagated in
the all the cases, where it clearly is possible. Upcoming releases ought to achieve that most Python2
classes will become to use a direct dictionary creation.

Adding support for Python 3.7 is of course also a huge step. And also this happened fairly quickly and
soon after its release. The generic classes it adds were the only real major new feature. It breaking the
internals for exception handling was what was holding back initially, but past that, it was really easy.

Expect more optimization to come in the next releases, aiming at both the ability to predict Python3
metaclasses __prepare__ results, and at more optimization applied to variables after they became
temporary variables.

Nuitka Release 0.5.31

This release is massive in terms of fixes, but also adds a lot of refinement to code generation, and more
importantly adds experimental support for Python 3.7, while enhancing support for Pyt5 in standalone
mode by a lot.

Bug Fixes

« Standalone: Added missing dependencies for PyQ 5. @ module.
* Plugins: Added support for PyQ 5. @& module and its qni plugins.

* Plugins: The sensible plugin list for PyQt now includes that platforms plugins on Windows too, as they
are kind of mandatory.

» Python3: Fix, for uninstalled Python versions wheels that linked against the Pyt hon3 library as
opposed to Pyt hon3X it was not found.

» Standalone: Prefer DLLs used by main program binary over ones used by wheels.

« Standalone: For DLLs added by Nuitka plugins, add the package directory to the search path for
dependencies where they might live.

* Fix, the var s built-in didn't annotate its exception exit.
» Python3: Fix, the byt es and conpl ex built-ins needs to be treated as a slot too.

* Fix, consider if del variable must be assigned, in which case no exception exit should be created.
This prevented Tki nt er compilation.

» Python3.6: Added support for the following language construct:

d = {"netaclass": M

class C(**d):
pass

» Python3.5: Added support for cyclic imports. Now a f r omimport with a name can really cause an
import to happen, not just a module attribute lookup.

* Fix, hasat t r was never raising exceptions.

* Fix, byt ear r ay constant values were considered to be non-iterable.

» Python3.6: Fix, now it is possible to del __annotati ons__ in a class and behave compatible.
Previously in this case we were falling back to the module variable for annotations used after that
which is wrong.

* Fix, some built-in type conversions are allowed to return derived types, but Nuitka assumed the exact
type, this affected byt es, i nt, | ong, uni code.

 Standalone: Fix, the _socket module was insisted on to be found, but can be compiled in.

New Features

» Added experimental support for Python 3.7, more work will be needed though for full support. Basic
tests are working, but there are are at least more coroutine changes to follow.

* Added support for building extension modules against statically linked Python. This aims at
supporting manylinux containers, which are supposed to be used for creating widely usable binary
wheels for Linux. Programs won't work with statically linked Python though.

» Added options to allow ignoring the Windows cache for DLL dependencies or force an update.
« Allow passing options from distutils to Nuitka compilation via setup options.

» Added option to disable the DLL dependency cache on Windows as it may become wrong after
installing new software.

» Added experimental ability to provide extra options for Nuitka to setuptools.

» Python3: Remove frame preservation and restoration of exceptions. This is not needed, but leaked
over from Python2 code.

Optimization

» Apply value tracing to local dict variables too, enhancing the optimization for class bodies and
function with exec statements by a lot.

« Better optimization for "must not have value”, wasn't considering merge traces of uninitialized values,
for which this is also the case.

* Use 10% less memory at compile time due to specialized base classes for statements with a single
child only allowing __sl ot s__ usage by not having multiple inheritance for those.

» More immediately optimize branches with known truth values, so that merges are avoided and do not
prevent trace based optimization before the pass after the next one. In some cases, optimization
based on traces could fail to be done if there was no next pass caused by other things.

» Much faster handling for functions with a lot of eval and exec calls.

« Static optimization of t ype with known type shapes, the value is predicted at compile time.

» Optimize containers for all compile time constants into constant nodes. This also enables further
compile time checks using them, e.g. with i si nst ance ori n checks.

« Standalone: Using threads when determining DLL dependencies. This will speed up the un-cached
case on Windows by a fair bit.

* Also remove unused assignments for mutable constant values.
 Python3: Also optimize calls to byt es built-in, this was so far not done.
» Statically optimize iteration over constant values that are not iterable into errors.

» Removed Fortran, Java, LaTex, PDF, etc. stuff from the inline copies of Scons for faster startup and
leaner code. Also updated to 3.0.1 which is no important difference over 3.0.0 for Nuitka however.

» Make sure to always release temporary objects before checking for error exits. When done the other
way around, more C code than necessary will be created, releasing them in both normal case and
error case after the check.

« Also remove unused assignments in case the value is a mutable constant.

Cleanups

» Don't store "version" numbers of variable traces for code generation, instead directly use the
references to the value traces instead, avoiding later lookups.

» Added dedicated module for conpl ex built-in nodes.
» Moved C helpers for integer and complex types to dedicated files, solving the TODOs around them.

» Removed some Python 3.2 only codes.

Organizational

* For better bug reports, the - - ver si on output now contains also the Python version information and
the binary path being used.

» Started using specialized exceptions for some types of errors, which will output the involved data for
better debugging without having to reproduce anything. This does e.g. output XML dumps of
problematic nodes.

» When encountering a problem (compiler crash) in optimization, output the source code line that is
causing the issue.

» Added support for Fedora 28 RPM builds.
* Remove more instances of mentions of 3.2 as supported or usable.

» Renovated the graphing code and made it more useful.

Summary

This release marks important progress, as the locals dictionary tracing is a huge step ahead in terms of
correctness and proper optimization. The actual resulting dictionary is not yet optimized, but that ought to
follow soon now.

The initial support of 3.7 is important. Right now it apparently works pretty well as a 3.6 replacement
already, but definitely a lot more work will be needed to fully catch up.

For standalone, this accumulated a lot of improvements related to the plugin side of Nuitka. Thanks to
those involved in making this better. On Windows things ought to be much faster now, due to parallel
usage of dependency walker.

Nuitka Release 0.5.30

This release has improvements in all areas. Many bug fixes are accompanied with optimization changes
towards value tracing.

Bug Fixes

* Fix, the new setuptools runners were not used by pi p breaking the use of Nuitka from PyPlI.
* Fix, imports of si x. moves could crash the compiler for built-in names. Fixed in 0.5.29.2 already.

* Windows: Make the nui t ka-run not a symlink as these work really bad on that platform, instead
make it a full copy just like we did for nui t ka3- r un already. Fixed in 0.5.29.2 already.

» Python3.5: In module mode, t ypes. cor out i ne was monkey patched into an endless recursion if
including more than one module, e.g. for a package. Fixed in 0.5.29.3 already.

» Python3.5: Dictionary unpackings with both star arguments and non star arguments could leak
memory. Fixed in 0.5.29.3 already.

c ={a: 1, **d}
* Fix, distutils usage was not working for Python2 anymore, due to using super for what are old style

classes on that version.

* Fix, some method calls to C function members could leak references.

class C
for_call = functools. parti al

def n():

self.for_call() # This |eaked a reference to the descriptor.

» Python3.5: The bases classes should be treated as an unpacking too.

class C(*D): # Allowed syntax that was not supported.
pass

» Windows: Added back batch files to run Nuitka from the command line. Fixed in 0.5.29.5 already.

New Features

» Added option - - i ncl ude- package to force inclusion of a whole package with the submodules in a
compilation result.

» Added options - - i ncl ude- nodul e to force inclusion of a single module in a compilation result.

* The “mul ti processi ng plug-in got adapted to Python 3.4 changes and will now also work in
accelerated mode on Windows.

oIt is now possible to specify the Qt plugin directories with e.g.
- - pl ugi n- enabl e- =qt _pl ugi ns=i magef ormat s and have only those included. This should
avoid dependency creep for shared libraries.

* Plugins can now make the decision about recursing to a module or not.

* Plugins now can get their own options passed.

Optimization

* The re-raising of exceptions has gotten its own special node type. This aims at more readability (XML
output) and avoiding the overhead of checking potential attributes during optimization.

» Changed built-ini nt, | ong, and f | oat to using a slot mechanism that also analyses the type shape
and detects and warns about errors at compile time.

» Changed the variable tracing to value tracing. This meant to cleanup all the places that were using it
to find the variable.

» Enable must have / must not value value optimization for all kinds of variables including module and
closure variables. This often avoids error exits and leads to smaller and faster generated code.

Tests

» Added burn test with local install of pip distribution to virtualenv before making any PyPI upload. It
seems pip got its specific error sources too.

« Avoid calling 2t 03 and prefer <pyt hon> -m | i b2t 03 instead, as it seems at least Debian Testing
stopped to provide the binary by default. For Python 2.6 and 3.2 we continue to rely on it, as the don't
support that mode of operation.

» The PyLint checks have been made more robust and even more Python3 portable.
» Added PyLint to Travis builds, so PRs are automatically checked too.

» Added test for distutils usage with Nuitka that should prevent regressions for this new feature and to
document how it can be used.

» Make coverage taking work on Windows and provide the full information needed, the rendering stage
is not there working yet though.

» Expanded the trick assignment test cases to cover more slots to find bugs introduced with more
aggressive optimization of closure variables.

» New test to cover multiprocessing usage.

» Generating more code tests out of doctests for increased coverage of Nuitka.

Cleanups

* Stop using - - pyt hon- ver si on in tests where they still remained.

« Split the forms of i nt and | ong into two different nodes, they share nothing except the name. Create
the constants for the zero arg variant more immediately.

* Split the output comparison part into a dedicated testing module so it can be re-used, e.g. when doing
distutils tests.

» Removed dead code from variable closure taking.

» Have a dedicated module for the metaclass of nodes in the tree, so it is easier to find, and doesn't
clutter the node base classes module as much.

» Have a dedicated node for reraise statements instead of checking for all the arguments to be
non-present.

Organizational

 There is now a pull request template for Github when used.

 Deprecating the - - pyt hon- ver si on argument which should be replaced by using - m nui t ka with
the correct Python version. Outputs have been updated to recommend this one instead.

» Make automatic import sorting and autoformat tools properly executable on Windows without them
changing new lines.

» The documentation was updated to prefer the call method with - m nui t ka and manually providing
the Python binary to use.

Summary

This release continued the distutils integration adding first tests, but more features and documentation will
be needed.

Also, for the locals dictionary work, the variable tracing was made generic, but not yet put to use. If we use
this to also trace dictionary keys, we can expect a lot of improvements for class code again.

The locals dictionary tracing will be the focus before resuming the work on C types, where the ultimate
performance boost lies. However, currently, not the full compatibility has been achieved even with
currently using dictionaries for classes, and we would like to be able to statically optimize those better

anyway.

Nuitka Release 0.5.29

This release comes with a lot of improvements across the board. A lot of focus has been givevn to the
packaging side of Nuitka, but also there is a lot of compatibility work.

Bug Fixes

* Windows: When using Scons for Python3 and Scons for Python2 on the same build directory, a
warning would be given about the need to migrate. Make the Scons cache directory use the Python
ABI version as a key too, to avoid these issues. Fixed in 0.5.28.1 already.

» Windows: Fixup for Python3 and Scons no more generating the MinGW64 import library for Python
anymore properly. Was only working if cached from a previous install of Nuitka. Fixed in 0.5.28.1
already.

* Plugins: Made the data files plugin mandatory and added support for the scrapy package needs.

» Fix, added implicit dependencies for pkg_resources. ext ernal package. Fixed in 0.5.28.1
already.

* Fix, an import of x. y where this was not a package didn't cause the package x to be included.

« Standalone: Added support for si x. mroves and r equest s. packages meta imports, these cause
hidden implicit imports, that are now properly handled.

 Standalone: Patch the __fil e__ value for technical bytecode modules loaded during Python library
initialization in a more compatible way.

« Standalone: Extension modules when loaded might actually raise legit errors, e.g. | mport Err or of
another module, don't make those into Syst enEr r or anymore.

* Python3.2: The __package__ of sub-packages was wrong, which could cause issues when doing
relative imports in that sub-package.

» Python3: Contractions in a finally clause could crash the compiler.
* Fix, unused closure variables could lead to a crash in they were passed to a nested function.

 Linux: Standalone dependency analysis could enter an endless recursion in case of cyclic
dependencies.

» Python3.6: Async generation expressions need to return a None value too.

* Python3.4: Fix, __spec__ is a package attribute and not a built-in value.

New Features

* It is now possible to run Nuitka with sonme_pyt hon_you _choose -m nuitka ... and therefore
know exactly which Python installation is going to be used. It does of course need Nuitka installed for
this to work. This mechanism is going to replace the - - pyt hon- ver si on mechanism in the future.

 There are dedicated runners for Python3, simply use nui t ka3 or nui t ka3- r un to execute Nuitka if
your code is Python3 code.

» Added warning for implicit exception raises due to mismatch in unpacking length. These are statically
detected, but so far were not warned about.

» Added cache for depends. exe results. This speeds up standalone mode again as some of these
calls were really slow.

» The import tracer is more robust against recursion and works with Python3 now.

» Added an option to assume yes for downloading questions. The currently only enables the download
of depends. exe and is intended for Cl servers.

» There is now a report file for scons, which records the values used to run things, this could be useful
for debugging.

» Nuitka now registers with distutils and can be used with bdi st _wheel directly, but this lacks
documentation and tests. Many improvements in the distutils build.

Optimization

» Forward propagate compile time constants even if they are only potential usages. This is actually the
case where this makes the most sense, as it might remove its use entirely from the branches that do
not use it.

* Avoid extra copy of fi nal | y code. The cloning operation takes time and memory, and this shaved
of 0.3% of Nuitka memory usage, as these can also become dangling.

» Class dictionaries are now proper dictionarties in optimization, using some dedicated code for name
lookups that are transformed to dedicated locals dictionary or mapping (Python3) accesses. This
currently does not fully optimize, but will in coming releases, and saves about 25% of memory
compared to the old code.

 Treating module attributes __package_, loader_, file_,and__spec__ with dedicated
nodes, that allow or forbid optimization dependent on usage.

» Python3.6: Async generator expressions were not working fully, become more compatible.
* Fix, using super inside a contraction could crash the compiler.
* Fix, also accept __new__ as properly decorated in case it's a cl assnet hod too.

e Fix, removed obsolete --nofreeze-stdlib which only complicated using the
--recurse-stdli b which should be used instead.

Organizational

» The nui t ka Python package is now installed into the public namespace and used from there. There
are distinct copies to be installed for both Python2 and Python3 on platforms where it is supported.

» Using t wi ne for upload to PyPI now as recommended on their site.

* Running pyl i nt on Windows became practical again.

» Added RPM packages for Fedora 26 and 27, these used to fail due to packaging issues.

» Added RPM packages for openSUSE Leap 42.2, 42.3 and 15.0 which were simply missing.

» Added RPM packages for SLE 15.
» Added support for PyLint 1.8 and its new warnings.

» The RPM packages no longer contain nui t ka- r un3, it will be replaced by the new nui t ka3-run
which is in all packages.

» The runners used for installation are now easy install created, but patched to avoid overhead at run
time.

» Added repository for Ubuntu Artful (17.10) for download, removed support for Ubuntu Yakkety, Vivid
and Zesty (no more supported by them).

» Removed support for Debian Wheezy and Ubuntu Precise (they are too old for modern packaging
used).

 There is now a issue template for Github when used.

Tests

» Windows: Standalone tests were referencing an old path to depends. exe that wasn't populated on
new installs.

» Refinements for CPython test suites to become more stable in results. Some tests occasionally fail to
clean up, or might do indetermistic outputs, or are not relevant at all.

* The tests don't use the runners, but more often do - m nui t ka to become executable without having
to find the proper runner. This improves usage during the RPM builds and generally.

* Travis: Do not test development versions of CPython, even for stable release, they break too often.

Summary

This release consolidates a lot of what we already had, adding hopeful stuff for distutils integration. This
will need tests and documentation though, but should make Nuitka really easy to use. A few features are
still missing to make it generally reliable in that mode, but they are going to come.

Also the locals dictionary work is kind of incomplete without a proper generic tracing of not only local
variables, but also dictionary keys. With that work in place, a lot of improvements will happen.

Nuitka Release 0.5.28

This release has a focus on compatibility work and contains bug fixes and work to enhance the usability of
Nuitka by integrating with distutils. The major improvement is that contractions no longer use pseudo
functions to achieve their own local scope, but that there is now a dedicated structure for that representing
an in-lined function.

Bug Fixes

* Python3.6: Fix, async f or was not yet implemented for async generators.

* Fix, functions with keyword arguments where the value was determined to be a static raise could
crash the compiler.

* Detect using MinGW64 32 bits C compiler being used with 64 bits Python with better error message.

* Fix, when extracting side effects of a static raise, extract them more recursively to catch expressions
that themselves have no code generation being used. This fixes at least static raises in keyword
arguments of a function call.

» Compatibility: Added support for proper operation of ~pkgutil.get_data by implementing
get _dat a in our meta path based loader.

» Compatibility: Added __spec__ module attribute was previously missing, present on Python3.4 and
higher.

» Compatibility: Made __ | oader __ module attribute set when the module is loading already.

« Standalone: Resolve the @ pat h and @ oader _pat h from ot ool on macOS manually to actual
paths, which adds support for libraries compiled with that.

* Fix, nested functions calling super could crash the compiler.
* Fix, could not use - - r ecur se-di r ect or y with arguments that had a trailing slash.
* Fix, using - - r ecur se- di r ect or y on packages that are not in the search crashed the compiler.

» Compatibility: Python2 set and di ct contractions were using extra frames like Python3 does, but
those are not needed.

« Standalone: Fix, the way PYTHONHOVE was set on Windows had no effect, which allowed the
compiled binary to access the original installation still.

» Standalone: Added some newly discovered missing hidden dependencies of extension modules.

» Compatibility: The name mangling of private names (e.g. __var) in classes was applied to variable
names, and function declarations, but not to classes yet.

» Python3.6: Fix, added support for list contractions with awai t expressions in async generators.
» Python3.6: Fix, async f or was not working in async generators yet.

* Fix, for module tracebacks, we output the module name <nodul e nane> instead of merely
<nmodul e>, but if the module was in a package, that was not indicated. Now it is
<nodul e package. nanme>.

» Windows: The cache directory could be unicode which then failed to pass as an argument to scons.
We now encode such names as UTF-8 and decode in Scons afterwards, solving the problem in a
generic way.

 Standalone: Need to recursively resolve shared libraries with | dd, otherwise not all could be
included.

« Standalone: Make sure sys. pat h has no references to CPython compile time paths, or else things
may work on the compiling machine, but not on another.

« Standalone: Added various missing dependencies.

« Standalone: Wasn't considering the DLLs directory for standard library extensions for freezing, which
would leave out these.

e Compatibility: For __future__ importsthe i mport _ function was called more than once.
Optimization

 Contractions are now all properly inlined and allow for optimization as if they were fully local. This
should give better code in some cases.

 Classes are now all building their locals dictionary inline to the using scope, allowing for more
compact code.

» The dictionary APl was not used in module template code, although it helps to generate more
compact code.

New Features

» Experimental support for building platform dependent wheel distribution.

pyt hon setup. py --conmmand-packages=nuitka.distutils clean -a bdist_nuitka

Use with caution, this is incomplete work.
» Experimental support for running tests against compiled installation with nose and py. t est .

* When specifying what to recurse to, now patterns can be used, e.g. like this
--recurse-not-to=*.tests which will skip all tests in submodules from compilation.

* By setting NUI TKA PACKAGE packagenane=/ sone/ path the _ path__ of packages can be
extended automatically in order to allow and load uncompiled sources from another location. This can
be e.g. at est s sub-package or other plug-ins.

By default when creating a module, now also a nodul e. pyi file is created that contains all imported
modules. This should be deployed alongside the extension module, so that standalone mode
creation can benefit from knowing the dependencies of compiled code.

» Added option - - pl ugi n-1i st that was mentioned in the help output, but still missing so far.

» The import tracing of the hi nt s module has achieved experimental status and can be used to test
compatibility with regards to import behavior.

Cleanups

* Rename tree and codegen Hel per modules to unique names, making them easier to work with.
» Share the code that decides to not warn for standard library paths with more warnings.

» Use the bool enum definition of Python2 which is more elegant than ours.

» Move quality tools, autoformat, isort, etc. to the nui t ka. t ool s. qual i t y namespace.

» Move output comparison tool to the nui t ka. t ool s. t esti ng namespace.

» Made frame code generation capable of using nested frames, allowing the real inline of classes and
contraction bodies, instead of "direct" calls to pseudo functions being used.

* Proper base classes for functions that are entry points, and functions that are merely a local
expression using return statements.

