Nuitka Release 0.6.11

This release is a massive improvement in many ways with lots of bug fixes and new features.
Bug Fixes

* Fix, the . pyi file parser didn't handle relative imports. Fixed in 0.6.10.1 already.

» Windows: Fix, multiprocessing plugin was not working reliable following of imports from the additional
entry point. Fixed in 0.6.10.1 already.

* Pipenv: Workaround parsing issue with our set up. py to allow installation from Github. Fixed in
0.6.10.1 already.

» Merging of branches in optimization could give indetermistic results leading to more iterations than
necessary. Fixed in 0.6.10.1 already.

» Windows: Avoid profile powershell when attempting to resolve symlinks. Fixed in 0.6.10.1 already.

» Windows: Fix, always check for stdin, stdout, and stderr presence. This was so far restricted to gui
mode applications, but it seems to be necessary in other situations too. Fixed in 0.6.10.1 already.

» Python2: Fix, --trace- executi on was not working for standalone mode but can be useful for
debugging. Fixed in 0.6.10.1 already.

» Windows: Onefile could run into path length limits. Fixed in 0.6.10.3 already.
* Windows: The winlib gcc download link became broken and was updated. Fixed in 0.6.10.3 already.
* Plugins: The "__main__" module was not triggering all plugin hooks, but it needs to for completeness.

« Standalone: Fix, symlinked Python installations on Windows were not working, with dependency
walker being unable to look into these. Fixed in 0.6.10.4 already.

» Standalone: Fix support for numpy on Windows and macOS, the plugin failed to copy important
DLLs. Fixed in 0.6.10.4 already.

» Python3: For versions before 3.7, the symlink resolution also needs to be done, but wasn't handling
the bytes output yet. Fixed in 0.6.10.4 already.

* Fix, folder based inclusion would both pick up namespace folders and modules of the same name,
crashing the compilation due to conflicts. Fixed in 0.6.10.4 already.

* Fix, the - -1 t 0 wasn't used for clang on non-Windows yet.

* Fix, the order of locals dict releases wasn't enforced, which could lead to differences that break
caching of C files potentially. Fixed in 0.6.10.5 already.

* Fix, hash nodes didn't consider if their argument was raising, even if the type of the argument was
st r and therefore the operation should not. Fixed in 0.6.10.5 already.

* Fix, need to copy type shape and escape description for the replacement inverted comparisons when
used with not , otherwise the compilation can crash as these are expected to be present at all times.
Fixed in 0.6.10.5 already.

* Fix, some complex constant values could be confused, e.g. - 0j and 0j . These corner cases were
not properly considered in the constant loading code, only for f | oat so far.

« Standalone: Fix, bytecode only standard library modules were not working. This is at least used with
Fedora 33.

* Linux: Fix, extension modules compiled with - - | t o were not working.
* Windows: Retry if updating resources fails due to Virus checkers keeping files locked.

* Plugins: Pre- and postload code of modules should not be allowed to cause | nport Err or, as these
will be invisible to the other parts of optimization, instead make them unraisable error traces.

» Standalone: Adding missing import for SciPy 1.6 support.

» Windows: Fix, only export required symbols when using MinGW64 in module mode.

New Features

» Python3.9: Added official support for this version.

 Onefile: Added command line options to include data files. These are - - i ncl ude- package- dat a
which will copy all non-DLLs and non-Python files of package names matching the pattern given. And
--include-data-fil e takes source and relative target file paths and copies them. For onefile this
is the only way to include files, for standalone mode they are mostly a convenience function.

* Onefile: Added mode where the file is unpacked to a temporary folder before running instead of doing
it to appdata.

* Onefile: Added linux specific options - - | i nux- onefi |l e-i con to allow provision of an icon to use
in onefile mode on Linux, so far this was only available as the hard coded path to a Python icon,
which also didn't exist on all platforms.

» Ul: Major logging cleanup. Everything is now using our tracing classes and even error exits go
through there and are therefore colored if possible.

* Plugins: Make it easier to integrate commercial plugins, now only an environment variable needs to
point to them.

« Ul: Enhanced option parsing gives notes. This complains about options that conflict or that are
implied in others. Trying to catch more usage errors sooner.

* Plugins: Ignore exceptions in buggy plugin code, only warn about them unless in debug mode, where
they still crash Nuitka.

» Scons: More complete scons report files, includes list values as well and more modes used.
» Windows: The cl cache is now included and no longer used from the system.
 Qutput for cl cache and ccache results got improved.

» Enhanced support for cl ang, on Windows if present near a gcc. exe like it is the case for some
winlibs downloads, it will be used. To use it provide - - m ngwé4 - -cl ang both. Without the first
one, it will mean cl angcl . exe which uses the MSVC compiler as a host.

Optimization

» Some modules had very slow load times, e.g. if they used many list objects due to linear searches for
memory deduplication of objects. We now have dictionaries of practically all constant objects loaded,
making these more instant.

» Use less memory at compile time due using __sl ot s__ for all node types, finally figured out, how to
achieve this with multiple inheritance.

» Use hedley for compiler macros like unl i kel y as they know best how to do these.
* Special case the merging of 2 branches avoiding generic code and being much faster.

» Hard imports have better code generated, and are being optimized into for the few standard library
modules and builtin modules we handle, they also how annotate the type shape to be module.

* No longer annotate hard module import attribute lookups as control flow escapes. Not present
attributes are changed into static raises. Trust for values is configured for a few values, and
experimental.

» Avoid preloaded packages for modules that have no side effects and are in the standard library,
typically . pt h files will use e.g. os but that's not needed to be preserved.

» Use i nchi n for including binary data through inline assemly of the C compiler. This covers many
more platforms than our previous linker option hacks, and the fallback to generated C code. In fact
everything but Windows uses this now.

Organisational

» Windows: For Scons we now require a Python 3.5 or higher to be installed to use it.

» Windows: Removed support for gcc older than version 8. This specifically affects CondaCC and older
MinGW64 installations. Since Nuitka can now download the MinGW64 10, there is no point in having
these and they cause issues.

» We took over the maintenance of clcache as Nuitka/clcache which is not yet ready for public
consumption, but should become the new source of clache in the future.