Tests

» The search mode with pattern, was not working anymore.
* Resume hash values now consider the Python version too.

» Added test that covers using test runners like nose and py. t est with Nuitka compiled extension
modules.

Organizational

» Added support for Scons 3.0 and running Scons with Python3.5 or higher. The option to specify the
Python to use for scons has been renamed to reflect that it may also be a Python3 now. Only for
Python3.2 to Python3.4 we now need another Python installation.

» Made recursion the default for - - r ecur se- di r ect or y with packages. Before you also had to tell it
to recurse into that package or else it would only include the top level package, but nothing below.

» Updated the man pages, correct mentions of its C++ to C and don't use now deprecated options.

» Updated the help output which still said that standalone mode implies recursion into standard library,
which is no longer true and even not recommended.

» Added option to disable the output of . pyi file when creating an extension module.

» Removed Ubuntu Wily package download, no longer supported by Ubuntu.

Summary

This release was done to get the fixes and new features out for testing. There is work started that should
make generators use an explicit extra stack via pointer, and restore instruction state via goto dispatchers
at function entry, but that is not complete.

This feature, dubbed "goto generators” will remove the need for fibers (which is itself a lot of code), reduce
the memory footprint at run time for anything that uses a lot of generators, or coroutines.

Integrating with di st uti |l s is also a new thing, and once completed will make use of Nuitka for existing
projects automatic and trivial to do. There is a lot missing for that goal, but we will get there.

Also, documenting how to run tests against compiled code, if that test code lives inside of that package,
will make a huge difference, as that will make it easier for people to torture Nuitka with their own test
cases.

And then of course, nested frames now mean that every function could be inlined, which was previously
not possible due to collisions of frames. This will pave the route for better optimization in those cases in
future releases.

The experimental features will require more work, but should make it easier to use Nuitka for existing
projects. Future releases will make integrating Nuitka dead simple, or that is the hope.

And last but not least, now that Scons works with Python3, chances are that Nuitka will more often work
out the of the box. The older Python3 versions that still retain the issue are not very widespread.

Nuitka Release 0.5.27

This release comes a lot of bug fixes and improvements.
Bug Fixes

* Fix, need to add recursed modules immediately to the working set, or else they might first be
processed in second pass, where global names that are locally assigned, are optimized to the built-in
names although that should not happen. Fixed in 0.5.26.1 already.

* Fix, the accelerated call of methods could crash for some special types. This had been a regress of
0.5.25, but only happens with custom extension types. Fixed in 0.5.26.1 already.

* Python3.5: For async def functions parameter variables could fail to properly work with in-place
assignments to them. Fixed in 0.5.26.4 already.

» Compatibility: Decorators that overload type checks didn't pass the checks for compiled types. Now
i si nstance and as a resulti nspect module work fine for them.

» Compatibility: Fix, imports from __i ni t __ were crashing the compiler. You are not supposed to do
them, because they duplicate the package code, but they work.

» Compatibility: Fix, the super built-in on module level was crashing the compiler.

« Standalone: For Linux, BSD and macOS extension modules and shared libraries using their own
$ORI d Nto find loaded DLLs resulted in those not being included in the distribution.

« Standalone: Added more missing implicit dependencies.

» Standalone: Fix, implicit imports now also can be optional, as e.g. _t ki nt er if not installed. Only
include those if available.

* The --reconpi | e-c-only was only working with C compiler as a backend, but not in the C++
compatibility fallback, where files get renamed. This prevented that edit and test debug approach with
at least MSVC.

* Plugins: The PyLint plug-in didn't consider the symbolic hame i nmport - error but only the code
F0401.

« Implicit exception raises in conditional expressions would crash the compiler.

New Features

» Added support for Visual Studio 2017. Issue#368.

» Added option - - pyt hon2- f or - scons to specify the Python2 execute to use for calling Scons. This
should allow using Anaconda Python for that task.

Optimization

» References to known unassigned variables are now statically optimized to exception raises and
warned about if the according option is enabled.

» Unhashable keys in dictionaries are now statically optimized to exception raises and warned about if
the according option is enabled.

» Enable forward propagation for classes too, resulting in some classes to create only static
dictionaries. Currently this never happens for Python3, but it will, once we can statically optimize
__prepare__ too.

» Enable inlining of class dictionary creations if they are mere return statements of the created
dictionary. Currently this never happens for Python3, see above for why.

» Python2: Selecting the metaclass is now visible in the tree and can be statically optimized.

 For executables, we now also use a freelist for traceback objects, which also makes exception cases
slightly faster.

» Generator expressions no longer require the use of a function call with a . 0 argument value to carry
the iterator value, instead their creation is directly inlined.

* Remove "pass through" frames for Python2 list contractions, they are no longer needed. Minimal gain
for generated code, but more lightweight at compile time.

» When compiling Windows x64 with MinGW64 a link library needs to be created for linking against the
Python DLL. This one is now cached and re-used if already done.

» Use common code for NarreEr r or and UnboundLocal Err or exception code raises. In some cases
it was creating the full string at compile time, in others at run time. Since the later is more efficient in
terms of code size, we now use that everywhere, saving a bit of binary size.

» Make sure to release unused functions from a module. This saves memory and can be decided after
a full pass.

 Avoid using Or der edDi ct in a couple of places, where they are not needed, but can be replaced
with a later sorting, e.g. temporary variables by name, to achieve deterministic output. This saves
memory at compile time.

» Add specialized return nodes for the most frequent constant values, which are None, Tr ue, and
Fal se. Also a general one, for constant value return, which avoids the constant references. This
saves quite a bit of memory and makes traversal of the tree a lot faster, due to not having any child
nodes for the new forms of return statements.

* Previously the empty dictionary constant reference was specialized to save memory. Now we also
specialize empty set, list, and tuple constants to the same end. Also the hack to make i s not say that
{} is {} was made more general, mutable constant references and now known to never alias.

http://bugs.nuitka.net/issue368

» The source references can be marked internal, which means that they should never be visible to the
user, but that was tracked as a flag to each of the many source references attached to each node in
the tree. Making a special class for internal references avoids storing this in the object, but instead it's
now a class property.

» The nodes for named variable reference, assignment, and deletion got split into separate nodes, one
to be used before the actual variable can be determined during tree building, and one for use later on.
This makes their API clearer and saves a tiny bit of memory at compile time.

« Also eliminated target variable references, which were pseudo children of assignments and deletion
nodes for variable names, that didn't really do much, but consume processing time and memory.

» Added optimization for calls to st ati cnet hod and cl assnet hod built-in methods along with type
shapes.

» Added optimization for open built-in on Python3, also adding the type shape f i | e for the result.

» Added optimization for byt ear r ay built-in and constant values. These mutable constants can now
be compile time computed as well.

» Added optimization for f r ozenset built-in and constant values. These mutable constants can now
be compile time computed as well.

» Added optimization for di vnod built-in.

* Treat all built-in constant types, e.g. t ype itself as a constant. So far we did this only for constant
values types, but of course this applies to all types, giving slightly more compact code for their uses.

» Detect static raises if iterating over non-iterables and warn about them if the option is enabled.

« Split of | ocal s node into different types, one which needs the updated value, and one which just
makes a copy. Properly track if a functions needs an updated locals dict, and if it doesn't, don't use
that. This gives more efficient code for Python2 classes, and exec using functions in Python2.

« Build all constant values without use of the pi ckl e module which has a lot more overhead than
mar shal , instead use that for too large | ong values, non-UTF8 uni code values, nan float, etc.

« Detect the linker arch for all Linux platforms using obj dunp instead of only a hand few hard coded
ones.

Cleanups

» The use of | NCREASE REFCOUNT got fully eliminated.

 Use functions not vulenerable for buffer overflow. This is generally good and avoids warnings given
on OpenBSD during linking.

* Variable closure for classes is different from all functions, don't handle the difference in the base
class, but for class nodes only.

» Make sure mayBeNone doesn't return None which means normally "unclear", but Fal se instead,
since it's always clear for those cases.

» Comparison nodes were using the general comparison node as a base class, but now a proper base
class was added instead, allowing for cleaner code.

« Valgrind test runners got changed to using proper tool namespace for their code and share it.

» Made construct case generation code common testing code for re-use in the speedcenter web site.
The code also has minor beauty bugs which will then become fixable.

» Use appdi r s package to determine place to store the downloaded copy of depends. exe.

» The code still mentioned C++ in a lot of places, in comments or identifiers, which might be confusing
readers of the code.

» Code objects now carry all information necessary for their creation, and no longer need to access
their parent to determine flag values. That parent is subject to change in the future.

» Our import sorting wrapper automatically detects imports that could be local and makes them so,
removing a few existing ones and preventing further ones on the future.

» Cleanups and annotations to become Python3 PyLint clean as well. This found e.g. that source code
references only had __cnp__ and need rich comparison to be fully portable.

Tests

* The test runner for construct tests got cleaned up and the constructs now avoid using Xr ange so as
to not need conversion for Python3 execution as much.

» The main test runner got cleaned up and uses common code making it more versatile and robust.

Do not run test in debugger if CPython also segfaulted executing the test, then it's not a Nuitka issue,
SO we can ignore that.

» Improve the way the Python to test with is found in the main test runner, prefer the running
interpreter, then PATH and registry on Windows, this will find the interesting version more often.

» Added support for "Landscape.io” to ignore the inline copies of code, they are not under our control.
* The test runner for Valgrind got merged with the usage for constructs and uses common code now.

 Construct generation is nhow common code, intended for sharing it with the Speedcenter web site
generation.

» Rebased Python 3.6 test suite to 3.6.1 as that is the Python generally used now.

Organizational

» Added inline copy of appdi r s package from PyPI.
» Added credits for RedBaron and isort.

» The - - experi nent al flag is now creating a list of indications and more than one can be used that
way.

» The PyLint runner can also work with Python3 pylint.

» The Nuitka Speedcenter got more fine tuning and produces more tags to more easily identify trends
in results. This needs to become more visible though.

» The MSI files are also built on AppVeyor, where their building will not depend on me booting
Windows. Getting these artifacts as downloads will be the next step.

Summary

This release improves many areas. The variable closure taking is now fully transparent due to different
node types, the memory usage dropped again, a few obvious missing static optimizations were added,
and many built-ins were completed.

This release again improves the scalability of Nuitka, which again uses less memory than before, although
not an as big jump as before.

This does not extend or use special C code generation for bool or any type yet, which still needs design
decisions to proceed and will come in a later release.

Nuitka Release 0.5.26

This release comes after a long time and contains large amounts of changes in all areas. The driving goal
was to prepare generating C specific code, which is still not the case, but this is very likely going to change
soon. However this release improves all aspects.

Bug Fixes

» Compatibility: Fix, for star imports didn't check the values from the __al | __ iterable, if they were
string values which could cause problems at run time.

Modul e | evel
_all . =1(1,)

...
ot her nodul e:
from nodul e i nport *

* Fix, for star imports, also didn't check for values from __al | __if they actually exist in the original
values.

» Corner cases of imports should work a lot more precise, as the level of compatibility for calls to
__inport__ wentfrom absurd to insane.

» Windows: Fixed detection of uninstalled Python versions (not for all users and DLL is not in system
directory). This of course only affected the accelerated mode, not standalone mode.

» Windows: Scan directories for . pyd files for used DLLs as well. This should make the PyQt5 wheel
work.

» Python3.5: Fix, coroutines could have different code objects for the object and the frame using by it.

* Fix, slices with built-in names crashed the compiler.
sonet hing[i d: | en: range]

* Fix, the C11 via C++ compatibility uses symlinks tp C++ filenames where possible instead of making
a copy from the C source. However, even on Linux that may not be allowed, e.g. on a DOS file
system. Added fallback to using full copy in that case. Issue#353.

 Python3.5: Fix coroutines to close the "yield from" where an exception is thrown into them.
 Python3: Fix, list contractions should have their own frame too.

e Linux: Copy the "rpath" of compiling Python binary to the created binary. This will make compiled
binaries using uninstalled Python versions transparently find the Python shared library.

« Standalone: Add the "rpath" of the compiling Python binary to the search path when checking for DLL
dependencies on Linux. This fixes standalone support for Travis and Anaconda on Linux.

» Scons: When calling scons, also try to locate a Python2 binary to overcome a potential Python3
virtualenv in which Nuitka is running.

« Standalone: Ignore more Windows only encodings on non-Windows.

New Features

* Support for Python 3.6 with only few corner cases not supported yet.

» Added options - - pyt hon-arch to pick 32 or 64 bits Python target of the - - pyt hon-versi on
argument.

http://bugs.nuitka.net/issue353

» Added support for more kinds of virtualenv configurations.

 Uninstalled Python versions such as Anaconda will work fine in accelerated mode, except on
Windows.

Optimization

» The node tree children are no longer stored in a separate dictionary, but in the instance dictionary as
attributes, making the tree more lightweight and in principle faster to access. This also saved about
6% of the memory usage.

» The memory usage of Nuitka for the Python part has fallen by roughly 40% due to the use of new
style classes, and slots where that is possible (some classes use multiple inheritance, where they
don't work), and generally by reducing useless members e.g. in source code references. This of
course also will make things compiled faster (the C compilation of course is not affected by this.)

» The code generation for frames was creating the dictionary for the raised exception by making a
dictionary and then adding all variables, each tested to be set. This was a lot of code for each frame
specific, and has been replaced by a generic "attach" mechanism which merely stores the values,
and only takes a reference. When asked for frame locals, it only then builds the dictionary. So this is
now only done, when that is absolutely necessary, which it normally never is. This of course makes
the C code much less verbose, and actual handling of exceptions much more efficient.

 For imports, we now detect for built-in modules, that their import cannot fail, and if name lookups can
fail. This leads to less code generated for error handling of these. The following code now e.g. fully
detects that no | mport Error or Attri but eError will occur.

try:
from__builtin__ inport len
except | nportError:
frombuiltins inmport |en

» Added more type shapes for built-in type calls. These will improve type tracing.

» Compiled frames now have a free list mechanism that should speed up frames that recurse and
frames that exit with exceptions. In case of an exception, the frame ownership is immediately
transferred to the exception making it easier to deal with.

* The free list implementations have been merged into a new common one that can be used via macro
expansion. It is now type agnostic and be slightly more efficient too.

« Also optimize "true” division and "floor division", not only the default division of Python2.

* Removed the need for statement context during code generation making it less memory intensive
and faster.

Cleanups

* Now always uses the __i mport __ built-in node for all kinds of imports and directly optimizes and
recursion into other modules based on that kind of node, instead of a static variant. This removes
duplication and some incompatibility regarding defaults usage when doing the actual imports at run
time.

« Split the expression node bases and mixin classes to a dedicated module, moving methods that only
belong to expressions outside of the node base, making for a cleaner class hierarchy.

* Cleaned up the class structure of nodes, added base classes for typical compositions, e.g.
expression with and without children, computation based on built-in, etc. while also checking proper
ordering of base classes in the metaclass.

» Moved directory and file operations to dedicated module, making also sure it is more generally used.
This makes it easier to make more error resilient deletions of directories on e.g. Windows, where
locks tend to live for short times beyond program ends, requiring second attempts.

* Code generation for existing supported types, PyGbject *, PyCbject **, and
struct Nuitka Cell hject * is now done via a C type class hierarchy instead of el i f
sequences.

* Closure taking is now always done immediately correctly and references are take for closure
variables still needed, making sure the tree is correct and needs no finalization.

» When doing variable traces, initialize more traces immediately so it can be more reliable.

» Code to setup a function for local variables and clean it up has been made common code instead of
many similar copies.

» The code was treating the f _execut i ng frame member as if it were a counter with increases and
decreases. Turn it into a mere boolean value and hide its usage behind helper functions.

» The "maybe local variables" are no more. They were replaced by a new locals dict access node with
a fallback to a module or closure variable should the dictionary not contain the name. This avoids
many ugly checks to not do certain things for that kind of variable.

» We now detect "exec" and "unqualified exec" as well as "star import" ahead of time as flags of the
function to be created. We no longer need to mark functions as we go.

» Handle "true", "floor" and normal division properly by applying future flags to decide which one to use.
» We now use symbolic identifiers in all PyLint annotations.

» The release scripts started to move into nuit ka.tool s. rel ease so they get PyLint checks,
autoformat and proper code re-use.

» The use of | NCREASE REFCOUNT _X was removed, it got replaced with proper Py _XI NCREF usages.

» The use of | NCREASE REFCOUNT got reduced further, e.g. no generated code uses it anymore, and
only a few compiled types do. The function was once required before "C-ish" lifted the need to do
everything in one single function call.

Tests

» More robust deletion of directories, temporary stages used by CPython test suites, and standalone
directories during test execution.

» Moved tests common code into nui t ka. t ool s. t esti ng namespace and use it from there. The
code now is allowed to use nui t ka. uti | s and therefore often better implementations.

» Made standalone binaries robust against GTK theme access, checking the Python binary (some
site.py files do that),

Organizational

» Added repository for Ubuntu Zesty (17.04) for download.

» Added support for testing with Travis to complement the internal Buildbot based infrastructure and
have pull requests on Github automatically tested before merge.

» The f act ory branch is now also on Github.

* Removed MSI for Python3.4 32 bits. It seems impossible to co-install this one with the 64 bits variant.
All other versions are provided for both bit sizes still.

Summary

This release marks huge progress. The node tree is now absolutely clean, the variable closure taking is
fully represented, and code generation is prepared to add another type, e.g. for bool for which work has
already started.

On a practical level, the scalability of the release will have increased very much, as this uses so much less
memory, generates simpler C code, while at the same time getting faster for the exception cases.

Coming releases will expand on the work of this release.

Frame objects should be allowed to be nested inside a function for better re-formulations of classes and
contractions of all kinds, as well as real inline of functions, even if they could raise.

The memory savings could be even larger, if we stopped doing multiple inheritance for more node types.
The __sl ot s__ were and the child API change could potentially make things not only more compact, but
faster to use too.

And also once special C code generation for bool is done, it will set the stage for more types to follow
(int, fl oat, etc). Only this will finally start to give the C type speed we are looking for.

Until then, this release marks a huge cleanup and progress to what we already had, as well as preparing
the big jump in speed.

Nuitka Release 0.5.25

This release contains a huge amount of bug fixes, lots of optimization gains, and many new features. It
also presents many organizational improvements, and many cleanups.

Bug Fixes

» Python3.5: Coroutine methods using super were crashing the compiler. Issue#340. Fixed in 0.5.24.2
already.

* Python3.3: Generator return values were not properly transmitted in case of tuple or
St opl t erati on values.

» Python3.5: Better interoperability between compiled coroutines and uncompiled generator coroutines.
» Python3.5: Added support to compile in Python debug mode under Windows too.

» Generators with arguments were using two code objects, one with, and one without the CO_NOFREE
flag, one for the generator object creating function, and one for the generator object.

» Python3.5: The duplicate code objects for generators with arguments lead to interoperability issues
with between such compiled generator coroutines and compiled coroutines. Issue#341. Fixed in
0.5.24.2 already.

 Standalone: On some Linux variants, e.g. Debian Stretch and Gentoo, the linker needs more flags to
really compile to a binary with RPATH.

» Compatibility: For set literal values, insertion order is wrong on some versions of Python, we now
detect the bug and emulate it if necessary, previous Nuitka was always correct, but incompatible.

{1, 1.0}.pop() # the only elenent of the set should be 1
* Windows: Make the batch files detect where they live at run time, instead of during set up. py,
making it possible to use them for all cases.

 Standalone: Added package paths to DLL scan for depends. exe, as with wheels there now
sometimes live important DLLSs too.

* Fix, the clang mode was regressed and didn't work anymore, breaking the macOS support entirely.

http://bugs.nuitka.net/issue340
http://bugs.nuitka.net/issue341

» Compatibility: For imports, we were passing for | ocal s argument a real dictionary with actual
values. That is not what CPython does, so stopped doing it.

* Fix, for raised exceptions not passing the validity tests, they could be used after free, causing
crashes.

* Fix, the environment CC wasn't working unless also specifying CXX.

* Windows: The value of __file__ in module mode was wrong, and didn't point to the compiled
module.

» Windows: Better support for - - pyt hon- debug for installations that have both variants, it is now
possible to switch to the right variant.

New Features

» Added parsing for shebang to Nuitka. When compiling an executable, now Nuitka will check of the #!
portion indicates a different Python version and ask the user to clarify with - - pyt hon- ver si on in
case of a mismatch.

» Added support for Python flag - - pyt hon- f | ag=- O, which allows to disable assertions and remove
doc strings.

Optimization

* Faster method calls, combining attribute lookup and method call into one, where order of evaluation
with arguments doesn't matter. This gives really huge relative speedups for method calls with no
arguments.

« Faster attribute lookup in general for obj ect descendants, which is all new style classes, and all
built-in types.

» Added dedicated xr ange built-in implementation for Python2 and r ange for Python3. This makes
those faster while also solving ordering problems when creating constants of these types.

» Faster sum again, using quick iteration interface and specialized quick iteration code for typical
standard type containers, t upl e and | i st .

» Compiled generators were making sure St opl t er at i on was set after their iteration, although most
users were only going to clear it. Now only the send method, which really needs that does it. This
speed up the closing of generators quite a bit.

» Compiled generators were preparing a t hrow into non-started compilers, to be checked for
immediately after their start. This is now handled in a generic way for all generators, saving code and
execution time in the normal case.

» Compiled generators were applying checks only useful for manual send calls even during iteration,
slowing them down.

» Compiled generators could duplicate code objects due to handling a flag for closure variables
differently.

» For compiled frames, the f _trace is not writable, but was taking and releasing references to what
must be None, which is not useful.

* Not passing | ocal s to import calls make it less code and faster too.

Organizational

» This release also prepares Python 3.6 support, it includes full language support on the level of
CPython 3.6.0 with the sole exception of the new generator coroutines.

» The improved mode is now the default, and full compatibility is now the option, used by test suites.
For syntax errors, improved mode is always used, and for test suites, how only the error message is
compared, but not call stack or caret positioning anymore.

» Removed long deprecated option "--no-optimization". Code generation too frequently depends on not
seeing unoptimized code. This has been hidden and broken long enough to finally remove it.

» Added support for Python3.5 numbers to Speedcenter. There are now also tags for speedcenter,
indicating how well "develop" branch fares in comparison to master.

» With a new tool, source code and developer manual contents can be kept in sync, so that
descriptions can be quoted there. Eventually a full Sphinx documentation might become available,
but for now this makes it workable.

» Added repository for Ubuntu Yakkety (16.10) for download.

» Added repository for Fedora 25 for download.

Cleanups

» Moved the tools to compare CPython output, to sort import statements (isort) to autoformat the
source code (Redbaron usage), and to check with PyLint to a common new nuitka.tools
package, runnable with __mai n__ modules and dedicated runners in bi n directory.

* The tools now share code to find source files, or have it for the first time, and other things, e.g. finding
needed binaries on Windows installations.

* No longer patch traceback objects dealloc function. Should not be needed anymore, and most
probably was only bug hiding.

» Moved handling of ast nodes related to import handling to the proper reformulation module.

» Moved statement generation code to helpers module, making it accessible without cyclic
dependencies that require local imports.

» Removed deprecated method for getting constant code objects in favor of the new way of doing it.
Both methods were still used, making it harder to analyse.

» Removed useless temporary variable initializations from complex call helper internal functions. They
worked around code generation issues that have long been solved.

» The ABI flags are no longer passed to Scons together with the version.

Tests

» Windows: Added support to detect and to switch debug Python where available to also be able to
execute reference counting tests.

» Added the CPython 3.3 test suite, after cleaning up the worst bits of it, and added the brandnew 3.6
test suite with a minimal set of changes.

» Use the original 3.4 test suite instead of the one that comes from Debian as it has patched quite a
few issues that never made it upstream, and might cause crashes.

» More construct tests, making a difference between old style classes, which have instances and new
style classes, with their objects.

* It is now possible to run a test program with Python3 and Valgrind.

Summary

The quick iteration is a precursor to generally faster iteration over unknown object iterables. Expanding
this to general code generation, and not just the sumbuilt-in, might yield significant gains for normal code
in the future, once we do code generation based on type inference.

The faster method calls complete work that was already prepared in this domain and also will be expanded
to more types than compiled functions. More work will be needed to round this up.

Adding support for 3.6.0 in the early stages of its release, made sure we pretty much have support for it
ready right after release. This is always a huge amount of work, and it's good to catch up.

This release is again a significant improvement in performance, and is very important to clean up open
ends. Now the focus of coming releases will now be on both structural optimization, e.g. taking advantage
of the iterator tracing, and specialized code generation, e.g. for those iterations really necessary to use
quick iteration code.

Nuitka Release 0.5.24

This release is again focusing on optimization, this time very heavily on the generator performance, which
was found to be much slower than CPython for some cases. Also there is the usual compatibility work and
improvements for Pure C support.

Bug Fixes

» Windows: The 3.5.2 coroutine new protocol implementation was using the wrapper from CPython, but
it's not part of the ABI on Windows. Have our own instead. Fixed in 0.5.23.1 already.

» Windows: Fixed second compilation with MSVC failing. The files renamed to be C++ files already
existed, crashing the compilation. Fixed in 0.5.23.1 already.

» Mac OS: Fixed creating extension modules with . so suffix. This is now properly determined by
looking at the importer details, leading to correct suffix on all platforms. Fixed in 0.5.23.1 already.

» Debian: Don't depend on a C++ compiler primarily anymore, the C compiler from GNU or clang will
do too. Fixed in 0.5.23.1 already.

» Pure C: Adapted scons compiler detecting to properly consider C11 compilers from the environment,
and more gracefully report things.

Optimization

» Python2: Generators were saving and restoring exceptions, updating the variables sys. exc_t ype
for every context switch, making it really slow, as these are 3 dictionary updates, normally not
needed. Now it's only doing it if it means a change.

» Sped up creating generators, coroutines and coroutines by attaching the closure variable storage
directly to the object, using one variable size allocation, instead of two, once of which was a standard
mal | oc. This makes creating them easier and avoids maintaining the closure pointer entirely.

* Using dedicated compiled cell implementation similar to PyCel | Obj ect but fully under our control.
This allowed for smaller code generated, while still giving a slight performance improvement.

» Added free list implementation to cache generator, coroutines, and function objects, avoiding the
need to create and delete this kind of objects in a loop.

» Added support for the built-in sum making slight optimizations to be much faster when iterating over
lists and tuples, as well as fast | ong sum for Python2, and much faster bool sums too. This is using
a prototype version of a "qgiter" concept.

* Provide type shape for xr ange calls that are not constant too, allowing for better optimization related
to those.

Tests

» Added workarounds for locks being held by Virus Scanners on Windows to our test runner.

» Enhanced constructs that test generator expressions to more clearly show the actual construct cost.

» Added construct tests for the sumbuilt-in on various types of i nt containers, making sure we can do
all of those really fast.

Summary

This release improves very heavily on generators in Nuitka. The memory allocator is used more cleverly,
and free lists all around save a lot of interactions with it. More work lies ahead in this field, as these are not
yet as fast as they should be. However, at least Nuitka should be faster than CPython for these kind of
usages now.

Also, proper pure C in the Scons is relatively important to cover more of the rarer use cases, where the C
compiler is too old.

The most important part is actually how sum optimization is staging a new kind of approach for code
generation. This could become the standard code for iterators in loops eventually, making f or loops even
faster. This will be for future releases to expand.

Nuitka Release 0.5.23

This release is focusing on optimization, the most significant part for the users being enhanced scalability
due to memory usage, but also break through structural improvements for static analysis of iterators and
the debut of type shapes and value shapes, giving way to "shape tracing".

Bug Fixes

* Fix support Python 3.5.2 coroutine changes. The checks got added for improved mode for older
3.5.%, the new protocol is only supported when run with that version or higher.

* Fix, was falsely optimizing away unused iterations for non-iterable compile time constants.

iter(l) # needs to raise.
* Python3: Fix, eval must not attempt to stri p memoryviews. The was preventing it from working
with that type.

* Fix, calling t ype without any arguments was crashing the compiler. Also the exception raised for
anything but 1 or 3 arguments was claiming that only 3 arguments were allowed, which is not the
compatible thing.

» Python3.5: Fix, follow enhanced error checking for complex call handling of star arguments.

» Compatibility: The from x inport x, y re-formulation was doing two __i nport __ calls instead
of re-using the module value.

Optimization

* Uses only about 66% of the memory compared to last release, which is very important step for
scalability independent of re-loading. This was achieved by making sure to break loop traces and
their reference cycle when they become unused.

* Properly detect the | en of multiplications at compile time from newly introduces value shapes, so that
this is e.g. statically optimized.

print(len("*" * 10000000000))

» Due to newly introduced type shapes, | en and i t er now properly detect more often if values will
raise or not, and warn about detected raises.

iter(len(something)) # WII always raise

» Due to newly introduced "iterator tracing", we can now properly detect if the length of an unpacking
matches its source or not. This allows to remove the check of the generic re-formulations of
unpackings at compile time.

, b b, # W1l never raise due to unpacking
b=m»>b c

a a
a, , 4, # WIIl always raise, 3 items cannot unpack to 2

» Added support for optimization of the xr ange built-in for Python2.

» Python2: Added support for xr ange iterable constant values, pre-building those constants ahead of
time.

» Python3: Added support and r ange iterable constant values, pre-building those constants ahead of
time. This brings optimization support for Python3 ranges to what was available for Python2 already.

 Avoid having a special node variange for r ange with no arguments, but create the exception raising
node directly.

 Specialized constant value nodes are using less generic implementations to query e.g. their length or
iteration capabilities, which should speed up many checks on them.

» Added support for the f or mat built-in.
» Python3: Added support for the asci i built-in.

Organizational

* The movement to pure C got the final big push. All C++ only idoms of C++ were removed, and
everything works with C11 compilers. A C++03 compiler can be used as a fallback, in case of MSVC
or too old gcc for instance.

» Using pure C, MinGW64 6x is now working properly. The latest version had problems with hypot
related changes in the C++ standard library. Using C11 solves that.

* This release also prepares Python 3.6 support, it includes full language support on the level of
CPython 3.6.0b1.

» The CPython 3.6 test suite was run with Python 3.5 to ensure bug level compatibility, and had a few
findings of incompatibilities.

Cleanups

* The last holdouts of classes in Nuitka were removed, and many idioms of C++ were stopped using.

» Moved range related helper functions to a dedicated include file.

«Usingstr is not byt es todetect Python3 st r handling or actual byt es type existence.

* Trace collections were using a mix-in that was merged with the base class that every user of it was
having.

Tests

» Added more static optimization tests, a ot more has become feasible to decide at run time, and is
now done. These are to detect regressions in that domain.

» The CPython 3.6 test suite is now also run with CPython 3.5 which found some incompatibilities.

Summary

This release marks a huge step forward. We are having the structure for type inference now. This will
expand in coming releases to cover more cases, and there are many low hanging fruits for optimization.
Specialized codes for variable versions of certain known shapes seems feasible now.

Then there is also the move towards pure C. This will make the backend compilation lighter, but due to
using C11, we will not suffer any loss of convenience compared to "C-ish". The plan is to use continue to
use C++ for compilation for compilers not capable of supporting C11.

The amount of static analysis done in Nuitka is now going to quickly expand, with more and more
constructs predicted to raise errors or simplified. This will be an ongoing activity, as many types of
expressions need to be enhanced, and only one missing will not let it optimize as well.

Also, it seems about time to add dedicated code for specific types to be as fast as C code. This opens up
vast possibilities for acceleration and will lead us to zero overhead C bindings eventually. But initially the
drive is towards enhanced i nmport analysis, to become able to know the precide module expected to be
imported, and derive type information from this.

The coming work will attack to start whole program optimization, as well as enhanced local value shape
analysis, as well specialized type code generation, which will make Nuitka improve speed.

Nuitka Release 0.5.22

This release is mostly an intermediate release on the way to the large goal of having per module
compilation that is cacheable and requires far less memory for large programs. This is currently in
progress, but required many changes that are in this release, more will be needed.

It also contains a bunch of bug fixes and enhancements that are worth to be released, and the next
changes are going to be more invasive.

Bug Fixes

» Compatibility: Classes with decorated _ _new__ functions could miss out on the st ati cret hod
decorator that is implicit. It's now applied always, unless of course it's already done manually. This
corrects an issue found with Pandas. Fixed in 0.5.22.1 already.

 Standalone: For at least Python 3.4 or higher, it could happen that the locale needed was not
importable. Fixed in 0.5.22.1 already.

» Compatibility: Do not falsely assume that not expressions cannot raise on boolean expressions,
since those arguments might raise during creation. This could lead to wrong optimization. Fixed in
0.5.22.2 already.

« Standalone: Do not include system specific C libraries in the distribution created. This would lead to
problems for some configurations on Linux in cases the glibc is no longer compatible with newer or
older kernels. Fixed in 0.5.22.2 already.

*The --recurse-directory option didn't check with decision mechanisms for module inclusion,
making it impossible to avoid some things.

Optimization

* Introduced specialized constant classes for empty dictionaries and other special constants, e.g.
"True" and "False", so that they can have more hard coded properties and save memory by sharing
constant values.

» The "technical" sharing of a variable is only consider for variables that had some sharing going in the
first place, speeing things up quite a bit for that still critical check.

» Memory savings coming from enhanced trace storage are already visible at about 1%. That is not as
much as the reloading will mean, but still helpful to use less overall.

Cleanups

» The global variable registry was removed. It was in the way of unloading and reloading modules
easily. Instead variables are now attached to their owner and referenced by other users. When they
are released, these variables are released.

» Global variable traces were removed. Instead each variable has a list of the traces attached to it. For
non-shared variables, this allows to sooner tell attributes of those variables, allowing for sooner
optimization of them.

» No longer trace all initial users of a variable, just merely if there were such and if it constitutes sharing
syntactically too. Not only does this save memory, it avoids useless references of the variable to
functions that stop using it due to optimization.

» Create constant nodes via a factory function to avoid non-special instances where variants exist that
would be faster to use.

» Moved the C string functions to a proper nui t ka. uti |l s. CSt ri ngs package as we use it for better
code names of functions and modules.

» Made f unct i ons and explicit child node of modules, which makes their use more generic, esp. for
re-loading modules.

» Have a dedicated function for building frame nodes, making it easier to see where they are created.

Summary

This release is the result of a couple of months work, and somewhat means that proper re-loading of
cached results is becoming in sight. The reloading of modules still fails for some things, and more changes
will be needed, but with that out of the way, Nuitka's footprint is about to drop and making it then absolutely
scalable. Something considered very important before starting to trace more information about values.

This next thing big ought to be one thing that structurally holds Nuitka back from generating C level
performance code with say integer operations.

Nuitka Release 0.5.21

This release focused on scalability work. Making Nuitka more usable in the common case, and covering
more standalone use cases.

Bug Fixes

* Windows: Support for newer MinGW64 was broken by a workaround for older MinGW64 versions.

» Compatibility: Added support for the (unofficial) C-Python API Py_Get Ar gcAr gv that was causing
prctl module to fail loading on ARM platforms.

» Compatibility: The proper error message template for complex call arguments is now detected as
compile time. There are changes coming, that are already in some pre-releases of CPython.

« Standalone: Wasn't properly ignoring Tool s and other directories in the standard library.

New Features

» Windows: Detect the MinGW compiler arch and compare it to the Python arch. In case of a mismatch,
the compiler is not used. Otherwise compilation or linking gives hard to understand errors.

This also rules out MinGW32 as a compiler that can be used, as its arch doesn't match MinGW64 32
bits variant.

» Compile modules in two passes with the option to specify which modules will be considered for a
second pass at all (compiled without program optimization) or even become bytecode.

* The developer mode installation of Nuitka in devel op mode with the command
pip install -e nuitka_git_checkout dir isnow supported too.

Optimization

» Popular modules known to not be performance relevant are no longer C compiled, e.g.
nunpy. di stutil s and many others frequently imported (from some other module), but mostly not
used and definitely not performance relevant.

Cleanups

» The progress tracing and the memory tracing and now more clearly separate and therefore more
readable.

» Moved RPM related files to new r pmdirectory.
» Moved documentation related files to doc directory.

» Converted import sorting helper script to Python and made it run fast.

Organizational

» The Buildbot infrastructure for Nuitka was updated to Buildbot 0.8.12 and is how maintained up to
date with Ansible.

» Upgraded the Nuitka bug tracker to Roundup 1.5.1 to which | had previously contributed security
fixes already active.

» Added SSL certificates from Let's Encrypt for the web server.

Summary

This release advances the scalability of Nuitka somewhat. The two pass approach does not yet carry all
possible fruits. Caching of single pass compiled modules should follow for it to become consistently fast.

More work will be needed to achieve fast and scalable compilation, and that is going to remain the focus
for some time.

Nuitka Release 0.5.20

This release is mostly about catching up with issues. Most address standalone problems with special
modules, but there are also some general compatibility corrections, as well as important fixes for
Python3.5 and coroutines and to improve compatibility with special Python variants like Anaconda under
the Windows system.

Bug Fixes

« Standalone Python3.5: The _deci mal module at least is using a __nane__ that doesn't match the
name at load time, causing programs that use it to crash.

» Compatibility: For Python3.3 the __| oader __ attribute is now set in all cases, and it needs to have a
__nodul e__ attribute. This makes inspection as done by e.g. f | ask working.

« Standalone: Added missing hidden dependencies for Tki nt er module, adding support for this to
work properly.

» Windows: Detecting the Python DLL and EXE used at compile time and preserving this information
use during backend compilation. This should make sure we use the proper ones, and avoids hacks
for specific Python variants, enhancing the support for Anaconda, WinPython, and CPython
installations.

» Windows: The - - pyt hon- debug flag now properly detects if the run time is supporting things and
error exits if it's not available. For a CPython3.5 installation, it will switch between debug and
non-debug Python binaries and DLLs.

« Standalone: Added plug-in for the Pwm package to properly combine it into a single file, suitable for
distribution.

« Standalone: Packages from standard library, e.g. xm now have proper __path__ as a list and not
as a string value, which breaks code of e.g. PyXML. Issue#183.

« Standalone: Added missing dependency of t wi st ed. prot ocol s. t| s. Issue#288.

» Python3.5: When finalizing coroutines that were not finished, a corruption of its reference count could
happen under some circumstances.

« Standalone: Added missing DLL dependency of the uui d module at run time, which uses ctypes to
load it.

New Features

» Added support for Anaconda Python on this Linux. Both accelerated and standalone mode work now.
Issue#295.

» Added support for standalone mode on FreeBSD. Issue#294.

* The plug-in framework was expanded with new features to allow addressing some specific issues.

Cleanups

» Moved memory related stuff to dedicated utils package nui t ka. util s. Menor yUsage as part of an
effort to have more topical modules.

* Plug-ins how have a dedicated module through which the core accesses the API, which was partially
cleaned up.

* No more "early" and "late" import detections for standalone mode. We now scan everything at the
start.
Summary

This release focused on expanding plugins. These were then used to enhance the success of standalone
compatibility. Eventually this should lead to a finished and documented plug-in API, which will open up the
Nuitka core to easier hacks and more user contribution for these topics.

Nuitka Release 0.5.19

This release brings optimization improvements for dictionary using code. This is now lowering subscripts to
dictionary accesses where possible and adds new code generation for known dictionary values. Besides
this there is the usual range of bug fixes.

Bug Fixes

http://bugs.nuitka.net/issue183
http://bugs.nuitka.net/issue288
http://bugs.nuitka.net/issue295
http://bugs.nuitka.net/issue294

* Fix, attribute assignments or deletions where the assigned value or the attribute source was statically
raising crashed the compiler.

* Fix, the order of evaluation during optimization was considered in the wrong order for attribute
assignments source and value.

» Windows: Fix, when g++ is the path, it was not used automatically, but now it is.
» Windows: Detect the 32 bits variant of MinGW64 too.

» Python3.4: The finalize of compiled generators could corrupt reference counts for shared generator
objects. Fixed in 0.5.18.1 already.

» Python3.5: The finalize of compiled coroutines could corrupt reference counts for shared generator
objects.

Optimization

* When a variable is known to have dictionary shape (assigned from a constant value, result of di ct
built-in, or a general dictionary creation), or the branch merge thereof, we lower subscripts from
expecting mapping nodes to dictionary specific nodes. These generate more efficient code, and
some are then known to not raise an exception.

def soneFunction(a, b):
val ue = {a: b}
value["c"] =1
return val ue

The above function is not yet fully optimized (dictionary key/value tracing is not yet finished), however
it at least knows that no exception can raise from assigning val ue[" c"] anymore and creates more
efficient code for the typical resul t = {} functions.

» The use of "logical" sharing during optimization has been replaced with checks for actual sharing. So
closure variables that were written to in dead code no longer inhibit optimization of the then no more
shared local variable.

» Global variable traces are now faster to decide definite writes without need to check traces for this
each time.

Cleanups

* No more using "logical sharing" allowed to remove that function entirely.

* Using "technical sharing" less often for decisions during optimization and instead rely more often on
proper variable registry.

» Connected variables with their global variable trace statically avoid the need to check in variable
registry for it.