* Include an inline copy of clcache in Nuitka and use it on Windows for MSVC and ClangCL.

* Removed compatibility older aliases of follow option, --recurse-* and require --foll ow*
options to be used instead.

« For pylint checking, the tool now supports a - - di f f mode where only the changed files get checked.
This is much faster and allows to do it more often before commit.

» Check the versions of isort and black when doing the autoformat to avoid using outdated versions.
» Handling missing pylint more gracefully when checking source code quality.

» Make sure to use the codespell tool with Python3 and make sure to error exit when spelling problems
were found, so we can use this in Github actions too.

* Removed Travis config, we now only use Github actions.
* Removed landscape config, it doesn't really exist anymore.
» Bumped all PyPI dependnecies to their latest versions.

« Recommend ccache on Debian, as we now consider the absence of ccache something to warn
about.

* Plugins: The DLLs asked for by plugins that are not found are no longer warned about.

» Allow our checker and format tools to run on outside of tree code. We are using that for
Nuitka/clcache.

» Added support for Fedora 33 and openSUSE 15.3, as well as Ubuntu Groovy.
» Windows: Check if Windows SDK is installed for MSVC and ClangCL.

» Windows: Enhanced wording in case no compiler was found. No longer tell people how to manually
install MinGW®64, that is no longer necessary and pyw n32 is not needed to detect MSVC, so it's not
installed if not found.

« Detect "embeddable Python" by missing include files, and reject it with proper error message.

» Added onefile and standalone as a use case to the manual and put also the DLL and data files
problems as typically issues.

Cleanups

 Avoid decimal and string comparisons for Python versions checks, these were lazy and are going to
break once 3.10 surfaces. In testing we now use tuples, in Nuitka core hexacimal values much like
CPython itself does.

« Stop using subnode child getters and setters, and instead only use subnode attributes. This was
gradually changed so far, but in this release all remaining uses have migrated. This should also make
the optimization stage go faster.

» Change node constructors to not use a decorator to resolve conflicts with builtin names, rather
handle these with manual call changes, the decorator only made it difficult to read and less
performant.

» Move safe string helpers to their own dedicated helper file, allowing for reuse in plugin code that
doesn't want to use all of Nuitka C helpers.

» Added utils code for inline copy imports, as we use that for quite a few things now.
* Further restructured the Scons files to use more common code.

* Plugins: The module name objects now reject many st r specific APIs that ought to not be used, and
the code got changed to use these instead, leading to cleaner and more correct usages.

» Using named tuples to specify included data files and entry points.

» Use pkguti | in plugins to scan for modules rather than listing directories.

Tests

* New option to display executed commands during comparisons.

» Added test suite for onefile testing.

Summary

This release has seen Python3.9 and Onefile both being completed. The later needs compression added
on Windows, but that can be added in a coming release, for now it's fully functional.

The focus clearly has been on massive cleanups, some of which will affect compile time performance.
There is relatively little new optimization otherwise.

The adoption of clcache enables a very fast caching, as it's now loaded directly into the Scons process,
avoiding a separate process fork.

Generally a lot of polishing has been applied with many cleanups lowering the technical debt. It will be
interesting to see where the hard module imports can lead us in terms of more optimization. Static
optimization of the Python version comparisons and checks is nheeded to lower the amount of imports to be
processed.

Important fixes are also included, e.g. the constants loading performance was too slow in some cases. The
mul ti processi ng on Windows and nunpy plugins were regressed and finally everything ought to be
back to working fine.

Future work will have to aim at enhanced scalability. In some cases, Nuitka still takes too much time to
compile if projects like Pandas include virtually everything installed as an option for it to use.

Nuitka Release 0.6.10

This release comes with many new features, e.g. onefile support, as well as many new optimization and
bug fixes.

Bug Fixes

* Fix, was memory leaking arguments of all complex call helper functions. Fixed in 0.6.9.6 already.
* Plugins: Fix, the dill-compat code needs to follow APl change. Fixed in 0.6.9.7 already.

» Windows: Fixup for multiprocessing module and complex call helpers that could crash the program.
Fixed in 0.6.9.7 already.

* Fix, the frame caching could leak memory when using caching for functions and generators used in
multiple threads.

» Python3: Fix, importing an extension module below a compiled module was not possible in
accelerated mode.

 Python3: Fix, keyword arguments for open built-in were not fully compatible.

* Fix, the scons python check should also not accept directories, otherwise strange misleading error
will occur later.

» Windows: When Python is installed through a symbolic link, MinGW64 and Scons were having
issues, added a workaround to resolve it even on Python2.

» Compatibility: Added support for co_f r eevar s in code objects, e.g. newer matplotlib needs this.
« Standalone: Add needed data files for gooey. Fixed in 0.6.9.4 already.

* Scons: Fix, was not respecting - - qui et option when running Scons. Fixed in 0.6.9.3 already.

* Scons: Fix, wasn't automatically detecting Scons from promised paths. Fixed in 0.6.9.2 already.

* Scons: Fix, the clcache output parsing wasn't robust enough. Fixed in 0.6.9.1 already.
 Python3.8: Ignore all non-strings provided in doc-string fashion, they are not to be considered.

* Fix,getattr,setattr and hasattr could not be used in finally clauses anymore. Fixed in 0.6.9.1
already.

» Windows: For Python3 enhanced compatibility for Windows no console mode, they need a
sys. stdi norelse e.g. i nput will not be compatible and raise Runt i meErr or.

New Features

» Added experimental support for Python 3.9, in such a way that the CPython3.8 test suite passes now,
the 3.9 suite needs investigation still, so we might be missing new features.

» Added experimental support for Onefile mode with - - onefi | e that uses Appl nage on Linux and
our own bootstrap binary on Windows. Other platforms are not supported at this time. With this, the
standalone folder is packed into a single binary. The Windows variant currently doesn't yet do any
compression yet, but the Linux one does.

» Windows: Added downloading of ccache. exe, esp. as the other sources so far recommended were
not working properly after updates. This is taken from the official project and should be good.

» Windows: Added downloading of matching MinGW64 C compiler, if no other was found, or that was
has the wrong architecture, e.g. 32 bits where we need 64 bits.