* Removed old and mostly unused "assume unclear locals" indications, we use global variable traces
for this now.

Summary

This release aimed at dictionary tracing. As a first step, the value assign is now traced to have a dictionary
shape, and this this then used to lower the operations which used to be normal subscript operations to
mapping, but now can be more specific.

Making use of the dictionary values knowledge, tracing keys and values is not yet inside the scope, but
expected to follow. We got the first signs of type inference here, but to really take advantage, more specific
shape tracing will be needed.

Nuitka Release 0.5.18

This release mainly has a scalability focus. While there are few compatibility improvements, the larger goal
has been to make Nuitka compilation and the final C compilation faster.

Bug Fixes
» Compatibility: The nested arguments functions can now be called using their keyword arguments.

def soneFunction(a, (b, c¢)):
return a, b, c

someFunction(a=1, **{".1": (2, 3)})

» Compatibility: Generators with Python3.4 or higher now also have a __del __ attribute, and therefore
properly participate in finalization. This should improve their interactions with garbage collection
reference cycles, although no issues had been observed so far.

» Windows: Was outputting command line arguments debug information at program start. Issue#284.
Fixed in 0.5.17.1 already.

Optimization

» Code generated for parameter parsing is now a lot less verbose. Python level loops and conditionals
to generate code for each variable has been replaced with C level generic code. This will speed up
the backend compilation by a lot.

* Function calls with constant arguments were speed up specifically, as their call is now fully prepared,
and yet using less code. Variable arguments are also faster, and all defaulted arguments are also
much faster. Method calls are not affected by these improvements though.

» Nested argument functions now have a quick call entry point as well, making them faster to call too.

» The slice built-in, and internal creation of slices (e.g. in re-formulations of Python3 slices as
subscripts) cannot raise. Issue#262.

« Standalone: Avoid inclusion of bytecode of unittest.test, sqlite3.test, distutils.test,
and ensur epi p. These are not needed, but simply bloat the amount of bytecode used on e.g.
macOS. Issue#272.

» Speed up compilation with Nuitka itself by avoid to copying and constructing variable lists as much as
possible using an always accurate variable registry.

Cleanups

* Nested argument functions of Python2 are now re-formulated into a wrapping function that directly
calls the actual function body with the unpacking of nested arguments done in nodes explicitly. This
allows for better optimization and checks of these steps and potential in-lining of these functions too.

* Unified slice object creation and built-in sl i ce nodes, these were two distinct nodes before.

» The code generation for all statement kinds is now done via dispatching from a dictionary instead of
long el i f chains.

http://bugs.nuitka.net/issue284
http://bugs.nuitka.net/issue262
http://bugs.nuitka.net/issue272

» Named nodes more often consistently, e.g. all loop related nodes start with Loop now, making them
easier to group.

» Parameter specifications got simplified to work without variables where it is possible.

Organizational

* Nuitka is now available on the social code platforms gitlab as well.

Summary

Long standing weaknesses have been addressed in this release, also quite a few structural cleanups have
been performed, e.g. strengthening the role of the variable registry to always be accurate, is groundlaying
to further improvement of optimization.

However, this release cycle was mostly dedicated to performance of the actual compilation, and more
accurate information was needed to e.g. not search for information that should be instant.

Upcoming releases will focus on usability issues and further optimization, it was nice however to see
speedups of created code even from these scalability improvements.

Nuitka Release 0.5.17

This release is a major feature release, as it adds full support for Python3.5 and its coroutines. In addition,
in order to properly support coroutines, the generator implementation got enhanced. On top of that, there
is the usual range of corrections.

Bug Fixes

» Windows: Command line arguments that are unicode strings were not properly working.

» Compatibility: Fix, only the code object attached to exceptions contained all variable names, but not
the one of the function object.

» Python3: Support for virtualenv on Windows was using non-portable code and therefore failing.
Issue#266.

» The tree displayed with - - di spl ay-tr ee duplicated all functions and did not resolve source lines
for functions. It also displayed unused functions, which is not helpful.

» Generators with parameters leaked C level memory for each instance of them leading to memory
bloat for long running programs that use a lot of generators. Fixed in 0.5.16.1 already.

» Don't drop positional arguments when called with - - r un, also make it an error if they are present
without that option.

New Features

» Added full support for Python3.5, coroutines work now too.
Optimization

» Optimized frame access of generators to not use both a local frame variable and the frame object
stored in the generator object itself. This gave about 1% speed up to setting them up.

» Avoid having multiple code objects for functions that can raise and have local variables. Previously
one code object would be used to create the function (with parameter variable names only) and when
raising an exception, another one would be used (with all local variable names). Creating them both
at start-up was wasteful and also needed two tuples to be created, thus more constants setup code.

http://bugs.nuitka.net/issue266

 The entry point for generators is how shared code instead of being generated for each one over and
over. This should make things more cache local and also results in less generated C code.

» When creating frame codes, avoid working with strings, but use proper emission for less memory
churn during code generation.

Organizational

» Updated the key for the Debian/Ubuntu repositories to remain valid for 2 more years.
» Added support for Fedora 23.

* MinGW32 is no more supported, use MinGW64 in the 32 bits variant, which has less issues.

Cleanups

« Detecting function type ahead of times, allows to handle generators different from normal functions
immediately.

» Massive removal of code duplication between normal functions and generator functions. The later are
now normal functions creating generator objects, which makes them much more lightweight.

» The r et ur n statement in generators is now immediately set to the proper node as opposed to doing
this in variable closure phase only. We can now use the ahead knowledge of the function type.

» The nonl ocal statement is now immediately checked for syntax errors as opposed to doing that
only in variable closure phase.

» The name of contraction making functions is no longer skewed to empty, but the real thing instead.
The code name is solved differently now.

* Thel ocal _| ocal s mode for function node was removed, it was always true ever since Python2 list
contractions stop using pseudo functions.

» The outline nodes allowed to provide a body when creating them, although creating that body
required using the outline node already to create temporary variables. Removed that argument.

» Removed PyLint false positive annotations no more needed for PyLint 1.5 and solved some TODOs.
» Code objects are now mostly created from specs (not yet complete) which are attached and shared
between statement frames and function creations nodes, in order to have less guess work to do.

Tests

» Added the CPython3.5 test suite.

» Updated generated doctests to fix typos and use common code in all CPython test suites.

Summary

This release continues to address technical debt. Adding support for Python3.5 was the major driving
force, while at the same time removing obstacles to the changes that were needed for coroutine support.

With Python3.5 sorted out, it will be time to focus on general optimization again, but there is more technical
debt related to classes, so the cleanup has to continue.

Nuitka Release 0.5.16

This is a maintenance release, largely intended to put out improved support for new platforms and minor
corrections. It should improve the speed for standalone mode, and compilation in general for some use
cases, but this is mostly to clean up open ends.

Bug Fixes
* Fix, the | en built-in could give false values for dictionary and set creations with the same element.

This was falsely optimzed to 2 even if "a is b and a == b" was true.
len({a, b})
» Python: Fix, the gi _r unni ng attribute of generators is no longer an i nt , but bool instead.

» Python3: Fix, the i nt built-in with two arguments, value and base, raised Uni codeDecodeEr r or
instead of Val ueEr r or for illegal bytes given as value.

» Python3: Using t okeni ze. open to read source code, instead of reading manually and decoding
from t okeni ze. det ect _encodi ng, this handles corner cases more compatible.

* Fix, the PyLint warnings plug-in could crash in some cases, make sure it's more robust.

» Windows: Fix, the combination of Anaconda Python, MinGW 64 bits and mere acceleration was not
working. Issue#254.

» Standalone: Preserve not only namespace packages created by . pt h files, but also make the
imports done by them. This makes it more compatible with uses of it in Fedora 22.

« Standalone: The extension modules could be duplicated, turned this into an error and cache finding
them during compile time and during early import resolution to avoid duplication.

« Standalone: Handle "not found" from | dd output, on some systems not all the libraries wanted are
accessible for every library.

» Python3.5: Fixed support for namespace packages, these were not yet working for that version yet.

» Python3.5: Fixes lack of support for unpacking in normal t upl e, | i st, and set creations.

[*a] # this has becone legal in 3.5 and now wor ks too.

Now also gives compatible Synt axEr r or for earlier versions. Python2 was good already.

» Python3.5: Fix, need to reduce compiled functions to __ qual nanme__ value, rather than just
__nane__ or else pickling methods doesn't work.

» Python3.5: Fix, added gi _yi el df r omattribute to generator objects.

» Windows: Fixed harmless warnings for Visual Studio 2015 in - - debug mode.
Optimization
» Re-formulate exec and eval to default to gl obal s() as the default for the locals dictionary in

modules.

* The try node was making a description of hodes moved to the outside when shrinking its scope,
which was using a lot of time, just to not be output, now these can be postponed.

 Refactored how freezing of bytecode works. Uncompiled modules are now explicit nodes too, and in
the registry. We only have one or the other of it, avoiding to compile both.

Tests

* When st race or dt r uss are not found, given proper error message, so people know what to do.

» The doc tests extracted and then generated for CPython3 test suites were not printing the
expressions of the doc test, leading to largely decreased test coverage here.

http://bugs.nuitka.net/issue254

» The CPython 3.4 test suite is how also using common runner code, and avoids ignoring all Nuitka
warnings, instead more white listing was added.

« Started to run CPython 3.5 test suite almost completely, but coroutines are blocking some parts of
that, so these tests that use this feature are currently skipped.

» Removed more CPython tests that access the network and are generally useless to testing Nuitka.
» When comparing outputs, normalize typical temporary file names used on posix systems.

» Coverage tests have made some progress, and some changes were made due to its results.

» Added test to cover too complex code module of i dna module.

» Added Python3.5 only test for unpacking variants.

Cleanups

* Prepare plug-in interface to allow suppression of import warnings to access the node doing it, making
the import node is accessible.

» Have dedicated class function body object, which is a specialization of the function body node base
class. This allowed removing class specific code from that class.

» The use of "win_target" as a scons parameter was useless. Make more consistent use of it as a flag
indicator in the scons file.

» Compiled types were mixing uses of conpi | ed_ prefixes, something with a space, sometimes with
an underscore.

Organizational

« Improved support for Python3.5 missing compatibility with new language features.
» Updated the Developer Manual with changes that SSA is now a fact.
» Added Python3.5 Windows MSI downloads.

» Added repository for Ubuntu Wily (15.10) for download. Removed Ubuntu Utopic package download,
no longer supported by Ubuntu.

» Added repository with RPM packages for Fedora 22.

Summary

So this release is mostly to lower the technical debt incurred that holds it back from supporting making
more interesting changes. Upcoming releases may have continue that trend for some time.

This release is mostly about catching up with Python3.5, to make sure we did not miss anything important.
The new function body variants will make it easier to implement coroutines, and help with optimization and
compatibility problems that remain for Python3 classes.

Ultimately it will be nice to require a lot less checks for when function in-line is going to be acceptable. Also
code generation will need a continued push to use the new structure in preparation for making type
specific code generation a reality.

Nuitka Release 0.5.15

This release enables SSA based optimization, the huge leap, not so much in terms of actual performance
increase, but for now making the things possible that will allow it.

This has been in the making literally for years. Over and over, there was just "one more thing" needed. But
now it's there.

The release includes much stuff, and there is a perspective on the open tasks in the summary, but first out
to the many details.

Bug Fixes

« Standalone: Added implicit import for r eport | ab package configuration dynamic import. Fixed in
0.5.14.1 already.

« Standalone: Fix, compilation of the ct ypes module could happen for some import patterns, and then
prevented the distribution to contain all necessary libraries. Now it is made sure to not include
compiled and frozen form both. Issue#241. Fixed in 0.5.14.1 already.

* Fix, compilation for conditional statements where the boolean check on the condition cannot raise,
could fail compilation. Issue#240. Fixed in 0.5.14.2 already.

» Fix, the __i mport __ built-in was making static optimization assuming compile time constants to be
strings, which in the error case they are not, which was crashing the compiler. Issue#240.

__inmport__ (("sone.nodule",)) # tuples don't work

This error became only apparent, because now in some cases, Nuitka forward propagates values.

» Windows: Fix, when installing Python2 only for the user, the detection of it via registry failed as it was
only searching system key. This was a github pull request. Fixed in 0.5.14.3 already.

* Some modules have extremely complex expressions requiring too deep recursion to work on all
platforms. These modules are now included entirely as bytecode fallback. Issue#240.

*» The standard library may contain broken code due to installation mistakes. We have to ignore their
Synt axEr r or . Issue#244.

* Fix, pickling compiled methods was failing with the wrong kind of error, because they should not
implement __reduce__, butonly __deepcopy__ . Issue#219.

* Fix, when running under wi ne, the check for scons binary was fooled by existence of
[usr/ bi n/ scons. Issue#251.

New Features

» Added experimental support for Python3.5, coroutines don't work yet, but it works perfectly as a 3.4
replacement.

* Added experimental Nuitka plug-in framework, and use it for the packaging of Qt plugins in
standalone mode. The API is not yet stable nor polished.

* New option - - debugger that makes - -run execute directly in gdb and gives a stack trace on
crash.

* New option - - pr of i | e executes compiled binary and outputs measured performance with vipr of .
This is work in progress and not functional yet.

* Started work on - - gr aph to render the SSA state into diagrams. This is work in progress and not
functional yet.

* Plug-in framework added. Not yet ready for users. Working PyQ 4 and PyQ 5 plug-in support.
Experimental Windows mnul t i pr ocessi ng support. Experimental PyLint warnings disable support.
More to come.

» Added support for Anaconda accelerated mode on macOS by modifying the rpath to the Python DLL.

» Added experimental support for mul ti pr ocessi ng on Windows, which needs monkey patching of
the module to support compiled methods.

http://bugs.nuitka.net/issue241
http://bugs.nuitka.net/issue240
http://bugs.nuitka.net/issue245
https://github.com/kayhayen/Nuitka/pull/8
http://bugs.nuitka.net/issue240
http://bugs.nuitka.net/issue244
http://bugs.nuitka.net/issue219
http://bugs.nuitka.net/issue251

Optimization

» The SSA analysis is now enabled by default, eliminating variables that are not shared, and can be
forward propagated. This is currently limited mostly to compile time constants, but things won't
remain that way.

» Code generation for many constructs now takes into account if a specific operation can raise or not. If
e.g. an attribute look-up is known to not raise, then that is now decided by the node the looked is
done to, and then more often can determine this, or even directly the value.

« Calls to C-API that we know cannot raise, no longer check, but merely assert the result.

« For attribute look-up and other operations that might be known to not raise, we now only assert that it
succeeds.

* Built-in loop-ups cannot fail, merely assert that.
« Creation of built-in exceptions never raises, merely assert that too.

» More Python operation slots now have their own computations and some of these gained overloads
for more compile time constant optimization.

» When taking an iterator cannot raise, this is now detected more often.

«The try/finally construct is now represented by duplicating the final block into all kinds of
handlers (br eak, conti nue, r et ur n, or except) and optimized separately. This allows for SSA to
trace values more correctly.

» The hash built-in now has dedicated node and code generation too. This is mostly intended to
represent the side effects of dictionary look-up, but gives more compact and faster code too.

» Type t ype built-in cannot raise and has no side effect.

» Speed improvement for in-place float operations for += and * =, as these will be common cases.

Tests

» Made the construct based testing executable with Python3.

» Removed warnings using the new PyLint warnings plug-in for the reflected test. Nuitka now uses the
PyLint annotations to not warn. Also do not go into PyQt for reflected test, not needed. Many Python3
improvements for cases where there are differences to report.

» The optimization tests no longer use 2to3 anymore, made the tests portable to all versions.

» Checked more in-place operations for speed.

Organizational

» Many improvements to the coverage taking. We can hope to see public data from this, some
improvements were triggered from this already, but full runs of the test suite with coverage data
collection are yet to be done.

Summary

The release includes many important new directions. Coverage analysis will be important to remain certain
of test coverage of Nuitka itself. This is mostly done, but needs more work to complete.

Then the graphing surely will help us to debug and understand code examples. So instead of tracing, and
reading stuff, we should visualize things, to more clearly see, how things evolve under optimization
iteration, and where exactly one thing goes wrong. This will be improved as it proves necessary to do just
that. So far, this has been rare. Expect this to become end user capable with time. If only to allow you to
understand why Nuitka won't optimize code of yours, and what change of Nuitka it will need to improve.

The comparative performance benchmarking is clearly the most important thing to have for users. It
deserves to be the top priority. Thanks to the PyPy tool vimpr of , we may already be there on the data
taking side, but the presenting and correlation part, is still open and a fair bit of work. It will be most
important to empower users to make competent performance bug reports, now that Nuitka enters the
phase, where these things matter.

As this is a lot of ground to cover. More than ever. We can make this compiler, but only if you help, it will
arrive in your life time.

Nuitka Release 0.5.14

This release is an intermediate step towards value propagation, which is not considered ready for stable
release yet. The major point is the elimination of the t ry/f i nal | y expressions, as they are problems to
SSA. The try/fi nal | y statement change is delayed.

There are also a lot of bug fixes, and enhancements to code generation, as well as major cleanups of code
base.

Bug Fixes
» Python3: Added support assignments trailing star assignment.

*a, b =1, 2

This raised Val ueEr r or before.

 Python3: Properly detect illegal double star assignments.
*a, *b =c
» Python3: Properly detect the syntax error to star assign from non-tuple/list.
*a =1
» Python3.4: Fixed a crash of the binary when copying dictionaries with split tables received as star

arguments.

» Python3: Fixed reference loss, when using rai se a from b where b was an exception instance.
Fixed in 0.5.13.8 already.

» Windows: Fix, the flag - - di sabl e- wi ndows- consol e was not properly handled for MinGW32 run
time resulting in a crash.

» Python2.7.10: Was not recognizing this as a 2.7.x variant and therefore not applying minor version
compatibility levels properly.

* Fix, when choosing to have frozen source references, code objects were not use the same value as
__file__ didforits filename.

* Fix, when re-executing itself to drop the si t e module, make sure we find the same file again, and not
according to the PYTHONPATH changes coming from it. Issue#223. Fixed in 0.5.13.4 already.

» Enhanced code generation for del vari abl e statements, where it's clear that the value must be
assigned.

* When pressing CTRL-C, the stack traces from both Nuitka and Scons were given, we now avoid the
one from Scons.

* Fix, the dump from - - xrm no longer contains functions that have become unused during analysis.

http://bugs.nuitka.net/issue223

« Standalone: Creating or running programs from inside unicode paths was not working on Windows.
Issue#231 Issue#229 and. Fixed in 0.5.13.7 already.

» Namespace package support was not yet complete, importing the parent of a package was still
failing. Issue#230. Fixed in 0.5.13.7 already.

» Python2.6: Compatibility for exception check messages enhanced with newest minor releases.
» Compatibility: The NaneEr r or in classes needs to say gl obal nane and not just nane too.

» Python3: Fixed creation of XML representation, now done without | xm as it doesn't support needed
features on that version. Fixed in 0.5.13.5 already.

» Python2: Fix, when creating code for the largest negative constant to still fit into i nt, that was only
working in the main module. Issue#228. Fixed in 0.5.13.5 already.

» Compatibility: The pri nt statement raised an assertion on unicode objects that could not be
encoded with asci i codec.

New Features

» Added support for Windows 10.

* Followed changes for Python 3.5 beta 2. Still only usable as a Python 3.4 replacement, no new
features.

* Using a self compiled Python running from the source tree is now supported.

» Added support for Anaconda Python distribution. As it doesn't install the Python DLL, we copy it
along for acceleration mode.

» Added support for Visual Studio 2015. Issue#222. Fixed in 0.5.13.3 already.

» Added support for self compiled Python versions running from build tree, this is intended to help
debug things on Windows.

Optimization

* Function in-lining is now present in the code, but still disabled, because it needs more changes in
other areas, before we can generally do it.

» Trivial outlines, result of re-formulations or function in-lining, are now in-lined, in case they just return
an expression.

» The re-formulation for or and and has been giving up, eliminating the use of a try/finally
expression, at the cost of dedicated boolean nodes and code generation for these.

This saves around 8% of compile time memory for Nuitka, and allows for faster and more complete
optimization, and gets rid of a complicated structure for analysis.

* When a frame is used in an exception, its locals are detached. This was done more often than
necessary and even for frames that are not necessary our own ones. This will speed up some
exception cases.

« When the default arguments, or the keyword default arguments (Python3) or the annotations
(Python3) were raising an exception, the function definition is now replaced with the exception,
saving a code generation. This happens frequently with Python2/Python3 compatible code guarded
by version checks.

» The SSA analysis for loops now properly traces "break" statement situations and merges the
post-loop situation from all of them. This significantly allows for and improves optimization of code
following the loop.

http://bugs.nuitka.net/issue231
http://bugs.nuitka.net/issue229
http://bugs.nuitka.net/issue231
http://bugs.nuitka.net/issue228
http://bugs.nuitka.net/issue222

« The SSA analysis of try/finally statements has been greatly enhanced. The handler for
finally is now optimized for exception raise and no exception raise individually, as well as for
br eak, conti nue and r et ur n in the tried code. The SSA analysis for after the statement is now the
result of merging these different cases, should they not abort.

» The code generation for del statements is now taking advantage should there be definite knowledge
of previous value. This speed them up slightly.

» The SSA analysis of del statements now properly decided if the statement can raise or not, allowing
for more optimization.

« For list contractions, the re-formulation was enhanced using the new outline construct instead of a
pseudo function, leading to better analysis and code generation.

» Comparison chains are now re-formulated into outlines too, allowing for better analysis of them.

» Exceptions raised in function creations, e.g. in default values, are now propagated, eliminating the
function's code. This happens most often with Python2/Python3 in branches. On the other hand,
function creations that cannot are also annotated now.

» Closure variables that become unreferenced outside of the function become normal variables leading
to better tracing and code generation for them.

* Function creations cannot raise except their defaults, keyword defaults or annotations do.

* Built-in references can now be converted to strings at compile time, e.g. when printed.

Organizational

» Removed gitorious mirror of the git repository, they shut down.

» Make it more clear in the documentation that Python2 is needed at compile time to create Python3
executables.

Cleanups

» Moved more parts of code generation to their own modules, and used registry for code generation for
more expression kinds.

» Unified try/except and try/finally into a single construct that handles both through
tryl/except /br eak/cont i nue/r et ur n semantics. Finally is now solved via duplicating the handler
into cases necessary.

No longer are nodes annotated with information if they need to publish the exception or not, this is
now all done with the dedicated nodes.

« Thetry/final |y expressions have been replaced with outline function bodies, that instead of side
effect statements, are more like functions with return values, allowing for easier analysis and
dedicated code generation of much lower complexity.

» No more "tolerant" flag for release nodes, we now decide this fully based on SSA information.

» Added helper for assertions that code flow does not reach certain positions, e.g. a function must
return or raise, aborting statements do not continue and so on.

» To keep cloning of code parts as simple as possible, the limited use of makeCl oneAt has been
changed to a new makeC one which produces identical copies, which is what we always do. And a
generic cloning based on "details" has been added, requiring to make constructor arguments and
details complete and consistent.

 The re-formulation code helpers have been improved to be more convenient at creating nodes.

» The old nui t ka. codegen module Gener at or was still used for many things. These now all got
moved to appropriate code generation modules, and their users got updated, also moving some code
generator functions in the process.

» The module nui t ka. codegen. CodeTenpl at es got replaces with direct uses of the proper topic
module from nui t ka. codegen. t enpl at es, with some more added, and their names harmonized
to be more easily recognizable.

» Added more assertions to the generated code, to aid bug finding.
» The autoformat now sorts pylint markups for increased consistency.
* Releases no longer have at ol er ant flag, this was not needed anymore as we use SSA.

» Handle CTRL-C in scons code preventing per job messages that are not helpful and avoid
tracebacks from scons, also remove more unused tools like r pmfrom out in-line copy.

Tests

» Added the CPython3.4 test suite.

» The CPython3.2, CPython3.3, and CPython3.4 test suite now run with Python2 giving the same
errors. Previously there were a few specific errors, some with line numbers, some with different
Synt axEr r or be raised, due to different order of checks.

This increases the coverage of the exception raising tests somewhat.

« Also the CPython3.x test suites now all pass with debug Python, as does the CPython 2.6 test suite
with 2.6 now.

» Added tests to cover all forms of unpacking assignments supported in Python3, to be sure there are
no other errors unknown to us.

« Started to document the reference count tests, and to make it more robust against SSA optimization.
This will take some time and is work in progress.

» Made the compile library test robust against modules that raise a syntax error, checking that Nuitka
does the same.

* Refined more tests to be directly executable with Python3, this is an ongoing effort.

Summary

This release is clearly major. It represents a huge step forward for Nuitka as it improves nearly every
aspect of code generation and analysis. Removing the try/fi nal | y expression nodes proved to be
necessary in order to even have the correct SSA in their cases. Very important optimization was blocked
by it.

Going forward, the t ry/fi nal | y statements will be removed and dead variable elimination will happen,
which then will give function inlining. This is expected to happen in one of the next releases.

This release is a consolidation of 8 hotfix releases, and many refactorings needed towards the next big
step, which might also break things, and for that reason is going to get its own release cycle.

Nuitka Release 0.5.13

This release contains the first use of SSA for value propagation and massive amounts of bug fixes and
optimization. Some of the bugs that were delivered as hotfixes, were only revealed when doing the value
propagation as they still could apply to real code.

Bug Fixes

* Fix, relative imports in packages were not working with absolute imports enabled via future flags.
Fixed in 0.5.12.1 already.

» Loops were not properly degrading knowledge from inside the loop at loop exit, and therefore this
could have lead missing checks and releases in code generation for cases, for del statements in the
loop body. Fixed in 0.5.12.1 already.

» The or and and re-formulation could trigger false assertions, due to early releases for compatibility.
Fixed in 0.5.12.1 already.

« Fix, optimizion of calls of constant objects (always an exception), crashed the compiler. This corrects
Issue#202. Fixed in 0.5.12.2 already.

« Standalone: Added support for si t e. py installations with a leading def or cl ass statement, which
is defeating our attempt to patch __ fil e__ forit. This corrects Issue#189.

» Compatibility: In full compatibility mode, the tracebacks of or and and expressions are how as wrong
as they are in CPython. Does not apply to - - i npr oved mode.

« Standalone: Added missing dependency on Q@ Gui by Q¢ W dget s for PyQt5.

» macOS: Improved parsing of ot ool output to avoid duplicate entries, which can also be entirely
wrong in the case of Qt plugins at least.

« Avoid relative paths for main program with file reference mode ori gi nal , as it otherwise changes
as the file moves.

* MinGW: The created modules depended on MinGW to be in PATH for their usage. This is no longer
necessary, as we now link these libraries statically for modules too.

» Windows: For modules, the option - - r un to immediately load the modules had been broken for a
while.

« Standalone: Ignore Windows DLLs that were attempted to be loaded, but then failed to load. This
happens e.g. when both PySide and PyQt are installed, and could cause the dreaded conflicting
DLLs message. The DLL loaded in error is now ignored, which avoids this.

* MinGW: The resource file used might be empty, in which case it doesn't get created, avoiding an
error due to that.

» MinGW: Modules can now be created again. The run time relative code uses an API that is WinXP
only, and MinGW failed to find it without guidance.

Optimization

» Make direct calls out of called function creations. Initially this applies to lambda functions only, but it's
expected to become common place in coming releases. This is now 20x faster than CPython.

Nui tka avoids creating a function object, parsing function argunents:
(lambda x: x) (somet hing)

» Propagate assignments from non-mutable constants forward based on SSA information. This is the
first step of using SSA for real compile time optimization.

 Specialized the creation of call nodes at creation, avoiding to have all kinds be the most flexible form
(keyword and plain arguments), but instead only what kind of call they really are. This saves lots of
memory, and makes the tree faster to visit.

» Added support for optimizing the sl i ce built-in with compile time constant arguments to constants.
The re-formulation for slices in Python3 uses these a lot. And the lack of this optimization prevented a
bunch of optimization in this area. For Python2 the built-in is optimized too, but not as important
probably.

http://bugs.nuitka.net/issue202
http://bugs.nuitka.net/issue189

» Added support for optimizing i si nst ance calls with compile time constant arguments. This avoids
static exception raises in the exec re-formulation which tests for fi | e type, and then optimization
couldn'ttellthata str isnotafil e instance. Now it can.

» Lower in-place operations on immutable types to normal operations. This will allow to compile time
compute these more accurately.

» The re-formulation of loops puts the loop condition as a conditional statement with break. The not
that needs to apply was only added in later optimization, leading to unnecessary compile time efforts.

« Removed per variable trace visit from optimization, removing useless code and compile time
overhead. We are going to optimize things by making decision in assignment and reference nodes
based on forward looking statements using the last trace collection.

New Features

» Added experimental support for Python 3.5, which seems to be passing the test suites just fine. The
new @matrix multiplicator operators are not yet supported though.

» Added support for patching source on the fly. This is used to work around a (now fixed) issue with
nunmexpr. cpui nf o making type checks with the i s operation, about the only thing we cannot
detect.

Organizational

» Added repository for Ubuntu Vivid (15.04) for download. Removed Ubuntu Saucy and Ubuntu Raring
package downloads, these are no longer supported by Ubuntu.

» Added repository for Debian Stretch, after Jessie release.

» Make it more clear in the documentation that in order to compile Python3, a Python2 is needed to
execute Scons, but that the end result is a Python3 binary.

» The PyLint checker tool now can operate on directories given on the command line, and whitelists an
error that is Windows only.

Cleanups

« Split up standalone code further, moving depends. exe handling to a separate module.
» Reduced code complexity of scons interface.

« Cleaned up where trace collection is being done. It was partially still done inside the collection itself
instead in the owner.

* In case of conflicting DLLs for standalone mode, these are now output with nicer formatting, that
makes it easy to recognize what is going on.

» Moved code to fetch depends. exe to dedicated module, so it's not as much in the way of
standalone code.

Tests

» Made Bui | ti nsTest directly executable with Python3.
» Added construct test to demonstrate the speed up of direct lambda calls.

» The deletion of @ est for the CPython test suite is more robust now, esp. on Windows, the symbolic
links are now handled.

» Added test to cover or usage with in-place assignment.

 Cover local relative i nport from . with absol ut e_i nport future flag enabled.

 Again, more basic tests are now directly executable with Python3.

Summary

This release is major due to amount of ground covered. The reduction in memory usage of Nuitka itself
(the C++ compiler will still use much memory) is very massive and an important aspect of scalability too.

Then the SSA changes are truly the first sign of major improvements to come. In their current form, without
eliminating dead assignments, the full advantage is not taken yet, but the next releases will do this, and
that's a major milestone to Nuitka.

The other optimization mostly stem from looking at things closer, and trying to work towards function
in-lining, for which we are making a lot of progress now.

Nuitka Release 0.5.12

This release contains massive amounts of corrections for long standing issues in the import recursion
mechanism, as well as for standalone issues now visible afterthe _file__and __path__ values have
changed to become runtime dependent values.

Bug Fixes

* Fix, the __ pat h__ attribute for packages was still the original filename's directory, even in file
reference mode was r unt i me.

» The use of runt i me as default file reference mode for executables, even if not in standalone mode,
was making acceleration harder than necessary. Changed to ori gi nal for that case. Fixed in
0.5.11.1 already.

» The constant value for the smallest i nt that is not yet a | ong is created using 1 due to C compiler
limitations, but 1 was not yet initialized properly, if this was a global constant, i.e. used in multiple
modules. Fixed in 0.5.11.2 already.

« Standalone: Recent fixes around __path__ revealed issues with PyWin32, where modules from
wi n32com shel | were not properly recursed to. Fixed in 0.5.11.2 already.

» The importing of modules with the same name as a built-in module inside a package falsely assumed
these were the built-ins which need not exist, and then didn't recurse into them. This affected
standalone mode the most, as the module was then missing entirely. This corrects Issue#178.

I nside "x.y" nodul e:
i nport X.y.exceptions

* Similarly, the importing of modules with the same name as standard library modules could go wrong.
This corrects Issue#184.

Inside "x.y" nodul e:
import X.y.types

 Importing modules on Windows and macOS was not properly checking the checking the case,
making it associate wrong modules from files with mismatching case. This corrects Issue#188.

« Standalone: Importing with from _ future__ inmport absol ute_i nport would prefer relative
imports still. This corrects Issue#187.

» Python3: Code generation for try/return expr/finally could loose exceptions when expr
raised an exception, leading to a Runt i meEr r or for NULL return value. The real exception was lost.

http://bugs.nuitka.net/issue178
http://bugs.nuitka.net/issue184
http://bugs.nuitka.net/issue188
http://bugs.nuitka.net/issue188

» Lambda expressions that were directly called with star arguments caused the compiler to crash.

(l anbda *args: args)(*args) # was crashing Nuitka

New Optimization

» Focusing on compile time memory usage, cyclic dependencies of trace merges that prevented them
from being released, even when replaced were removed.

» More memory efficient updating of global SSA traces, reducing memory usage during optimization by
ca. 50%.

» Code paths that cannot and therefore must not happen are now more clearly indicated to the
backend compiler, allowing for slightly better code to be generated by it, as it can tell that certain
code flows need not be merged.

New Features

» Standalone: On systems, where . pt h files inject Python packages at launch, these are now
detected, and taking into account. Previously Nuitka did not recognize them, due to lack of
__init__. py files. These are mostly pip installations of e.g. zope. i nt erf ace.

» Added option - - expl ai n-i nmport s to debug the import resolution code of Nuitka.

» Added options - - show nenory to display the amount of memory used in total and how it's spread
across the different node types during compilation.

* The option --trace-executi on now also covers early program initialisation before any Python
code runs, to ease finding bugs in this domain as well.

Organizational

» Changed default for file reference mode to ori gi nal unless standalone or module mode are used.
For mere acceleration, breaking the reading of data files from __fil e__ is useless.

» Added check that the in-line copy of scons is not run with Python3, which is not supported. Nuitka
works fine with Python3, but a Python2 is required to execute scons.

« Discover more kinds of Python2 installations on Linux/macQOS installations.

» Added instructions for macOS to the download page.

Cleanups

* Moved oset and odi ct modules which provide ordered sets and dictionaries into a new package
nui t ka. cont ai ner to clean up the top level scope.

* Moved Synt axErr or s to nui t ka. t r ee package, where it is used to format error messages.

* Moved nui tka. Uti | s packagetonui tka. utils. Util s creating a whole package for utils, so as
to better structure them for their purpose.

Summary

This release is a major maintenance release. Support for namespace modules injected by *. pt h is a
major step for new compatibility. The import logic improvements expand the ability of standalone mode
widely. Many more use cases will now work out of the box, and less errors will be found on case
insensitive systems.

There is aside of memory issues, no new optimization though as many of these improvements could not
be delivered as hotfixes (too invasive code changes), and should be out to the users as a stable release.
Real optimization changes have been postponed to be next release.

Nuitka Release 0.5.11

The last release represented a significant change and introduced a few regressions, which got addressed
with hot fix releases. But it also had a focus on cleaning up open optimization issues that were postponed
in the last release.

New Features

» The filenames of source files as found in the _ fil e _ attribute are now made relative for all
modes, not just standalone mode.

This makes it possible to put data files along side compiled modules in a deployment. This solves
Issue#170.

Bug Fixes
* Local functions that reference themselves were not released. They now are.

def soneFunction():
def f():
f() # referencing 'f' in 'f' caused the garbage collection to fai

Recent changes to code generation attached closure variable values to the function object, so now
they can be properly visited. This corrects Issue#45. Fixed in 0.5.10.1 already.

» Python2.6: The complex constants with real or imaginary parts - 0. 0 were collapsed with constants
of value 0. 0. This became more evident after we started to optimize the conpl ex built-in. Fixed in
0.5.10.1 already.

conmpl ex(0.0, 0.0)
conmpl ex(-0.0, -0.0) # Could be confused with the above.

» Complex call helpers could leak references to their arguments. This was a regression. Fixed in
0.5.10.1 already.

» Parameter variables offered as closure variables were not properly released, only the cell object was,
but not the value. This was a regression. Fixed in 0.5.10.1 already.

» Compatibility: The exception type given when accessing local variable values not initialized in a
closure taking function, needs to be NameError and UnboundLocal Error for accesses in the
providing function. Fixed in 0.5.10.1 already.

* Fix support for "venv" on systems, where the system Python uses symbolic links too. This is the case
on at least on Mageia Linux. Fixed in 0.5.10.2 already.

» Python3.4: On systems where | ong and Py_ssi ze_t are different (e.g. Win64) iterators could be
corrupted if used by uncompiled Python code. Fixed in 0.5.10.2 already.

* Fix, generator objects didn't release weak references to them properly. Fixed in 0.5.10.2 already.

» Compatibility: The __cl osur e__ attributes of functions was so far not supported, and rarely missing.
Recent changes made it easy to expose, so now it was added. This corrects Issue#45.

» macOS: A linker warning about deprecated linker option - s was solved by removing the option.

http://bugs.nuitka.net/issue170
http://bugs.nuitka.net/issue45
http://bugs.nuitka.net/issue45

» Compatibility: Nuitka was enforcing that the __doc__ attribute to be a string object, and gave a
misleading error message. This check must not be done though, _ doc__ can be any type in
Python. This corrects Issue#177.

New Optimization

« Variables that need not be shared, because the uses in closure taking functions were eliminated, no
longer use cell objects.

« Thetryl/except and try/final | y statements now both have actual merging for SSA, allowing for
better optimization of code behind it.

def f():

try:

a = sonet hi ng()
except:

return 2

Since the above exception handling cannot continue the code flow,

we do not have to invalidate the trace of "a", and e.g. do not have
to generate code to check if it's assigned.

return a

Since try/finally is used in almost all re-formulations of complex Python constructs this is
improving SSA application widely. The uses of try/except in user code will no longer degrade
optimization and code generation efficiency as much as they did.

* The t ry/except statement now reduces the scope of tried block if possible. When no statement
raised, already the handling was removed, but leading and trailing statements that cannot raise, were
not considered.

def f():
try:
b =1
a = sonet hi ng()
c =1
except:
return 2

This is now optimized to.

def f():
b =1
try:
a = sonet hi ng()
except:
return 2
c =1

The impact may on execution speed may be marginal, but it is definitely going to improve the branch
merging to be added later. Note that ¢ can only be optimized, because the exception handler is
aborting, otherwise it would change behaviour.

http://bugs.nuitka.net/issue177

» The creation of code objects for standalone mode and now all code objects was creating a distinct
filename object for every function in a module, despite them being same content. This was wasteful
for module loading. Now it's done only once.

Also, when having multiple modules, the code to build the run time filename used for code objects,
was calling import logic, and doing lookups to find 0s. pat h. j oi n again and again. These are now
cached, speeding up the use of many modules as well.

Cleanups

 Nuitka used to have "variable usage profiles" and still used them to decide if a global variable is
written to, in which case, it stays away from doing optimization of it to built-in lookups, and later calls.

The have been replaced by "global variable traces", which collect the traces to a variable across all
modules and functions. While this is how only a replacement, and getting rid of old code, and basing
on SSA, later it will also allow to become more correct and more optimized.

» The standalone now queries its hidden dependencies from a plugin framework, which will become an
interface to Nuitka internals in the future.

Testing

» The use of deep hashing of constants allows us to check if constants become mutated during the
run-time of a program. This allows to discover corruption should we encounter it.

» The tests of CPython are now also run with Python in debug mode, but only on Linux, enhancing
reference leak coverage.

» The CPython test parts which had been disabled due to reference cycles involving compiled
functions, or usage of __cl osure___ attribute, were reactivated.

Organizational
* Since Google Code has shutdown, it has been removed from the Nuitka git mirrors.

Summary

This release brings exciting new optimization with the focus on the t r y constructs, now being done more
optimal. It is also a maintenance release, bringing out compatibility improvements, and important bug
fixes, and important usability features for the deployment of modules and packages, that further expand
the use cases of Nuitka.

The git flow had to be applied this time to get out fixes for regression bug fixes, that the big change of the
last release brought, so this is also to consolidate these and the other corrections into a full release before
making more invasive changes.

The cleanups are leading the way to expanded SSA applied to global variable and shared variable values
as well. Already the built-in detect is now based on global SSA information, which was an important step
ahead.

Nuitka Release 0.5.10

This release has a focus on code generation optimization. Doing major changes away from "C++-ish" code
to "C-ish" code, many constructs are now faster or got looked at and optimized.

Bug Fixes

» Compatibility: The variable name in locals for the iterator provided to the generator expression should
be . 0, now itis.

» Generators could leak frames until program exit, these are now properly freed immediately.

New Optimization

» Faster exception save and restore functions that might be in-lined by the backend C compiler.

» Faster error checks for many operations, where these errors are expected, e.g. instance attribute
lookups.

Do not create traceback and locals dictionary for frame when St opl t er at i on or Gener at or Exi t
are raised. These tracebacks were wasted, as they were immediately released afterwards.