* Windows: Added ability to copy icon resources from an existing binary with new option
--wi ndows-i con-from exe.

» Windows: Added ability to provide multiple icon files for use with different desktop resolutions with
new option - - Wi ndows-i con-fromi co that got renamed to disambiguate from other icon options.

» Windows: Added support for requesting UAC admin right with new option - - wi ndows- uac- adni n.

* Windows: Added support for requesting "uiaccess" rights with yet another new option
- - Wi ndows- uac- ui access.

 Windows: Added ability to specify version info to the binary. New options
- - W ndows- conpany- nane, - -w ndows- pr oduct - nane, --wi ndows-fil e-version,
--w ndows- product - ver si on, and - - wi ndows-fi | e-descri pti on have been added. Some
of these have defaults.

» Enhanced support for using the Win32 compiler of MinGW®64, but it's not perfect yet and not
recommended.

» Windows: Added support for LTO mode for MSVC as well, this seems to allow more optimization.

* Plugins: The numpy plugin now handles matplotlib3 config files correctly.

Optimization

» Use less C variables in dictionary created, not one per key/value pair. This improved scalability of C
compilation.

» Use common code for module variable access, leading to more compact code and enhanced
scalability of C compilation.

» Use error exit during dictionary creation to release the dictionary, list, tuple, and set in case of an
error occurring while they are still under construction. That avoids releases of it in error exists,
reducing the generated code size by a lot. This improves scalability of C compilation for generating
these.

» Annotate no exception raise for local variables of classes with know dict shape, to avoid useless error
exits.

» Annotate no exception exit for stati cmet hod and cl assnet hod as they do not check their
arguments at all. This makes code generated for classes with these methods much more compact,
mainly improving their scalability in C compilation.

* In code generation, prefer bool over nui t ka_bool which allows to annotate exception result,
leading to more compact code. Also cleanup so that code generation always go through the C type
objects, rather than doing cases locally, adding a C type for bool .

» Use common code for C code handling const None return only, to cases where there is any
immutable constant value returned, avoid code generation for this common case. Currently mutable
constants are not handled, this may be added in the future.

» Annotate no exception for exception type checks in handlers for Python2 and no exception if the
value has exception type shape for Python3. The exception type shape was newly added. This
avoids useless exception handlers in most cases, where the provided exception is just a built-in
exception name.

» Improve speed of often used compile time methods on nodes representing constant values, by
making their implementation type specific to improve frontend compile time speed, we check e.g.
mutable and hashable a lot.

* Provide truth value for variable references, enhancing loop optimization and merge value tracing, to
also decide this correctly for values only read, and then changed through attribute, e.g. append on
lists. This allows many more static optimization.

» Use st ati cnet hod for methods in Nuitka nodes to achieve faster frontend compile times where
possible.

» Use dedicated helper code for calls with single argument, avoiding the need have a call site local C
array of size one, just to pass a pointer to it.

» Added handling of hash slot, to predict hashable keys for dictionary and sets.

» Share more slot provision for built-in type shapes from mixin classes, to get them more universally
provided, even for special types, where their consideration is unusual.

* Trace "user provided" flag only for constants where it really matters, i.e. for containers and generally
potentially large values, but not for every number or boolean value.

» Added lowering of byt earray constant values to byt es value iteration, while handling constant
values for this optimization with dedicated code for improved frontend compilation speed.

* The dict built-in now annotates the dictionary type shape of its result.

» The wrapping side-effects node now passes on the type shape of the wrapped value, allowing for
optimization of these too.

* Split sl i ce nodes into variants with 1, 2 or 3 arguments, to avoid the overhead of determining which
case we have, as well as to save a bit of memory, since these are more frequently used on Python3
for subscript operations. Also annotate their type shape, allowing more optimization.

» Faster dictionary lookups, esp. in cases where errors occur, because we were manually recreating a
KeyEr r or that is already provided by the dict implementation. This should also be faster, as it avoids
a CPython API call overhead on the DLL and they can provide a reference or not for the returned
value, simplifying using code.

» Faster dictionary containment checks, with our own dedicated helper, we can use code that won't
create an exception when an item is not present at all.

» Faster hash lookups with our own helper, separating cases where we want an exception for
non-hashable values or not. These should also be faster to call.

» Avoid acquiring thread state in exception handling that checks if a St opl t erati on occurred, to
improved speed on Python3, where is involves locking, but this needs to be applied way more often.

» Make sure checks to debug mode and full compatibility mode are done with the variables introduced,
to avoid losing performance due to calls for Nuitka compile time enhancements. This was so far only
done partially.

* Split constant references into two base classes, only one of them tracking if the value was provided
by the user. This saves compile time memory and avoids the overhead to check if sizes are
exceeded in cases they cannot possibly be so.

* The truth value of container creations is now statically known, because the empty container creation
is no longer a possibility for these nodes, allowing more optimization for them.

» Optimize the bool built-in with no arguments directory, allow to simplify the node for single argument
form to avoid checks if an argument was given.

» Added iteration handles for xranges, and make them faster to create by being tied to the node type,
avoiding shared types, instead using the mixin approach. This is in preparation to using them for
standard iterator tracing as well. So far they are only used for any and al | decision.

» Added detection if a iterator next can raise, using existing iterator checking which allows to remove
needless checks and exception traces. Adding a code variant for calls to next that cannot fail, while
tuning the code used for next and unpacking next, to use faster exception checking in the C code.
This will speed up unpacking performance for some forms of unpacking from known sizes.

» Make sure to use the fastest tuple API possible in all of Nuitka, many place e.g. used
PyTupl e_Si ze, and one was in a performance critical part, e.g. in code that used when compiled
functions as called as a method.

» Added optimized variant for _PyLi st _Ext end for slightly faster unpacking code.
» Added optimized variant for PyLi st _Append for faster list contractions code.

 Avoid using RenoveFi | eSpec and instead provide our own code for that task, slightly reducing file
size and avoiding to use the Shl api link library.

Tests

» Made reflected test use common cleanup of test folder, which is more robust against Windows
locking issues.

» Only output changed CPython output after the forced update of cached value was done, avoiding
duplicate or outdated outputs.