» Closure variables to functions and parameters of generator functions are now attached to the function
and generator objects.

 The creation of functions with closure taking was accelerated.
» The creation and destruction of generator objects was accelerated.
 The re-formulation for in-place assignments got simplified and got faster doing so.

* In-place operations of st r were always copying the string, even if was not necessary. This corrects
Issue#124.

a += b # WAs not re-using the storage of "a" in case of strings

» Python2: Additions of i nt for Python2 are now even faster.
» Access to local variable values got slightly accelerated at the expense of closure variables.
» Added support for optimizing the conpl ex built-in.

* Removing unused temporary and local variables as a result of optimization, these previously still
allocated storage.

Cleanup

* The use of C++ classes for variable objects was removed. Closure variables are now attached as
PyCel | Ohj ect to the function objects owning them.

» The use of C++ context classes for closure taking and generator parameters has been replaced with
attaching values directly to functions and generator objects.

» The indentation of code template instantiations spanning multiple was not in all cases proper. We
were using emission objects that handle it new lines in code and mere | i st objects, that don't
handle them in mixed forms. Now only the emission objects are used.

* Some templates with C++ helper functions that had no variables got changed to be properly
formatted templates.

» The internal API for handling of exceptions is now more consistent and used more efficiently.

» The printing helpers got cleaned up and moved to static code, removing any need for forward
declaration.

» The use of | NCREASE_REFCOUNT _X was removed, it got replaced with proper Py Xl NCREF usages.
The function was once required before "C-ish" lifted the need to do everything in one function call.

» The use of | NCREASE REFCOUNT got reduced. See above for why that is any good. The idea is that
Py I NCREF must be good enough, and that we want to avoid the C function it was, even if in-lined.

http://bugs.nuitka.net/issue124

» The assert Obj ect function that checks if an object is not NULL and has positive reference count,
i.e. is sane, got turned into a preprocessor macro.

» Deep hashes of constant values created in - - debug mode, which cover also mutable values, and
attempt to depend on actual content. These are checked at program exit for corruption. This may
help uncover bugs.

Organizational

» Speedcenter has been enhanced with better graphing and has more benchmarks now. More work
will be needed to make it useful.

» Updates to the Developer Manual, reflecting the current near finished state of "C-ish" code
generation.

Tests

* New reference count tests to cover generator expressions and their usage got added.

» Many new construct based tests got added, these will be used for performance graphing, and serve
as micro benchmarks now.

 Again, more basic tests are directly executable with Python3.

Summary

This is the next evolution of "C-ish" coming to pass. The use of C++ has for all practical purposes
vanished. It will remain an ongoing activity to clear that up and become real C. The C++ classes were a
huge road block to many things, that now will become simpler. One example of these were in-place
operations, which now can be dealt with easily.

Also, lots of polishing and tweaking was done while adding construct benchmarks that were made to check
the impact of these changes. Here, generators probably stand out the most, as some of the missed
optimization got revealed and then addressed.

Their speed increases will be visible to some programs that depend a lot on generators.

This release is clearly major in that the most important issues got addressed, future releases will provide
more tuning and completeness, but structurally the "C-ish" migration has succeeded, and now we can reap
the benefits in the coming releases. More work will be needed for all in-place operations to be accelerated.

More work will be needed to complete this, but it's good that this is coming to an end, so we can focus on
SSA based optimization for the major gains to be had.

Nuitka Release 0.5.9

This release is mostly a maintenance release, bringing out minor compatibility improvements, and some
standalone improvements. Also new options to control the recursion into modules are added.

Bug Fixes

» Compatibility: Checks for iterators were using Pyl t er _Check which is buggy when running outside
of Python core, because it's comparing pointers we don't see. Replaced with HAS | TERNEXT helper
which compares against the pointer as extracting for a real non-iterator object.

class |terable:
def __init__ (self):
sel f.consuned = 2

def __iter_ (self):
return Iterable()

iter(lterable()) # This is suppose to raise, but didn't with Nuitka
» Python3: Errors when creating class dictionaries raised by the _ prepare__ dictionary (e.g. enum
classes with wrong identifiers) were not immediately raised, but only by the t ype call.
This was not observable, but might have caused issues potentially.

 Standalone macOS: Shared libraries and extension modules didn't have their DLL load paths
updated, but only the main binary. This is not sufficient for more complex programs.

« Standalone Linux: Shared libraries copied into the . di st folder were read-only and executing
chr pat h could potentially then fail. This has not been observed, but is a conclusion of macOS fix.

« Standalone: When freezing standard library, the path of Nuitka and the current directory remained in
the search path, which could lead to looking at the wrong files.

Organizational

» The get at t r built-in is now optimized for compile time constants if possible, even in the presence of
a def aul t argument. This is more a cleanup than actually useful yet.

 The calling of PyCFunct i on from normal Python extension modules got accelerated, especially for
the no or single argument cases where Nuitka now avoids building the tuple.

New Features

» Added the option - - r ecur se- pat t er n to include modules per filename, which for Python3 is the
only way to not have them in a package automatically.

» Added the option - - gener at e- c++- onl y to only generate the C++ source code without starting
the compiler.

Mostly used for debugging and testing coverage. In the later case we do not want the C++ compiler
to create any binary, but only to measure what would have been used.

Organizational

» Renamed the debug option - - c++-only to - -reconpi | e-c++-onl y to make its purpose more
clear and there now is - - gener at e- c++- onl y too.

Tests

» Added support for taking coverage of Nuitka in a test run on a given input file.

» Added support for taking coverage for all Nuitka test runners, migrating them all to common code for
searching.

» Added uniform way of reporting skipped tests, not generally used yet.

Summary

This release marks progress towards having coverage testing. Recent releases had made it clear that not
all code of Nuitka is actually used at least once in our release tests. We aim at identifying these.

Another direction was to catch cases, where Nuitka leaks exceptions or is subject to leaked exceptions,
which revealed previously unnoticed errors.

Important changes have been delayed, e.g. the closure variables will not yet use C++ objects to share
storage, but proper PyCel | Obj ect for improved compatibility, and to approach a more "C-ish" status.
These is unfinished code that does this. And the forward propagation of values is not enabled yet again
either.

So this is an interim step to get the bug fixes and improvements accumulated out. Expect more actual
changes in the next releases.

Nuitka Release 0.5.8

This release has mainly a focus on cleanups and compatibility improvements. It also advances standalone
support, and a few optimization improvements, but it mostly is a maintenance release, attacking long
standing issues.

Bug Fixes

» Compatibility Windows macOS: Fix importing on case insensitive systems.

It was not always working properly, if there was both a package Somet hi ng and sonet hi ng, by
merit of having files Sorret hi ng/ __init__. py and sonet hi ng. py.

« Standalone: The search path was preferring system directories and therefore could have conflicting
DLLs. Issue#144.

* Fix, the optimization of get att r with predictable result was crashing the compilation. This was a
regression, fixed in 0.5.7.1 already.

» Compatibility: The name mangling inside classes also needs to be applied to global variables.

* Fix, proving cl ang++ for CXX was mistakingly thinking of it as a g++ and making version checks on
it.

» Python3: Declaring __cl ass___ global is now a Synt axEr r or before Python3.4.

« Standalone Python3: Making use of module state in extension modules was not working properly.

New Features

* The filenames of source files as found inthe __ fi | e__ attribute are now made relative in standalone
mode.

This should make it more apparent if things outside of the distribution folder are used, at the cost of
tracebacks. Expect the default ability to copy the source code along in an upcoming release.

» Added experimental standalone mode support for PyQt5. At least headless mode should be working,
plug-ins (needed for anything graphical) are not yet copied and will need more work.

Cleanup

* No longer using i np. fi nd_nodul e anymore. To solve the casing issues we needed to make our
own module finding implementation finally.

» The name mangling was handled during code generation only. Moved to tree building instead.
» More code generation cleanups. The compatible line numbers are now attached during tree building
and therefore better preserved, as well as that code no longer polluting code generation as much.

Organizational

http://bugs.nuitka.net/issue144

* No more packages for openSUSE 12.1/12.2/12.3 and Fedora 17/18/19 as requested by the
openSUSE Build Service.

» Added RPM packages for Fedora 21 and CentOS 7 on openSUSE Build Service.

Tests

 Lots of test refinements for the CPython test suites to be run continuously in Buildbot for both
Windows and Linux.
Summary

This release brings about two major changes, each with the risk to break things.

One is that we finally started to have our own import logic, which has the risk to cause breakage, but
apparently currently rather improved compatibility. The case issues were not fixable with standard library
code.

The second one is that the _ fil e attributes for standalone mode is now no longer pointing to the
original install and therefore will expose missing stuff sooner. This will have to be followed up with code to
scan for missing "data" files later on.

For SSA based optimization, there are cleanups in here, esp. the one removing the name mangling,
allowing to remove special code for class variables. This makes the SSA tree more reliable. Hope is that
the big step (forward propagation through variables) can be made in one of the next releases.

Nuitka Release 0.5.7

This release is brings a newly supported platform, bug fixes, and again lots of cleanups.
Bug Fixes
* Fix, creation of dictionary and set literals with non-hashable indexes did not raise an exception.

{[]: None} # This is now a TypeError

New Optimization

 Calls to the di ct built-in with only keyword arguments are now optimized to mere dictionary
creations. This is new for the case of non-constant arguments only of course.

di ct (a=b, c=d)
equivalent to
{"a": b, "c": d}

« Slice del with indexable arguments are now using optimized code that avoids Python objects too.
This was already done for slice look-ups.

» Added support for byt ear r ay built-in.

Organizational

» Added support for OpenBSD with fiber implementation from library, as it has no context support.

Cleanups

» Moved slicing solutions for Python3 to the re-formulation stage. So far the slice nodes were used, but
only at code generation time, there was made a distinction between Python2 and Python3 for them.
Now these nodes are purely Python2 and slice objects are used universally for Python3.

Tests

* The test runners now have common code to scan for the first file to compile, an implementation of the
sear ch mode. This will allow to introduce the ability to search for pattern matches, etc.

» More tests are directly executable with Python3.

» Added recurse_none mode to test comparison, making using extra options for that purpose
unnecessary.

Summary

This solves long standing issues with slicing and subscript not being properly distinguished in the Nuitka
code. It also contains major bug fixes that really problematic. Due to the involved nature of these fixes they
are made in this new release.

Nuitka Release 0.5.6

This release brings bug fixes, important new optimization, newly supported platforms, and important
compatibility improvements. Progress on all fronts.

Bug Fixes

* Closure taking of global variables in member functions of classes that had a class variable of the
same name was binding to the class variable as opposed to the module variable.

» Overwriting compiled function's __doc___ attribute more than once could corrupt the old value,
leading to crashes. Issue#156. Fixed in 0.5.5.2 already.

» Compatibility Python2: The exec statement execfi | e were changing | ocal s() was given as an
argument.

def function():
a =1

exec code in locals() # Cannot change |ocal "a".
exec code in None # Can change |ocal "a

exec code

Previously Nuitka treated all 3 variants the same.

» Compatibility: Empty branches with a condition were reduced to only the condition, but they need in
fact to also check the truth value:

if condition:
pass
must be treated as
bool (condi ti on)
and not (bug)
condi tion

* Detection of Windows virtualenv was not working properly. Fixed in 0.5.5.2 already.

http://bugs.nuitka.net/issue156

 Large enough constants structures are now unstreamed via mar shal module, avoiding large codes
being generated with no point. Fixed in 0.5.5.2 already.

» Windows: Pressing CTRL-C gave two stack traces, one from the re-execution of Nuitka which was
rather pointless. Fixed in 0.5.5.1 already.

» Windows: Searching for virtualenv environments didn't terminate in all cases. Fixed in 0.5.5.1
already.

 During installation from PyPI with Python3 versions, there were errors given for the Python2 only
scons files. Issue#153. Fixed in 0.5.5.3 already.

* Fix, the arguments of yi el d fr omexpressions could be leaked.

* Fix, closure taking of a class variable could have in a sub class where the module variable was

meant.
var = 1
class C
var = 2
class D

def f():
was C. var, now correctly addressed top |evel var
return var

* Fix, setting CXX environment variable because the installed gcc has too low version, wasn't affecting
the version check at all.

* Fix, on Debian/Ubuntu with har deni ng- wr apper installed the version check was always failing,
because these report a shortened version number to Scons.

New Optimization

« Local variables that must be assigned also have no side effects, making use of SSA. This allows for a
host of optimization to be applied to them as well, often yielding simpler access/assign code, and
discovering in more cases that frames are not necessary.

» Micro optimization to di ct built-in for simpler code generation.

Organizational

» Added support for ARM "hard float" architecture.
» Added package for Ubuntu 14.10 for download.
» Added package for openSUSE 13.2 for download.

» Donations were used to buy a Cubox-i4 Pro. It got Debian Jessie installed on it, and will be used to
run an even larger amount of tests.

» Made it more clear in the user documentation that the . exe suffix is used for all platforms, and why.
» Generally updated information in user manual and developer manual about the optimization status.

« Using Nikola 7.1 with external filters instead of our own, outdated branch for the web site.

Cleanups

 PyLint clean for the first time ever. We now have a Buildbot driven test that this stays that way.

http://bugs.nuitka.net/issue153

» Massive indentation cleanup of keyword argument calls. We have a rule to align the keywords, but as
this was done manually, it could easily get out of touch. Now with a "autoformat" tool based on
RedBaron, it's correct. Also, spacing around arguments is now automatically corrected. More to
come.

» For exec statements, the coping back to local variables is now an explicit node in the tree, leader to
cleaner code generation, as it now uses normal variable assignment code generation.

» The MaybeLocal Vari abl es became explicit about which variable they might be, and contribute to
its SSA trace as well, which was incomplete before.

» Removed some cases of code duplication that were marked as TODO items. This often resulted in
cleanups.

» Do not use r epl aceW t h on child nodes, that potentially were re-used during their computation.

Summary

The release is mainly the result of consolidation work. While the previous release contained many
important enhancements, this is another important step towards full SSA, closing one loop whole (class
variables and exec functions), as well as applying it to local variables, largely extending its use.

The amount of cleanups is tremendous, in huge part due to infrastructure problems that prevented release
repeatedly. This reduces the technological debt very much.

More importantly, it would appear that now eliminating local and temporary variables that are not
necessary is only a small step away. But as usual, while this may be easy to implement now, it will uncover
more bugs in existing code, that we need to address before we continue.

Nuitka Release 0.5.5

This release is finally making full use of SSA analysis knowledge for code generation, leading to many
enhancements over previous releases.

It also adds support for Python3.4, which has been longer in the making, due to many rather subtle issues.
In fact, even more work will be needed to fully solve remaining minor issues, but these should affect no
real code.

And then there is much improved support for using standalone mode together with virtualenv. This
combination was not previously supported, but should work now.

New Features

» Added support for Python3.4

This means support for cl ear method of frames to close generators, dynamic __qual name__,
affected by gl obal statements, tuples as yi el d from arguments, improved error messages,
additional checks, and many more detail changes.

New Optimization

» Using SSA knowledge, local variable assignments now no longer need to check if they need to
release previous values, they know definitely for the most cases.

def f():
a=1 # This used to check if old val ue of

a" needs a rel ease

» Using SSA knowledge, local variable references now no longer need to check for raising exceptions,
let alone produce exceptions for cases, where that cannot be.

def f():
a=1
return a # This used to check if "a" is assigned

* Using SSA knowledge, local variable references now are known if they can raise the
UnboundLocal Err or exception or not. This allows to eliminate frame usages for many cases.
Including the above example.

« Using less memory for keeping variable information.

* Also using less memory for constant nodes.
Bug Fixes

» The standalone freezing code was reading Python source as UTF-8 and not using the code that
handles the Python encoding properly. On some platforms there are files in standard library that are
not encoded like that.

* The fiber implementation for Linux amd64 was not working with glibc from RHEL 5. Fixed to use now
multiple i nt to pass pointers as necessary. Also use ui nt ptr _t instead of i nt prt _t to transport
pointers, which may be more optimal.

* Line numbers for exceptions were corrupted by wi t h statements due to setting line numbers even for
statements marked as internal.

« Partial support for wi n32comby adding support for its hidden __pat h__ change.

» Python3: Finally figured out proper chaining of exceptions, given proper context messages for
exception raised during the handling of exceptions.

« Corrected C++ memory leak for each closure variable taken, each time a function object was created.

» Python3: Raising exceptions with tracebacks already attached, wasn't using always them, but
producing new ones instead.

* Some constants could cause errors, as they cannot be handled with the mar shal module as
expected, e.g. (i nt,).

» Standalone: Make sure to propagate sys. pat h to the Python instance used to check for standard
library import dependencies. This is important for virtualenv environments, which need si t e. py to
set the path, which is not executed in that mode.

» Windows: Added support for different path layout there, so using virtualenv should work there too.

» The code object flag "optimized" (fast locals as opposed to locals dictionary) for functions was set
wrongly to value for the parent, but for frames inside it, one with the correct value. This lead to more
code objects than necessary and false co_f | ags values attached to the function.

» Options passed to nui t ka- pyt hon could get lost.

nui t ka- pyt hon program py argunentl argunment2 ...

The above is supposed to compile program.py, execute it immediately and pass the arguments to it.
But when Nuitka decides to restart itself, it would forget these options. It does so to e.g. disable hash
randomization as it would affect code generation.

* Raising tuples exception as exceptions was not compatible (Python2) or reference leaking (Python3).

Tests

* Running 2t 03 is now avoided for tests that are already running on both Python2 and Python3.

» Made XML based optimization tests work with Python3 too. Previously these were only working on
Python2.

» Added support for ignoring messages that come from linking against self compiled Pythons.

» Added test case for threaded generators that tortures the fiber layer a bit and exposed issues on
RHEL 5.

» Made reference count test of compiled functions generic. No more code duplication, and automatic
detection of shared stuff. Also a more clear interface for disabling test cases.

» Added Python2 specific reference counting tests, so the other cases can be executed with Python3
directly, making debugging them less tedious.

Cleanups

 Really important removal of "variable references". They didn't solve any problem anymore, but their
complexity was not helpful either. This allowed to make SSA usable finally, and removed a lot of
code.

* Removed special code generation for parameter variables, and their dedicated classes, ho more
needed, as every variable access code is now optimized like this.

» Stop using C++ class methods at all. Now only the destructor of local variables is actually supposed
to do anything, and their are no methods anymore. The unused var_name got removed,
set Vari abl eVal ue is now done manually.

» Moved assertions for the fiber layer to a common place in the header, so they are executed on all
platforms in debug mode.

* As usual, also a bunch of cleanups for PyLint were applied.

* The | ocal s built-in code now uses code generation for accessing local variable values instead
having its own stuff.

Organizational

» The Python version 3.4 is now officially supported. There are a few problems open, that will be
addressed in future releases, none of which will affect normal people though.

» Major cleanup of Nuitka options.

* Windows specific stuff is now in a dedicated option group. This includes options for icon,
disabling console, etc.

» There is now a dedicated group for controlling backend compiler choices and options.
* Also pickup g++44 automatically, which makes using Nuitka on CentOS5 more automatic.

Summary

This release represents a very important step ahead. Using SSA for real stuff will allow us to build the trust
necessary to take the next steps. Using the SSA information, we could start implementing more
optimizations.

Nuitka Release 0.5.4

This release is aiming at preparatory changes to enable optimization based on SSA analysis, introducing a
variable registry, so that variables no longer trace their references to themselves.

Otherwise, MinGW64 support has been added, and lots of bug fixes were made to improve the
compatibility.

New Optimization

» Using new variable registry, now properly detecting actual need for sharing variables. Optimization
may discover that it is unnecessary to share a variable, and then it no longer is. This also allows
- - debug without it reporting unused variable warnings on Python3.

» Scons startup has been accelerated, removing scans for unused tools, and avoiding making more
than one gcc version check.

Bug Fixes

» Compatibility: In case of unknown encodings, Nuitka was not giving the name of the problematic
encoding in the error message. Fixed in 0.5.3.3 already.

e Submodules with the same name as built-in modules were wrongly shadowed. Fixed in 0.5.3.2
already.

» Python3: Added implementations of i s_package to the meta path based loader.

» Python3.4: Added find_spec implementation to the meta path based loader for increased
compatibility.

 Python3: Corrections for - - debug to work with Python3 and MSVC compiler more often.
* Fixed crash with - - show scons when no compiler was found. Fixed in 0.5.3.5 already.
« Standalone: Need to blacklist | i b2t 03 from standard library as well. Fixed in 0.5.3.4 already.

» Python3: Adapted to changes in Synt axEr r or on newer Python releases, there is now a nsg that
can override r eason.