» Avoid complaining about exceptions for in-place operations in case they are lowered to non-inplace
operations and then raise unsupported, not worth the effort to retain original operator.

» Added generated test for subscript operations, also expanding coverage in generated tests by
making sure, conditional paths are both taken by varying the cond value.

» Use our own code helper to check if an object has an attribute, which is faster, because it avoids
creating exceptions in the first place, instead of removing them afterwards.

Cleanups

» Make sure that code generation always go through the C type objects rather than local el i f casing
of the type. This required cleaning up many of the methods and making code more abstract.

» Added base class for C types without reference counting, so they can share the code that ignores
their handling.

* Remove get Const ant for constant value nodes, use the more general
get Conpi | eTi neConst ant instead, and provide quick methods that test for empty tuple or dict, to
use for checking concrete values, e.g. with call operations.

« Unified container creation into always using a factory function, to be sure that existing container
creations are not empty.

 Stop using @al | edW t hBui | t i nAr gunent NanesDecor at or where possible, and instead make
explicit wrapping or use correct names. This was used to allow e.g. an argument named | i st to be
passed from built-in optimization, but that can be done in a cleaner fashion. Also aligned no attributes
and the argument names, there was inconsistency there.

» Name mangling was done differently for attribute names and normal names and with non-shared
code, and later than necessary, removing this as a step from variable closure taking after initial tree
build.

* As part of the icon changes, now handled in Python code, we stop using the r ¢ binary and handle all
resources ourselves, allowing to remove that code from the Scons side of things.

» Moved file comparison code of standalone mode into file utils function for use in plugins as well.

 Unified how path concatenation is done in Nuitka helper code, there were more or less complete
variants, this is making sure, the most capable form is used in all cases.

» Massive cleanup to our scons file, by moving out util code that only scons uses, hacks we apply to
speed up scons, and more to separate modules with dedicated interfaces.

* When using enuner at e we now provide start value of 1 where it is appropriate, e.g. when counting
source code lines, rather than adding count +1 on every usage, making code more readable.

Organisational

* Do not recommend Anaconda on Windows anymore, it seems barely possible to get anything
installed on it with a fresh download, due to the resolver literally working for days without finishing,
and then reporting conflicts, it would only we usable when starting with Miniconda, but that seems
less interesting to users, also gcc 5.2 is way too old these days.

» The commit hook should be reinstalled, since it got improved and adapted for newer git versions.
» Added link to donations to funding document, following a Github standard.
» Bumped requirements for development to the latest versions, esp. newer isort.

» Added a rough description of tests to do to add a new CPython test suite, to allow others to take this
task in the future.

» Updated the git hook so that Windows and newest git works.

» Make it more clear in the documentation that Microsoft Appstore Python is not supported.

Summary

This is the big release in terms of scalability. The optimization in this release mostly focused on getting
things that cause increased compile times sorted out. A very important fix avoids loop optimization to leak
into global passes of all modules unnecessarily, but just as important, generated code now is much better
for the C compiler to consume in observed problematic cases.

More optimization changes are geared towards reducing Nuitka frontend compile time, which could also
be a lot in some cases, ending up specializing more constant nodes and how they expose themselves to
optimization.

Other optimization came from supporting Python 3.9 and things come across during the implementation of
that feature, e.g. to be able to make differences with unpacking error messages, we provide more code to
handle it ourselves, and to manually optimize how to interact with e.g. | i st objects.

For Windows, the automatic download of ccache and a matching MinGW®64 if none was found, is a new
step, that should lower the barrier of entry for people who have no clue what a C compiler is. More
changes are bound to come in this field with future releases, e.g. making a minimum version requirement
for gcc on Windows that excludes unfit C compilers.

All in all, this release should be taken as a major cleanup, resolving many technical debts of Nuitka and
preparing more optimization to come.

Nuitka Release 0.6.9

This releases contains important bug fixes for regressions of the 0.6.8 series which had relatively many
problems. Not all of these could be addressed as hotfixes, and other issues were even very involved,
causing many changes to be necessary.

There are also many general improvements and performance work for tracing and loops, but the full
potential of this will not be unlocked with this release yet.

Bug Fixes

* Fix, loop optimization sometimes didn't determinate, effectively making Nuitka run forever, with no
indication why. This has been fixed and a mechanism to give up after too many attempts has been
added.

* Fix, closure taking object allowed a brief period where the garbage collector was exposed to
uninitialized objects. Fixed in 0.6.8.1 already.

» Python3.6+: Fix corruption for exceptions thrown into asyncgen. Fixed in 0.6.8.1 already.

* Fix, deleting variables detected as C type bool could raise an UnboundLocal Err or that was wrong.
Fixed in 0.6.8.1 already.

» Python3.8.3+: Fix, future annotations parsing was using hard coded values that were changed in
CPython, leading to errors.

* Windows: Avoid encoding issues for Python3 on more systems, by going from wide characters to
unicode strings more directly, avoiding an encoding as UTF8 in the middle. Fixed in 0.6.8.2 already.

* Windows: Do not crash when warning about uninstalled MSVC using Python3. This is a Scons bug
that we fixed. Fixed in 0.6.8.3 already.

« Standalone: The output of dependency walker should be considered as "latin1" rather than UTFS8.
Fixed in 0.6.8.3 already.

« Standalone: Added missing hidden dependencies for f | ask. Fixed in 0.6.8.1 already.
« Standalone: Fixed wi n32com cl i ent on Windows. Fixed in 0.6.8.1 already.

« Standalone: Use pkguti | to scan encoding modules, properly ignoring the same files as Python
does in case of garbage files being there. Fixed in 0.6.8.2 already.

* Plugins: Enabling a plugin after the filename to compile was given, didn't allow for arguments to the
passed, causing problems. Fixed in 0.6.8.3 already.

» Standalone: The certi fi data file is now supported for all modules using it and not only some.

« Standalone: The bytecode for the standard library had filenames pointing to the original installation
attached. While these were not used, but replaced at runtime, they increased the size of the binary,
and leaked information.

« Standalone: The path of sys. execut abl e was not None, but pointing to the original executable,
which could also point to some temporary virtualenv directory and therefore not exist, also it was
leaking information about the original install.