» Standalone Windows: Preserve sys. execut abl e as it might be used to fork binaries.

» Windows: The caching of Scons was not arch specific, and files could be used again, even if
changing the arch from * x86 to x86_64 or back.

» Windows: On 32 bit Python it can happen that with large number of generators running concurrently
(>1500), one cannot be started anymore. Raising an Menor yEr r or now.

Organizational

» Added support for MinGW64. Currently needs to be run with PATH environment properly set up.

» Updated internal version of Scons to 2.3.2, which breaks support for VS 2008, but adds support for
VS 2013 and VS 2012. The VS 2013 is now the recommended compiler.

» Added RPM package and repository for RHEL 7.
» The output of - - show scons now includes the used compiler, including the MSVC version.

» Added option --nsvc to select the MSVC compiler version to use, which overrides automatic
selection of the latest.

» Added option - pyt hon- f | ag=no_war ni ngs to disable user and deprecation warnings at run time.

 Repository for Ubuntu Raring was removed, no more supported by Ubuntu.

Cleanups

» Made technical and logical sharing decisions separate functions and implement them in a dedicated
variable registry.

» The Scons file has seen a major cleanup.

Summary

This release is mostly a maintenance release. The Scons integrations has been heavily visited, as has
been Python3 and esp. Python3.4 compatibility, and results from the now possible debug test runs.

Standalone should be even more practical now, and MinGW64 is an option for those cases, where MSVC
is too slow.

Nuitka Release 0.5.3

This release is mostly a follow up, resolving points that have become possible to resolve after completing
the C-ish evolution of Nuitka. So this is more of a service release.

New Features

 Improved mode - - i npr oved now sets error lines more properly than CPython does in many cases.

* The - python-fl ag=-S mode now preserves PYTHONPATH and therefore became usable with
virtualenv.

New Optimization

* Line numbers of frames no longer get set unless an exception occurs, speeding up the normal path of
execution.

» For standalone mode, using - - pyt hon-fl ag- S is now always possible and yields less module
usage, resulting in smaller binaries and faster compilation.

Bug Fixes

» Corrected an issue for frames being optimized away where in fact they are still necessary.
Issue#140. Fixed in 0.5.2.1 already.

* Fixed handling of exception tests as side effects. These could be remainders of optimization, but
didn't have code generation. Fixed in 0.5.2.1 already.

* Previously Nuitka only ever used the statement line as the line number for all the expression, even if
it spawned multiple lines. Usually nothing important, and often even more correct, but sometimes not.
Now the line number is most often the same as CPython in full compatibility mode, or better, see
above. Issue#9.

» Python3.4: Standalone mode for Windows is working now.

« Standalone: Undo changes to PYTHONPATH or PYTHONHOVE allowing potentially forked CPython
programs to run properly.

« Standalone: Fixed import error when using PyQt and Python3.

New Tests

* For our testing approach, the improved line number handling means we can undo lots of changes
that are no more necessary.

» The compile library test has been extended to cover a third potential location where modules may
live, covering the mat pl ot | i b module as a result.

http://bugs.nuitka.net/issue140
http://bugs.nuitka.net/issue9

Cleanups

« In Python2, the list contractions used to be re-formulated to be function calls that have no frame stack
entry of their own right. This required some special handling, in e.g. closure taking, and determining
variable sharing across functions.

This now got cleaned up to be properly in-lined inatry/fi nal | y expression.

 The line number handling got simplified by pushing it into error exits only, removing the need to micro
manage a line number stack which got removed.

«Useintptr_t overunsi gned | ong to store fiber code pointers, increasing portability.

Organizational

* Providing own Debian/Ubuntu repositories for all relevant distributions.
» Windows MSiI files for Python 3.4 were added.

* Hosting of the web site was moved to metal server with more RAM and performance.

Summary

This release brings about structural simplification that is both a follow-up to C-ish, as well as results from a
failed attempt to remove static "variable references" and be fully SSA based. It incorporates changes
aimed at making this next step in Nuitka evolution smaller.

Nuitka Release 0.5.2

This is a major release, with huge changes to code generation that improve performance in a significant
way. It is a the result of a long development period, and therefore contains a huge jump ahead.

New Features

» Added experimental support for Python 3.4, which is still work in progress.
» Added support for virtualenv on macOS.

» Added support for virtualenv on Windows.

» Added support for macOS X standalone mode.

» The code generation uses no header files anymore, therefore adding a module doesn't invalidate all
compiled object files from caches anymore.

» Constants code creation is now distributed, and constants referenced in a module are declared
locally. This means that changing a module doesn't affect the validity of other modules object files
from caches anymore.

New Optimization

» C-ish code generation uses less C++ classes and generates more C-like code. Explicit temporary
objects are now used for statement temporary variables.

» The constants creation code is no more in a single file, but distributed across all modules, with only
shared values created in a single file. This means improved scalability. There are remaining bad
modules, but more often, standalone mode is now fast.

» Exception handling no longer uses C++ exception, therefore has become much faster.

* Loops that only break are eliminated.

» Dead code after loops that do not break is now removed.
*Thetry/finallyandtryl/except constructs are now eliminated, where that is possible.

« The try/finally part of the re-formulation for pri nt statements is now only done when printing to
a file, avoiding useless node tree bloat.

* Tuples and lists are now generated with faster code.

* Locals and global variables are now access with more direct code.
» Added support for the anonymous code type built-in.

» Added support for comnpi | e built-in.

» Generators that statically return immediately, e.g. due to optimization results, are no longer using
frame objects.

» The complex call helpers use no pseudo frames anymore. Previous code generation required to have
them, but with C-ish code generation that is no more necessary, speeding up those kind of calls.

» Modules with only code that cannot raise, need not have a frame created for them. This avoids
useless code size bloat because of them. Previously the frame stack entry was mandatory.

Bug Fixes

» Windows: The resource files were cached by Scons and re-used, even if the input changed. The
could lead to corrupted incremental builds. Issue#129. Fixed in 0.5.1.1 already.

» Windows: For functions with too many local variables, the MSVC failed with an error "C1026: parser
stack overflow, program too complex”. The rewritten code generation doesn't burden the compiler as
much. Issue#127.

» Compatibility: The timing deletion of nested call arguments was different from C++. This shortcoming
has been addressed in the rewritten code generation. Issue#62.

e Compatibility: The _ future__ flags and CO FREECELL were not present in frame flags. These
were then not always properly inherited to eval and exec in all cases.

» Compatibility: Compiled frames for Python3 had f _restri ct ed attribute, which is Python2 only.
Removed it.

» Compatibility: The Synt axEr r or of having a cont i nue in a finally clause is now properly raised.

» Python2: The exec statement with no locals argument provided, was preventing list contractions to
take closure variables.

» Python2: Having the ASCII encoding declared in a module wasn't working.
« Standalone: Included the i dna encoding as well. Issue#135.

« Standalone: For virtualenv, the file ori g- pr ef i x. t xt needs to be present, now it's copied into the
"dist" directory as well. Issue#126. Fixed in 0.5.1.1 already.

» Windows: Handle cases, where Python and user program are installed on different volumes.

» Compatibility: Can now finally use execfi | e as an expression. Issue#5 is finally fixed after all this
time thanks to C-ish code generation.

» Compatibility: The order or call arguments deletion is now finally compatible. Issue#62 also is finally
fixed. This too is thanks to C-ish code generation.

» Compatibility: Code object flags are now more compatible for Python3.

« Standalone: Removing "rpath" settings of shared libraries and extension modules included. This
makes standalone binaries more robust on Fedora 20.

http://bugs.nuitka.net/issue129
http://bugs.nuitka.net/issue127
http://bugs.nuitka.net/issue62
http://bugs.nuitka.net/issue135
http://bugs.nuitka.net/issue126
http://bugs.nuitka.net/issue5
http://bugs.nuitka.net/issue62

» Python2: Wasn't falsely rejecting uni code strings as values for i nt and | ong variants with base
argument provided.

* Windows: For Python3.2 and 64 bits, global variable accesses could give false NaneErr or
exceptions. Fixed in 0.5.1.6 already.

» Compatibility: Many exec and eval details have become more correctly, the argument handling is
more compatible, and e.g. future flags are now passed along properly.

» Compatibility: Using open with no arguments is now giving the same error.

Organizational

* Replying to email from the issue tracker works now.
» Added option name alias - - xm for - - dunp- xm .

» Added option name alias - - pyt hon- dbg for - - pyt hon- debug, which actually might make it a bit
more clear that it is about using the CPython debug run time.

* Remove option - - dunp-tree, it had been broken for a long time and unused in favor of XML
dumps.

» New digital art folder with 3D version of Nuitka logo. Thanks to Juan Carlos for creating it.
 Using "README.rst" instead of "README.txt" to make it look better on web pages.

» More complete whitelisting of missing imports in standard library. These should give no warnings
anymore.

» Updated the Nuitka GUI to the latest version, with enhanced features.

» The builds of releases and update of the downloads page is nhow driven by Buildbot. Page will be
automatically updated as updated binaries arrive.

Cleanups

» Temporary keeper variables and the nodes to handle them are now unified with normal temporary
variables, greatly simplifying variable handling on that level.

* Less code is coming from templates, more is actually derived from the node tree instead.
* Releasing the references to temporary variables is now always explicit in the node tree.
» The publishing and preservation of exceptions in frames was turned into explicit nodes.

» Exception handling is now done with a single handle that checks with branches on the exception.
This eliminates exception handler nodes.

» The di r built-in with no arguments is now re-formulated to | ocal s or gl obal s with their . keys()
attribute taken.

» Dramatic amounts of cleanups to code generation specialities, that got done right for the new C-ish
code generation.

New Tests

» Warnings from MSVC are now error exits for - - debug mode too, expanding the coverage of these
tests.

» The outputs with pyt hon- dbg can now also be compared, allowing to expand test coverage for
reference counts.

» Many of the basic tests are now executable with Python3 directly. This allows for easier debug.

http://bugs.nuitka.net
https://nuitka.net/pages/download.html

* The library compilation test is now also executed with Python3.

Summary

This release would deserve more than a minor number increase. The C-ish code generation, is a huge
body of work. In many ways, it lays ground to taking benefit of SSA results, that previously would not have
been possible. In other ways, it's incomplete in not yet taking full advantage yet.

The release contains so many improvements, that are not yet fully realized, but as a compiler, it also
reflects a stable and improved state.

The important changes are about making SSA even more viable. Many of the problematic cases, e.g.
exception handlers, have been stream lined. A whole class of variables, temporary keepers, has been
eliminated. This is big news in this domain.

For the standalone users, there are lots of refinements. There is esp. a lot of work to create code that
doesn't show scalability issues. While some remain, the most important problems have been dealt with.
Others are still in the pipeline.

More work will be needed to take full advantage. This has been explained in a separate post in greater
detail.

Nuitka Release 0.5.1

This release brings corrections and major improvements to how standalone mode performs. Much of it
was contributed via patches and bug reports.

Bug Fixes

» There was a crash when using next on a non-iterable. Fixed in 0.5.0.1 already.

* Module names with special characters not allowed in C identifiers were not fully supported.
Issue#118. Fixed in 0.5.0.1 already.

» Name mangling for classes with leading underscores was not removing them from resulting attribute
names. This broke at sl ot s___ with private attributes for such classes. Issue#119. Fixed in 0.5.0.1
already.

» Standalone on Windows might need "cp430" encoding. Issue#120. Fixed in 0.5.0.2 already.

 Standalone mode didn't work with | xm . et r ee due to lack of hard coded dependencies. When a
shared library imports things, Nuitka cannot detect it easily.

* Wasn't working on macOS 64 bits due to using Linux 64 bits specific code. Issue#123. Fixed in
0.5.0.2 already.

* On MinGW the constants blob was not properly linked on some installations, this is now done
differently (see below).

New Features
* Memory usages are now traced with - - show pr ogr ess allowing us to trace where things go wrong.
New Optimization

» Standalone mode now includes standard library as bytecode by default. This is workaround
scalability issues with many constants from many modules. Future releases are going to undo it.

» On Windows the constants blob is now stored as a resource, avoiding compilation via C code for
MSVC as well. MinGW was changed to use the same code.

https://nuitka.net/posts/state-of-nuitka.html
http://bugs.nuitka.net/issue118
http://bugs.nuitka.net/issue119
http://bugs.nuitka.net/issue120
http://bugs.nuitka.net/issue123

New Tests

» Expanded test coverage for "standalone mode" demonstrating usage of "hex" encoding, PySide, and
PyGtk packages.

Summary

This release is mostly an interim maintenance release for standalone. Major changes that provide
optimization beyond that, termed "C-ish code generation" are delayed for future releases.

This release makes standalone practical which is an important point. Instead of hour long compilation,
even for small programs, we are down to less than a minute.

The solution of the scalability issues with many constants from many modules will be top priority going
forward. Since they are about how even single use constants are created all in one place, this will be easy,
but as large changes are happening in "C-ish code generation”, we are waiting for these to complete.

Nuitka Release 0.5.0

This release breaks interface compatibility, therefore the major version number change. Also "standalone
mode" has seen significant improvements on both Windows, and Linux. Should work much better now.

But consider that this part of Nuitka is still in its infancy. As it is not the top priority of mine for Nuitka, which
primarily is intended as an super compatible accelerator of Python, it will continue to evolve nearby.

There is also many new optimization based on structural improvements in the direction of actual SSA.
Bug Fixes

» The "standalone mode" was not working on all Redhat, Fedora, and openSUSE platforms and gave
warnings with older compilers. Fixed in 0.4.7.1 already.

» The "standalone mode" was not including all useful encodings. Issue#116. Fixed in 0.4.7.2 already.

» The "standalone mode" was defaulting to - - pyt hon- f | ag=- S which disables the parsing of "site"
module. That unfortunately made it necessary to reach some modules without modifying
PYTHONPATH which conflicts with the "out-of-the-box™" experience.

» The "standalone mode" is now handling packages properly and generally working on Windows as
well.

» The syntax error of having an all catching except clause and then a more specific one wasn't causing
a Synt axEr r or with Nuitka.

try:

sonet hi ng()
except:

sonehandl i ng()
except TypeError:

not al | owed()

» A corruption bug was identified, when re-raising exceptions, the top entry of the traceback was

modified after usage. Depending on nal | oc this was potentially causing an endless loop when using
it for output.

New Features

http://bugs.nuitka.net/issue116

» Windows: The "standalone" mode now properly detects used DLLs using Dependency Walker which
it offers to download and extra for you.

It is used as a replacement to | dd on Linux when building the binary, and as a replacement of
st race on Linux when running the tests to check that nothing is loaded from the outside.

New Optimization

» When iterating over | i st, set, this is now automatically lowered to t upl es avoiding the mutable
container types.

So the following code is now equivalent:

for x in[a, b, c]:

sane as
for x in (a, b, c):

For constants, this is even more effective, because for mutable constants, no more is it necessary to
make a copy.

» Python2: The iteration of large r ange is now automatically lowered to xr ange which is faster to loop
over, and more memory efficient.

» Added support for the xr ange built-in.

* The statement only expression optimization got generalized and now is capable of removing useless
parts of operations, not only the whole thing when it has not side effects.

[a, b]

sane as
a

b

This works for all container types.

Another example is t ype built-in operation with single argument. When the result is not used, it need
not be called.

type(a)

sane as
a

And another example i s and i s not have no effect of their own as well, therefore:

aisb
sane as
a

b

http://www.dependencywalker.com/

» Added proper handling of conditional expression branches in SSA based optimization. So far these
branches were ignored, which only acceptable for temporary variables as created by tree building,
but not other variable types. This is preparatory for introducing SSA for local variables.

Organizational

» The option - - exe is now ignored and creating an executable is the default behavior of nui t ka, a
new option - - nodul e allows to produce extension modules.

» The binary nui t ka- pyt hon was removed, and is replaced by nui t ka- r un with now only implies
- - execut e on top of what nui t ka is.

» Using dedicated Buildbot for continuous integration testing and release creation as well.
» The Downloads now offers MSiI files for Win64 as well.

» Discontinued the support for cross compilation to Win32. That was too limited and the design choice
is to have a running CPython instance of matching architecture at Nuitka compile time.

New Tests

» Expanded test coverage for "standalone mode" demonstrating usage of "hex" encoding, and PySide
package.

Summary

The "executable by default" interface change improves on the already high ease of use. The new
optimization do not give all that much in terms of numbers, but are all signs of structural improvements,
and it is steadily approaching the point, where the really interesting stuff will happen.

The progress for standalone mode is of course significant. It is still not quite there yet, but it is making
quick progress now. This will attract a lot of attention hopefully.

As for optimization, the focus for it has shifted to making exception handlers work optimal by default
(publish the exception to sys.exc_info() and create traceback only when necessary) and be based on
standard branches. Removing special handling of exception handlers, will be the next big step. This
release includes some correctness fixes stemming from that work already.

Nuitka Release 0.4.7

This release includes important new features, lots of polishing cleanups, and some important performance
improvements as well.

Bug Fixes

» The RPM packages didn't build due to missing in-line copy of Scons. Fixed in 0.4.6.1 already.

» The recursion into modules and unfreezing them was not working for packages and modules
anymore. Fixed in 0.4.6.2 already.

» The Windows installer was not including Scons. Fixed in 0.4.6.3 already.

* Windows: The immediate execution as performed by nui t ka --execut e was not preserving the
exit code. Issue#26.

» Python3.3: Packages without __i ni t. py__ were not properly embedding the name-space package
as well.

» Python3: Fix, modules and packages didn't add themselves to sys. nodul es which they should,
happened only for programs.

http://buildbot.net
https://nuitka.net/pages/download.html
http://bugs.nuitka.net/issue26

» Python3.3: Packages should set __package to their own name, not the one of their parents.
» Python3.3: The __qual nane__ of nested classes was corrected.

» For modules that recursed to other modules, an infinite loop could be triggered when comparing
types with rich comparisons. Issue#115.

New Features

» The "standalone" mode allows to compile standalone binaries for programs and run them without
Python installation. The DLLs loaded by extension modules on Windows need to be added manually,
on Linux these are determined automatically already.

To achieve running without Python installation, Nuitka learned to freeze bytecode as an alternative to
compiling modules, as some modules need to be present when the CPython library is initialized.

» New option - - pyt hon- f | ag allows to specify flags to the compiler that the "python" binary normally
would. So far - Sand - v are supported, with sane aliases no_site andtrace_i nports.

The recommended use of - - pyt hon-f| ag=- S is to avoid dependency creep in standalone mode
compilations, because the si t e module often imports many useless things that often don't apply to
target systems.

New Optimization

« Faster frame stack handling for functions without t r y/except (or try/final |y in Python3). This
gives a speed boost to "PyStone" of ca. 2.5% overall.

» Python2: Faster attribute getting and setting, handling special cases at compile time. This gives a
minor speed boost to "PyStone" of ca. 0.5% overall.

» Python2: Much quicker calls of __getattr__ and __setattr__ as this is now using the quicker
call method avoiding temporary tuples.

» Don't treat variables usages used in functions called directly by their owner as shared. This leads to
more efficient code generation for contractions and class bodies.

» Create uni code constants directly from their UTF-8 string representation for Python2 as well instead
of un-streaming. So far this was only done for Python3. Affects only program start-up.

« Directly create i nt and | ong constants outside of 2** 31 and 2**32- 1, but only limited according
to actual platform values. Affects only program start-up.

* When creating set values, no longer use a temporary t upl e value, but use a properly generated
helper functions instead. This makes creating sets much faster.

« Directly create set constants instead of un-streaming them. Affects only program start-up.

» For correct line numbers in traceback, the current frame line number must be updated during
execution. This was done more often than necessary, e.g. loops set the line number before loop
entry, and at first statement.

» Module variables are now accessed even faster, the gain for "PyStone" is only 0.1% and mostly the
result of leaner code.

Organizational

» The "standalone mode" code (formerly known as "portable mode" has been redone and activated.
This is a feature that a lot of people expect from a compiler naturally. And although the overall goal
for Nuitka is of course acceleration, this kind of packaging is one of the areas where CPython needs
improvement.

http://bugs.nuitka.net/issue115

» Added package for Ubuntu 13.10 for download, removed packages for Ubuntu 11.04 and 11.10, no
more supported.

» Added package for openSUSE 13.1 for download.
* Nuitka is now part of Arch and can be installed with pacnman - S nui t ka.
» Using dedicated Buildbot for continuous integration testing. Not yet public.

» Windows: In order to speed up repeated compilation on a platform without ccache, added Scons
level caching in the build directory.

« Disabled hash randomization for inside Nuitka (but not in ultimately created binaries) for a more
stable output, because dictionary constants will not change around. This makes the build results
possible to cache for ccache and Scons as well.