» Windows: With the MSVC compiler, elimination of duplicate strings was not active, causing even
unused strings to be present in the binary, some of which contained file paths of the Nuitka
installation.

» Standalone: Added support for pyglet.

* Plugins: The command line handling for Pmw plugin was using wrong defaults, making it include
more code than necessary, and to crash if it was not there.

New Features

» Windows: Added support for using Python 2.7 through a symlink too. This was already working for
Python3, but a scons problem prevented this from working.

» Caching of compiled C files is now checked with ccache and clcache, and added automatically where
possible, plus a report of the success is made. This can accelerate the re-compile very much, even if
you have to go through Nuitka compilation itself, which is not (yet) cached.

» Added new - - qui et option that will disable informational traces that are going to become more.

» The Clang from MSVC installation is now picked up for both 32 and 64 bits and follows the new
location in latest Visual Studio 2019.

» Windows: The ccache from Anaconda is now supported as well as the one from msys64.
Optimization

 The value tracing has become more correct with loops and in general less often inhibits optimization.
Escaping of value traces is how a separate trace state allowing for more appropriate handling of
actual unknowns.

» Memory used for value tracing has been lowered by removing unnecessary states for traces, that we
don't use anymore.

» Windows: Prevent scons from scanning for MSVC when asked to use MinGW64. This avoids a
performance loss doing something that will then end up being unused.

» Windows: Use function level linking with MSVC, this will allow for smaller binaries to be created, that
don't have to include unused helper functions.

Cleanups

» The scons file now uses Nuitka utils functions and is itself split up into several modules for enhanced
readability.

* Plugin interfaces for providing extra entry points have been cleaned up and now named tuples are
used. Backward compatibility is maintained though.

Organisational

» The use of the logging module was replaced with more of our custom tracing and we now have the
ability to write the optimization log to a separate file.

« Old style plugin options are now detected and reported as a usage error rather than unknown plugin.

» Changed submodules to use git over https, so as to not require ssh which requires a key registered
and causes problems with firewalls too.

» More correct Debian copyright file, made formatting of emails in source code consistent.

 Added repository for Ubuntu focal.

Summary

The main focus of this release has been bug fixes with only a little performance work due to the large
amount of regressions and other findings from the last release.

The new constants loading for removes a major scalability problem. The checked and now consistently
possible use of ccache and cl cache allows for much quicker recompilation. Nuitka itself can still be slow
in some cases, but should have seen some improvements too. Scalability will have to remain a focus for
the next releases too.

The other focus, was to make the binaries contain no original path location, which is interesting for
standalone mode. Nuitka should be very good in this area now.

For optimization, the new loop code is again better. But it was also very time consuming, to redo it, yet
again. This has prevented other optimization to be added.

And then for correctness, the locals scope work, while very invasive, was necessary, to handle the usage
of locals inside of contractions, but also will be instrumental for function inlining to become generally
available.

So, ultimately, this release is a necessary intermediate step. Upcoming releases will be able to focus more
clearly on run time performance again as well as on scalability for generated C code.

Nuitka Release 0.6.8

This releases contains important general improvements and performance improvements and enhanced
optimization as well as many bug fixes that enhance the Python 3.8 compatibility.

Bug Fixes

» Python3.5+: Fix, coroutines and asyncgen could continue iteration of awaited functions, even after
their return, leading to wrong behaviour.

» Python3.5+: Fix, absolute imports of names might also refer to modules and need to be handled for
module loading as well.

* Fix, the f rom i st of imports could loose references, potentially leading to corruption of contained
strings.

» Python3.8: Fix, positional only arguments were not enforced to actually be that way.

» Python3.8: Fix, complex calls with star arguments that yielded the same value twice, were not yet
caught.

» Python3.8: Fix, evaluation order for nested dictionary contractions was not followed yet.

* Windows: Use short paths, these work much better to load extension modules and TCL parts of
Tkinter cannot handle unicode paths at all. This makes Nuitka work in locations, where normal
Python cannot.

» Windows: Fixup dependency walker in unicode input directories.

« Standalone: Use frozen module loader only at |i bpython initialisation and switch to built-in
bytecode loader that is more compatible afterwards, increasing compatibility.

» Standalone: Fix for pydanctic support.
» Standalone: Added missing hidden dependency of uvicorn.
* Fix, the parser for . pyi files couldn't handle multiline imports.

» Windows: Derive linker arch of Python from running binary, since it can happen that the Python
binary is actually a script.

* Fixup static linking with | i bpyt hon. a that contains mai n. o by making our colliding symbols for
Py Get Ar gcAr gv weak.

» Python3.7: Fix misdetection as asyncgen for a normal generator, if the iterated value is async.
« Distutils: Fix bui | d_nui t ka for modules under nested hamespaces.

» OpenBSD: Follow usage of clang and other corrections to make accelerated mode work.

» macOS: Fixup for standalone mode library scan.

* Fix, the logging of - - show nodul es was broken.

» Windows: Enable / bi gobj mode for MSVC for large compilations to work.

» Windows: Fixup crash in warning with pefile dependency manager.

» Windows: Fixup wi n32com standalone detection of other Python version wi n32comis in system
PATH.

« Fix, the python flag for static hashes didn't have the intended effect.
* Fix, generators may be resurrected in the cause of their destruction, and then must not be released.

* Fix, method objects didn't implement the methods __reduce___ and __reduce_ex__ necessary for
pickling them.

» Windows: Fix, using a Python installation through a symlink was not working.

» Windows: Fix, icon paths that were relative were not working anymore.

» Python3.8: Detect duplicate keywords yielded from star arguments.

* Fix, methods could not be pickled.

» Fix, generators, coroutines and asyncgen might be resurrected during their release, allow for that.

* Fix, frames need to traverse their attached locals to be released in some cases.

New Features

* Plugin command line handling now allows for proper opt par se options to be used, doing away with
special parameter code for plugins. The arguments now also become automatically passed to the
instantiations of plugins.

Loading and creation of plugins are now two separate phases. They are loaded when they appear on
the command line and can add options in their own group, even required ones, but also with default
values.

» Started using logging with name-spaces. Applying logging per plugin to make it easier to recognize
which plugin said what. Warnings are now colored in red.