Tests

» The pr ogr ans tests cases now fail if module or directory recursion is not working, being executed in
another directory.

» Added test runner for packages, with initial test case for package with recursion and sub-packages.
» Made some test cases more strict by reducing PYTHONPATH provision.
* Detect use of extra flags in tests that don't get consumed avoiding ineffective flags.

» Use - - execut e on Windows as well, the issue that prevented it has been solved after all.

Cleanups

» The generated code uses const _, var _, par _ prefixes in the generated code and centralized the
decision about these into single place.

» Module variables no longer use C++ classes for their access, but instead accessor functions, leading
to much less code generated per module variable and removing the need to trace their usage during
code generation.

* The test runners now share common code in a dedicated module, previously they replicated it all, but
that turned out to be too tedious.

» Massive general cleanups, many of which came from new contributor Juan Carlos Paco.

» Moved standalone and freezer related codes to dedicated package nui t ka. f r eezer to not pollute
the nui t ka package name space.

» The code generation use variable identifiers and their accesses was cleaned up.

» Removed several not-so-special case identifier classes because they now behave more identical and
all work the same way, so a parameters can be used to distinguish them.

» Moved main program, function object, set related code generation to dedicated modules.

Summary

This release marks major technological progress with the introduction of the much sought standalone
mode and performance improvements from improved code generation.

The major break through for SSA optimization was not yet achieved, but this is again making progress in
the direction of it. Harmonizing variables of different kinds was an important step ahead.

Also very nice is the packaging progress, Nuitka was accepted into Arch after being in Debian Testing for
a while already. Hope is to see more of this kind of integration in the future.

http://buildbot.net

Nuitka Release 0.4.6

This release includes progress on all fronts. The primary focus was to advance SSA optimization over
older optimization code that was already in place. In this domain, there are mostly cleanups.

Another focus has been to enhance Scons with MSVC on Windows. Nuitka now finds an installed MSVC
compiler automatically, properly handles architecture of Python and Windows. This improves usability a
lot.

Then this is also very much about bug fixes. There have been several hot fixes for the last release, but a
complicated and major issue forced a new release, and many other small issues.

And then there is performance. As can be seen in the performance graph, this release is the fastest so far.
This came mainly from examining the need for comparison slots for compiled types.

And last, but not least, this also expands the base of supported platforms, adding Gentoo, and self
compiled Python to the mix.

Bug Fixes

» Support Nuitka being installed to a path that contains spaces and handle main programs with spaces
in their paths. Issue#106. Fixed in 0.4.5.1 already.

» Support Python being installed to a path that contains spaces. Issue#106. Fixed in 0.4.5.2 already.

* Windows: User provided constants larger than 65k didn't work with MSVC. Issue#108. Fixed in
0.4.5.3 already.

* Windows: The option - - wi ndows- di sabl e- consol e was not effective with MSVC. Issue#107.
Fixed in 0.4.5.3 already.

* Windows: For some users, Scons was detecting their MSVC installation properly already from
registry, but it didn't honor the target architecture. Issue#99. Fixed in 0.4.5.3 already.

* When creating Python modules, these were marked as executable ("x" bit), which they are of course
not. Fixed in 0.4.5.3 already.

» Python3.3: On architectures where Py_ssi ze_t is not the same as | ong this could lead to errors.
Fixed in 0.4.5.3 already.

» Code that was using nested mutable constants and changed the nested ones was not executing
correctly. Issue#112.

» Python2: Due to list contractions being re-formulated as functions, del was rejected for the variables
assigned in the contraction. Issue#111.

[expr(x) for x in iterable()]
del x # Should work, was gave an unjustified SyntaxError.

New Features

» Compiled types when used in Python comparison now work. Code like this will work:

def f():
pass

assert type(f) == types. FunctionType

https://nuitka.net/pages/performance.html
http://bugs.nuitka.net/issue106
http://bugs.nuitka.net/issue106
http://bugs.nuitka.net/issue108
http://bugs.nuitka.net/issue107
http://bugs.nuitka.net/issue99
http://bugs.nuitka.net/issue112
http://bugs.nuitka.net/issue111

This of course also works for i n operator, and is another step ahead in compatibility, and surprising
too. And best of all, this works even if the checking code is not compiled with Nuitka.

» Windows: Detecting MSVC installation from registry, if no compiler is already present in PATH.

» Windows: New options - - m ngw64 to force compilation with MinGW.

New Optimization

* Rich comparisons (==, <, and the like) are now faster than ever before due to a full implementation of
its own in Nuitka that eliminates a bit of the overhead. In the future, we will aim at giving it type hints
to make it even faster. This gives a minor speed boost to PyStone of ca. 0.7% overall.

* Integer comparisons are now treated preferably, as they are in CPython, which gives 1.3% speed
boost to CPython.

» The SSA based analysis is now used to provide variable scopes for temporary variables as well as
reference count needs.

Cleanups

» Replaced "value friend" based optimization code with SSA based optimization, which allowed to
remove complicated and old code that was still used mainly in optimization of or and and
expressions.

» Delayed declaration of temp variables and their reference type is now performed based on
information from SSA, which may given more accurate results. Not using "variable usage" profiles for
this anymore.

» The Scons interface and related code got a massive overhaul, making it more consistent and better
documented. Also updated the internal copy to 2.3.0 for the platforms that use it, mostly Windows.

* Stop using os. syst emand subprocess. call (..., shell = True) asitis not really portable
at all, use subprocess.call (..., shell = Fal se) instead.

» As usual lots of cleanups related to line length issues and PyLint.

Organizational

» Added support for Gentoo Linux.
» Added support for self compiled Python versions with and without debug enabled. Issue#110
» Added use of Nuitka fonts for headers in manuals.

 Does not install in-line copy of Scons only on systems where it is not going to be used, that is mostly
non-Windows, and Linux where it is not already present. This makes for cleaner RPM packages.

Summary

While the SSA stuff is not yet bearing performance fruits, it starts to carry weight. Taking over the
temporary variable handling now also means we can apply the same stuff to local variables later.

To make up for the delay in SSA driven performance improvements, there is more traditional code
acceleration for rich comparisons, making it significant, and the bug fixes make Nuitka more compatible
than ever.

So give this a roll, it's worth it. And feel free to join the mailing list (since closed) or make a donation to
support Nuitka.

http://bugs.nuitka.net/issue110
https://nuitka.net/pages/donations.html

Nuitka Release 0.4.5

This release incorporates very many bug fixes, most of which were already part of hot fixes, usability
improvements, documentation improvements, new logo, simpler Python3 on Windows, warnings for
recursion options, and so on. So it's mostly a consolidation release.

Bug Fixes

» When targeting Python 3.x, Nuitka was using "python" to run Scons to run it under Python 2.x, which
is not good enough on systems, where that is already Python3. Improved to only do the guessing
where necessary (i.e. when using the in-line copy of Scons) and then to prefer "python2". Issue#95.
Fixed in 0.4.4.1 already.

* When using Nuitka created binaries inside a "virtualenv", created programs would instantly crash.
The attempt to load and patch i nspect module was not making sure that si t e module was already
imported, but inside the "virtualenv”, it cannot be found unless. Issue#96. Fixed in 0.4.4.1 already.

» The option --recurse-directory to include plugin directories was broken. Issue#97. Fixed in
0.4.4.2 already.

* Python3: Files with "BOM" marker causes the compiler to crash. Issue#98. Fixed in 0.4.4.2 already.

* Windows: The generated code for try/return/finally was working with gcc (and therefore
MinGW), but not with MSVC, causing crashes. Issue#102. Fixed in 0.4.4.2 already.

*The option --recurse-all did not recurse to package _ _init__.py files in case
fromx.y inmport z syntaxwas used. Issue#100. Fixed in 0.4.4.2 already.

» Python3 on macOS: Corrected link time error. Fixed in 0.4.4.2 already.

» Python3.3 on Windows: Fixed crash with too many arguments to a kwonly argument using function.
Fixed in 0.4.4.2 already.

» Python3.3 on Windows: Using "yield from" resulted in a link time error. Fixed in 0.4.4.2 already.

» Windows: Added back XML manifest, found a case where it is needed to prevent clashes with binary
modules.

* Windows: Generators only worked in the main Python threads. Some unusual threading modules
therefore failed.

» Using sys. pr efi x to find the Python installation instead of hard coded paths. Issue#103.

New Features

* Windows: Python3 finds Python2 installation to run Scons automatically now.

Nuitka itself runs under Python3 just fine, but in order to build the generated C++ code into binaries, it
uses Scons which still needs Python2.

Nuitka will now find the Python2 installation searching Windows registry instead of requiring hard
coded paths.

» Windows: Python2 and Python3 find their headers now even if Python is not installed to specific
paths.

The installation path now is passed on to Scons which then uses it.

* Better error checking for - -recurse-to and - - recur se- not -t 0 arguments, tell the user not to
use directory paths.

» Added a warning for - - r ecur se-t o arguments that end up having no effect to the final result.

Cleanups

http://bugs.nuitka.net/issue95
http://bugs.nuitka.net/issue96
http://bugs.nuitka.net/issue97
http://bugs.nuitka.net/issue98
http://bugs.nuitka.net/issue102
http://bugs.nuitka.net/issue100
http://bugs.nuitka.net/issue103

 Import mechanism got cleaned up, stopped using "Pylmport_Extendlnittab". It does not handle
packages, and the sys. net a_pat h based importer is now well proven.

» Moved some of the constraint collection code mess into proper places. It still remains a mess.

Organizational

» Added LI CENSE. t xt file with Apache License 2.0 text to make it more immediately obvious which
license Nuitka is under.

» Added section about Nuitka license to the "User Manual”.

» Added Nuitka Logo to the distribution.

» Use Nuitka Logo as the bitmap in the Windows installer.

» Use Nuitka Logo in the documentation ("User Manual" and "Developer Manual™).

» Enhanced documentation to number page numbers starting after table of contents, removed
header/footer from cover pages.

Summary

This release is mostly the result of improvements made based on the surge of users after Europython
2013. Some people went to extents and reported their experience very detailed, and so | could aim at
making e.g. their misconceptions about how recursion options work, more obvious through warnings and
errors.

This release is not addressing performance improvements. The next release will be able to focus on that. |
am taking my claim of full compatibility very serious, so any time it's broken, it's the highest priority to
restore it.

Nuitka Release 0.4.4

This release marks the point, where Nuitka for the first time supports all major current Python versions and
all major features. It adds Python 3.3 support and it adds support for threading. And then there is a
massive amount of fixes that improve compatibility even further.

Aside of that, there is major performance work. One side is the optimization of call performance (to
CPython non-compiled functions) and to compiled functions, both. This gave a serious improvement to
performance.

Then of course, we are making other, long term performance progress, as in "--experimental" mode, the
SSA code starts to optimize unused code away. That code is not yet ready for prime time yet, but the trace
structure will hold.

New Features

* Python3.3 support.

The test suite of CPython3.3 passes now too. The yi el d fr omis now supported, but the improved
argument parsing error messages are not implemented yet.

» Tracing user provided constants, now Nuitka warns about too large constants produced during
optimization.

* Line numbers of expressions are now updates as evaluation progresses. This almost corrects.

Finally improves Issue#9. Now only expression parts that cannot raise, do not update, which can still
cause difference, but much less often, and then definitely useless.

» Experimental support for threads.

https://nuitka.net/doc/user-manual.html#license
https://nuitka.net/doc/images/Nuitka-Logo-Symbol.png
https://nuitka.net/doc/user-manual.html
https://nuitka.net/doc/developer-manual.html
http://bugs.nuitka.net/issue9

Threading appears to work just fine in the most cases. It's not as optimal as | wanted it to be, but
that's going to change with time.

New Optimization

* Previous corrections for ==, ! =, and <=, caused a performance regression for these operations in
case of handling identical objects.

For built-in objects of sane types (not fl| oat), these operations are now accelerated again. The
overreaching acceleration of >= was still there (bug, see below) and has been adapted too.

» Calling non-compiled Python functions from compiled functions was slower than in CPython. It is now
just as fast.

» Calling compiled functions without keyword arguments has been accelerated with a dedicated entry
point that may call the implementation directly and avoid parameter parsing almost entirely.

» Making calls to compiled and non-compiled Python functions no longer requires to build a temporary
tuple and therefore is much faster.

» Parameter parsing code is now more compact, and re-uses error raises, or creates them on the fly,
instead of hard coding it. Saves binary size and should be more cache friendly.

Bug Fixes

* Corrected false optimization of a >= a on C++ level.

When it's not done during Nuitka compile time optimization, the rich comparison helper still contained
short cuts for >=. This is now the same for all the comparison operators.

» Calling a function with default values, not providing it, and not providing a value for a value without
default, was not properly detecting the error, and instead causing a run time crash.

def f(a, b=2):
pass

f (b=2)

This now properly raises the TypeEr r or exception.

* Constants created with + could become larger than the normally enforced limits. Not as likely to
become huge, but still potentially an issue.

* The vars built-in, when used on something without _ dict__ attribute, was giving
AttributeError instead of TypeError.

* When re-cursing to modules at compile time, script directory and current directory were used last,
while at run time, it was the other way around, which caused overloaded standard library modules to
not be embedded. Corrects Issue#94.

Thanks for the patch to James Michael DuPont.

» Super without arguments was not raising the correct Runt i neErr or exception in functions that
cannot be methods, but UnboundLocal Err or instead.

def f():
super() # Error, cannot refer to first argunent of f

http://bugs.nuitka.net/issue94

» Generators no longer use rai se Stoplteration for return statements, because that one is not
properly handled in try/except clauses, where it's not supposed to trigger, while try/fi nally
should be honored.

» Exception error message when throwing non-exceptions into generators was not compatible.

» The use of r et ur n with value in generators is a Synt axEr r or before Python3.3, but that was not
raised.

« Variable names of the " var" style need to be mangled. This was only done for classes, but not for
functions contained in classes, there they are now mangled too.

» Python3: Exceptions raised with causes were not properly chaining.

 Python3: Specifying the file encoding corrupted line numbers, making them all of by one.
Cleanups

» For containers (tupl e, |ist, set, di ct) defined on the source code level, Nuitka immediately
created constant references from them.

For function calls, class creations, slice objects, this code is now re-used, and its dictionaries and
tuples, may now become constants immediately, reducing noise in optimization steps.

» The parameter parsing code got cleaned up. There were a lot of relics from previously explored
paths. And error raises were part of the templates, but now are external code.

* Global variable management moved to module objects and out of "Variables" module.
» Make sure, nodes in the tree are not shared by accident.

This helped to find a case of duplicate use in the complex call helpers functions. Code generation will
now notice this kind of duplication in debug mode.

» The complex call helper functions were manually taking variable closure, which made these functions
inconsistent to other functions, e.g. no variable version was allocated to assignments.

Removing the manual setting of variables allowed a huge reduction of code volume, as it became
more generic code.

» Converting user provided constants to create containers into constants immediately, to avoid noise
from doing this in optimization.

» The si t e module is now imported explicitly in the __mai n__ module, so it can be handled by the
recursion code as well. This will help portable mode.

» Many line length 80 changes, improved comments.

New Tests

» The CPython3.3 test suite was added, and run with both Python3.2 and Python3.3, finding new bugs.

*The doctest to code generation didn't successfully handle all tests, most notably,
"test_generators.py" was giving a Synt axErr or and therefore not actually active. Correcting that
improved the coverage of generator testing.

Organizational

 The portable code is still delayed.
Support for Python3.3 was a higher priority, but the intention is to get it into shape for Europython still.

Added notes about it being disabled it in the "User Manual" documentation.

https://nuitka.net/doc/user-manual.html

Summary

This release is in preparation for Europython 2013. Wanted to get this much out, as it changes the status
slides quite a bit, and all of that was mostly done in my Cyprus holiday a while ago.

The portable code has not seen progress. The idea here is to get this into a development version later.

Nuitka Release 0.4.3

This release expands the reach of Nuitka substantially, as new platforms and compilers are now
supported. A lot of polish has been applied. Under the hood there is the continued and in-progress effort to
implement SSA form in Nuitka.

New Features

 Support for new compiler: Microsoft Visual C++.
You can now use Visual Studio 2008 or Visual Studio 2010 for compiling under Windows.
 Support for NetBSD.

Nuitka works for at least NetBSD 6.0, older versions may or may not work. This required fixing bugs
in the generic "fibers" implementation.

* Support for Python3 under Windows too.

Nuitka uses Scons to build the generated C++ files. Unfortunately it requires Python2 to execute,
which is not readily available to call from Python3. It now guesses the default installation paths of
CPython 2.7 or CPython 2.6 and it will use it for running Scons instead. You have to install it to
C:\ Pyt hon26 or C: \ Pyt hon27 for Nuitka to be able to find it.

» Enhanced Python 3.3 compatibility.

The support the newest version of Python has been extended, improving compatibility for many minor
corner cases.

» Added warning when a user compiles a module and executes it immediately when that references
__name__

Because very likely the intention was to create an executable. And esp. if there is code like this:

i f name =" min__

mai n()__

In module mode, Nuitka will optimize it away, and nothing will happen on execution. This is because
the command

nui tka --execute nodul e

is behavioral more like
python -c "import module"
and that was a trap for new users.

* All Linux architectures are now supported. Due to changes in how evaluation order is enforced, we
don't have to implement for specific architectures anymore.

Bug Fixes

» Dictionary creation was not fully compatible.

As revealed by using Nuitka with CPython3.3, the order in which dictionaries are to be populated
needs to be reversed, i.e. CPython adds the last item first. We didn't observe this before, and it's
likely the new dictionary implementation that finds it.

Given that hash randomization makes dictionaries item order undetermined anyway, this is more an
issue of testing.

« Evaluation order for arguments of calls was not effectively enforced. It is now done in a standards
compliant and therefore fully portable way. The compilers and platforms so far supported were not
affected, but the newly supported Visual Studio C++ compiler was.

«Usinga __future__ import inside a function was giving an assertion, instead of the proper syntax
error.

» Python3: Do not set the attributes sys. exc_t ype, sys. exc_val ue, sys. exc_traceback.
» Python3: Annotations of function worked only as long as their definition was not referring to local
variables.

New Optimization

» Calls with no positional arguments are now using the faster call methods.

The generated C++ code was using the () constant at call site, when doing calls that use no
positional arguments, which is of course useless.

» For Windows now uses OS "Fibers" for Nuitka "Fibers".

Using threads for fibers was causing only overhead and with this APl, MSVC had less issues too.

Organizational

* Accepting Donations via Paypal, please support funding travels, website, etc.

* The "User Manual" has been updated with new content. We now do support Visual Studio,
documented the required LLVM version for clang, Win64 and modules may include modules too, etc.
Lots of information was no longer accurate and has been updated.

» The Changelog has been improved for consistency, wordings, and styles.

* Nuitka is now available on the social code platforms as well

 Bitbucket
* Github
» Gitorious

* Google Code

*« Removed "clean-up.sh", which is practically useless, as tests now clean up after themselves
reasonably, and with gi t cl ean - df x working better.

* Removed "create-environment.sh" script, which was only setting the PATH variable, which is not
necessary.

* Added check-with-pylint --enmacs option to make output its work with Emacs compilation
mode, to allow easier fixing of warnings from PyLint.

» Documentation is formatted for 80 columns now, source code will gradually aim at it too. So far 90
columns were used, and up to 100 tolerated.

Cleanups

https://nuitka.net/pages/donations.html
https://nuitka.net/doc/user-manual.html
https://bitbucket.org/kayhayen/nuitka
https://github.com/kayhayen/Nuitka
https://gitorious.org/nuitka/nuitka
https://code.google.com/p/nuitka/

* Removed useless manifest and resource file creation under Windows.

Turns out this is no longer needed at all. Either CPython, MinGW, or Windows improved to no longer
need it.

 PyLint massive cleanups and annotations bringing down the number of warnings by a lot.

« Avoid use of strings and built-ins as run time pre-computed constants that are not needed for specific
Python versions, or Nuitka modes.

Do not track needed tuple, list, and dict creation code variants in context, but e.g. in
nui t ka. codegen. Tupl eCodes module instead.

« Introduced an "internal" module to host the complex call helper functions, instead of just adding it to
any module that first uses it.

New Tests

» Added basic tests for order evaluation, where there currently were None.

» Added support for "2to3" execution under Windows too, so we can run tests for Python3 installations
too.

Summary

The release is clearly major step ahead. The new platform support triggered a whole range of
improvements, and means this is truly complete now.

Also there is very much polish in this release, reducing the number of warnings, updated documentation,
the only thing really missing is visible progress with optimization.

Nuitka Release 0.4.2

This release comes with many