» Python3.5+: Added support for two step module loading, making Nuitka loading even more
compatible.

» Enhanced import tracing to work on standalone binaries in a useful manner, allow to compare with
normal binaries.

* Fix, the set at t r built-in was leaking a reference to the None value.
Optimization

* Proper loop SSA capable of detecting shapes with an incremental initial phase and a final result of
alternatives for variables written in the loop. This detects shapes of manual integer incrementing
loops correctly now, it doesn't see through iterators yet, but this will come too.

» Added type shapes for all operations and all important built-in types to allow more compile time
optimization and better target type selection.

 Target type code generation was expanded from manual usage with conditions to all operations
allowing to get at bool target values more directly.

* For in-place operations, there is the infrastructure to generate them for improved performance, but so
far it's only used for Python2 int, and not for the many types normal operations are supported.

» Force usage of C boolean type for all indicator variables from the re-formulation. In some cases, we
are not yet there with detections, and this gives instant benefit.

» Complex constants didn't annotate their type shape, preventing compile time optimization for them.

» Python3.8: Also support vectorcall for compiled method objects. These are rarely used in new
Python, but can make a difference.

* Remove loops that have only a final break. This happens in static optimization in some cases, and
allows more optimization to be done.

* Avoid using a preparing a constant tuple value for calls with only constant arguments.

» Avoid using PyErr _For mat where it's not necessary by adding specialized helpers for common
cases.

 Detect del statements that will raise an exception and replace with that.

» Exception matching is boolean shape, allowing for faster code generation.

» Disable recursion checks outside of full compat mode.

« Avoid large blocks for conditional statements that only need to enclose the condition evaluation.

» Added shortcuts for interactions between compiled generator variants, to avoid calls to their C
methods with argument passing, etc.

Organisational

» Updated developer manual with changes that happened, remvoing the obsolete language choice
section.

» Added 3.8 support mentions is even more places.
» The mailing list has been deleted. We now prefer Gitter chat and Github issues for discussions.

« Visual Code recommended extensions are now defined as such in the project configuration and you
will be prompted to install them.

« Visual Code environents for Py38 and Py27 were added for easier switch.

« Catch usage of Python from the Microsoft App Store, it is not supported and seems to limit access to
the Python installation for security reasons that make support impossible.

» Make it clear that - - f ul | - conpat should not be used in help output.
» Added instructions for MSVC runtimes and standalone compilation to support Windows 7.

» More complete listing of copyright holders for Debian.

» Updated to newer black and PyLint.

» Enhanced gcc version check, properly works with gcc 10 and higher.

Tests

* Pylint cleanups for some of the tests.
» Added test for loading of user plugins.

» Removed useless outputs for sear ch mode skipping non-matches.

Cleanups

* Limit command line handling for multiprocessing module to when the plugin is actually used, avoiding
useless code of Windows binaries.

* Pylint cleanup also foreign code like oset and odi ct .

« In preparation of deprecating the alternative, - - pl ugi n- enabl e has become the only form used in
documentation and tests.

* Avoid numeric pylint symbols more often.

« Distutils: Cleanup module name for distutils commands, these are not actually enforced by distutils,
but very ugly in our coding conventions.

» The "cannot get here" code to mark unreachable code has been improved and no longer needs an
identifier passed, but uses the standard C mechanism for that.

* Removed accessors for lookup sources from nodes, allowing for faster usage and making sure,
lookups are only done where needed.

Summary

This release is huge in terms of bugs fixed, but also extremely important, because the new loop SSA and
type tracing, allows for many more specialized code usages. We now can trace the type for some loops to
be specifically an integer or long value only, and will become able to generate code that avoids using
Python objects, in these cases.

Once that happens, the performance will make a big jump. Future releases will have to consolidate the
current state, but it is expected that at least an experimental addition of C type f | oat or C | ong can be
added, add to that i t er at or type shape and value analsis, and an actual jump in performance can be
expected.

Nuitka Release 0.6.7

This release contains bug fixes and improvements to the packaging, for the RPM side as well as for
Debian, to cover Python3 only systems as they are now becoming more common.

Bug Fixes

» Compatibility: The value of __nodul e__ for extension modules was not dependent into which
package the module was loaded, it now is.

» Anaconda: Enhanced detection of Anaconda for Python 3.6 and higher.
» CentOS6: Detect gcc version to allow saving on macro memory usage, very old gcc didn't have that.

* Include Python3 for all Fedora versions where it works as well as for openSUSE versions 15 and
higher.

» Windows: Using short path names to interact with Scons avoids problems with unicode paths in all
cases.

*» macOS: The usage of i nstall _nane_t ool could sometimes fail due to length limits, we now
increase it at link time.

» macOS: Do not link against | i bpyt hon for module mode. This prevented extension modules from
actually being usable.

» Python3.6: Follow coroutine fixes in our asyncgen implementation as well.

* Fix, our version number handling could overflow with minor versions past 10, so we limited it for now.

New Features

» Added support for Python 3.8, the experimental was already there and pretty good, but now added
the last obscure features too.

* Plugins can now provide C code to be included in the compilation.

» Distutils: Added targets bui | d_nui t ka and i nstal | _nui t ka to complement bdi st _nui t ka, so
we support software other than wheels, e.g. RPM packaging that compiles with Nuitka.

» Added support for | | db the Clang debugger with the - - debugger mode.
Optimization

» Make the file prefix map actually work for gcc and clang, and compile files inside the build folder,
unless we are running in debugger mode, so we use ccache caching across different compilations
for at least the static parts.

 Avoid compilation of __frozen. ¢ in accelerated mode, it's not used.

* Prefer using the inline copy of scons over systems scons. The later will only be slower. Use the
fallback to external scons only from the Debian packages, since there we consider it forbidden to
include software as a duplicate.

Organisational

» Added recommended plugins for Visual Code, replacing the list in the Developer Manual.
» Added repository for Fedora 30 for download.
» Added repository for CentOS 8 for download.

» Updated inline copy of Scons used for Python3 to 3.1.2, which is said to be faster for large
compilations.

* Removed Eclipse setup from the manual, it's only infererior at this point and we do not use it
ourselves.

 Debian: Stop recommending PyQt5 in the package, we no longer use it for built-in GUI that was
removed.

» Debian: Bumped the standards version and modernized the packaging, solving a few warnings
during the build.

Cleanups

* Scons: Avoid to add Unix only include paths on Windows.

» Scons: Have the static source code in a dedicated folder for clarity.

Tests

» Added tests to Github Actions, for the supported Python versions for all of Linux, macOS and
Windows, covering the later publicly for the first time. We use Anaconda on macOS for the tests now,
rather than Homebrew.

» Enable 10 encoding to make sure we use UTF8 for more test suites that actually need it in case of
problems.

» Comparing module outputs now handles segfaults by running in the debugger too.

Summary

This release adds full support for Python 3.8 finally, which took us a while, and it cleans up a lot on the
packaging side. There aren't that many important bug fixes, but it's still nice to this cleaned up.

We have important actual optimization in the pipeline that will apply specialization to target types and for
comparison operations. We expect to see actual performance improvements in the next release again.

Nuitka Release 0.6.6

This release contains huge amounts of crucial bug fixes all across the board. There is also new
optimization and many organisational improvements.

Bug Fixes

* Fix, the top level module must not be bytecode. Otherwise we end up violating the requirement for an
entry point on the C level.

* Fix, avoid optimizing calls with default values used. This is not yet working and needed to be disabled
for now.

» Python3: Fix, missing keyword only arguments were not enforced to be provided keyword only, and
were not giving the compatible error message when missing.

* Windows: Find wi n32comDLLs too, even if they live in sub folders of site-packages, and otherwise
not found. They are used by other DLLs that are found.

« Standalone: Fixup for problem with standard library module in most recent Anaconda versions.

* Scons: Fix, was using CXXFLAGS and CPPFLAGS even for the C compiler, which is wrong, and could
lead to compilation errors.

» Windows: Make - - cl ang limited to cl ang- cl . exe as using it inside a MinGW64 is not currently
supported.

« Standalone: Added support for using | i b2t 02. pgen.
« Standalone: Added paths used by openSUSE to the Tcl/Tk plugin.

» Python3.6+: Fix, the __mai n__ package was None, but should be
from itself.

which allows relative imports

» Python2: Fix, compile time optimization of floor division was using normal division.

* Python3: Fix, some run time operations with known type shapes, were falsely reporting error
message with uni code or | ong, which is of course not compatible.

* Fix, was caching parent package, but these could be replaced e.g. due to bytecode demotion later,
causing crashes during their optimization.

* Fix, the value of _ conpil ed__ could be corrupted when being deleted, which some modules
wrappers do.

* Fix, the value of __package__ could be corrupted when being deleted.

» Scons: Make sure we can always output the compiler output, even if it has a broken encoding. This
should resolve MSVC issues on hon-English systems, e.g. German or Chinese.

« Standalone: Support for newest skl ear n was added.
» macOS: Added resolver for run time variables in ot ool output, that gets PyQt5 to work on it again.

* Fix, floor division of run time calculations with float values should not result in i nt, but f | oat values
instead.

» Standalone: Enhanced support for bot 03 data files.
» Standalone: Added support for osgeo and gdal .

» Windows: Fix, there were issues with spurious errors attaching the constants blob to the binary due to
incorrect C types provided.

« Distutils: Fix, need to allow / as separator for package names too.

» Python3.6+: Fix reference losses in asyncgen when throwing exceptions into them.
» Standalone: Added support fordi | | .

» Standalone: Added support for sci ki t -i mage and ski nage.

« Standalone: Added support for weasypri nt .

» Standalone: Added support for dask.

« Standalone: Added support for pendul um

« Standalone: Added support for pyt z and pyt zdat a.

* Fix, - - pyt hon- f | ags=no_docst ri ngs no longer implies disabling the assertions.

New Features

» Added experimental support for Python 3.8, there is only very few things missing for full support.

» Distutils: Added support for packages that are in a namespace and not just top level.

« Distutils: Added support for single modules, not only packages, by supporting py_nodul es as well.
» Distutils: Added support for distinct namespaces.

» Windows: Compare Python and C compiler architecture for MSVC too, and catch the most common
user error of mixing 32 and 64 bits.

 Scons: Output variables used from the outside, so the debugging is easier.

» Windows: Detect if clang installed inside MSVC automatically and use it if requested via - - cl ang
option. This is only the 32 bits variant, but currently the easy way to use it on Windows with Nuitka.

Optimization

 Loop variables were analysed, but results were only available on the inside of the loop, preventing
many optimization in these cases.

» Added optimization for the abs built-in, which is also a numerical operator.

» Added optimization for the al | built-in, adding a new concept of iteration handle, for efficient
checking that avoids looking at very large sequences, of which properties can still be known.

all (range(1, 100000)) # no need to look at all of them

» Added support for optimizing | nport Er r or construction with keyword-only arguments. Previously
only used without these were optimized.

rai se InportError(path="1ala", name="lele") # now optim zed
» Added manual specialization for single argument calls, sovling a TODO, as these will be very
frequent.

* Memory: Use single child form of node class where possible, the general class now raises an error if
used with used with only one child name, this will use less memory at compile time.

* Memory: Avoid list for non-local declarations in every function, these are very rare, only have it if
absolutely necessary.

» Generate more compact code for potential NarmeEr r or exceptions being raised. These are very
frequent, so this improves scalability with large files.

» Python2: Annotate comparison of None with i nt and st r types as not raising an exception.
» Shared empty body functions and generators.

One shared implementation for all empty functions removes that burden from the C compiler, and
from the CPU instruction cache. All the shared C code does is to release its arguments, or to return
an empty generator function in case of generator.

» Memory: Added support for automatic releases of parameter variables from the node tree. These are
normally released in a try finally block, however, this is now handled during code generation for much
more compact C code generated.

» Added specialization for i nt and | ong operations % <<, >>,| , & ", **, @
» Added dedicated nodes for representing and optimizing based on shapes for all binary operations.
« Disable gcc macro tracing unless in debug mode, to save memory during the C compilation.

» Restored Python2 fast path for i nt with unknown object types, restoring performance for these.
Cleanups

» Use dedicated Modul eNane type that makes the tests that check if a given module name is inside a
namespace as methods. This was hard to get right and as a result, adopting this fixed a few bugs and
or inconsistent results.

» Expand the use of nui t ka. Post Processi ng to cover all actions needed to get a runnable binary.
This includes using i nstal | _name_t ool on macOS standalone, as well copying the Python DLL
for acceleration mode, cleaning the x bit for module mode. Previously only a part of these lived there.

» Avoid including the definitions of dynamically created helper functions in the C code, instead just
statically declare the ones expected to be there. This resolves Visual Code complaining about it, and
should make life also easier for the compiler and caches like ccache.

« Create more helper code in closer form to what cl ang- f or mat does, so they are easier to compare
to the static forms. We often create hard coded variants for few arguments of call functions, and
generate them for many argument variations.

» Moved setter/getter methods for Nuitka nodes consistently to the start of the node class definitions.
» Generate C code much closer to what cl ang- f or mat would change it to be.

« Unified calling i nstal | _name_t ool on macOS into one function that takes care of all the things,
including e.g. making the file writable.

» Debug output from scons should be more consistent and complete now.

« Sort files for compilation in scons for better reproducible results.

* Create code objects version independent, avoiding python version checks by pre-processor, hiding
new stuff behind macros, that ignore things on older Python versions.

Tests

» Added many more built-in tests for increased coverage of the newly covered ones, some of them
being generic tests that allow to test all built-ins with typical uses.

» Many tests have become more PyLint clean as a result of work with Visual Code and it complaining
about them.

» Added test to check PyPI health of top 50 packages. This is a major GSoC 2019 result.
* Output the standalone directory contents for Windows too in case of a failure.

» Added generated tests to fully cover operations on different type shapes and their errors as well as
results for typical values.

» Added support for testing against installed version of Nuitka.

* Cleanup up tests, merging those for only Python 3.2 with 3.3 as we no longer support that version
anyway.
» Execute the Python3 tests for macOS on Travis too.

Organisational

» The donation sponsored machine called donat i x had to be replaced due to hardware breakage. It
was replaced with a Raspberry-Pi 4.

» Enhanced plugin documentation.
» Added description of the git workflow to the Developer Manual.

» Added checker script check- nui t ka-wi t h-codespel | that reports typos in the source code for
easier use of codespel | with Nuitka.

» Use newest PyLint and clang-format.

* Also check plugin documentation files for ReST errors.

» Much enhanced support for Visual Code configuration.

* Trigger module code is now written into the build directory in debug mode, to aid debugging.

» Added deep check function that descends into tuples to check their elements too.

Summary

This release comes after a long time of 4 months without a release, and has accumulated massive
amounts of changes. The work on CPython 3.8 is not yet complete, and the performance work has yet to
show actual fruit, but has also progressed on all fronts. Connecting the dots and pieces seems not far
away.

Nuitka Release 0.6.5

This release contains many bug fixes all across the board. There is also new optimization and many
organisational improvements.

Bug Fixes

» Python3.4+: Fixed issues with modules that exited with an exception, that could lead to a crash,
dealing with their __spec__ value.

e Python3.4+: The __| oader __ method i s_package had the wrong signature.
» Python3.6+: Fix for async wi t h being broken with uncompiled generators.

» Python3.5+: Fix for cor out i nes that got their awaited object closed behind their back, they were
complaining with Runt i neEr r or should they be closed themselves.

* Fix, constant values None in a bool target that could not be optimized away, lead to failure during
code generation.

if x() and None:

 Standalone: Added support for sha224, sha384, sha512 in crypto package.
» Windows: The icon wasn't properly attached with MinGW64 anymore, this was a regression.

» Windows: For compiler outputs, also attempt preferred locale to interpret outputs, so we have a better
chance to not crash over MSVC error messages that are not UTF-8 compatible.

* macOS: Handle filename collisions for generated code too, Nuitka now treats all filesystems for all
OS as case insensitive for this purpose.

» Compatibility: Added support for tolerant del in class exception handlers.

class C
try:
exce|.o£ . Exception as e:
del e
At exception handler exit, "e" is deleted if still assigned

We already were compatible for functions and modules here, but due to the special nature of class
variables really living in dictionaries, this was delayed. But after some other changes, it was now
possible to solve this TODO.

« Standalone: Added support for Python3 variant of Pmw.

* Fix, the NumPy plugin now handles more installation types.

* Fix, the gt plugin now handles multiple library paths.

* Fix, need | i bmfor some Anaconda variants too.

* Fix, left over bytecode from plugins could crash the plugin loader.

* Fix, pkguti | .iter_packages is now working for loaded packages.

New Features

» Python3.8: Followed some of the changes and works with beta2 as a Python 3.7, but none of the new
features are implemented yet.

» Added support for Torch, Tensorflow, Gevent, Sklearn, with a new Nuitka plugin.
» Added support for "hinted" compilation, where the used modules are determined through a test run.

» Added support for including TCL on Linux too.

Optimization

» Added support for the any built-in. This handles a wide range of type shapes and constant values at
compile time, while also having optimized C code.

» Generate code for some CLONG operations in preparation of eventual per expression C type
selection, it then will allow to avoid objects in many instances.

» Windows: Avoid creating link libraries for MinGW64 as these have become unnecessary is the mean
time.

» Packages: Do not export entry points for all included packages, only for the main package name it is
importable as.

Organisational

» Added support for Visual Studio 2019 as a C compiler backend.
« Improved plugin documentation describing how to create plugins for Nuitka even better.

» The is now a mode for running the tests called al | which will execute all the tests and report their
errors, and only fail at the very end. This doesn't avoid wasting CPU cycles to report that e.g. all tests
are broken, but it allows to know all errors before fixing some.

» Added repository for Fedora 30 for download.
» Added repository for openSUSE 15.1 for download.

» Ask people to compile hello world program in the Github issue template, because many times, they
have setup problems only.

* Visual Studio Code is now the recommended IDE and has integrated configuration to make it
immediately useful.

» Updated internal copy of Scons to 3.1.0 as it incorporates many of our patches.
» Changed wordings for optimization to use "lowering" as the only term to describe an optimization that
simplifies.

Cleanups

* Plugins: Major refactoring of Nuitka plugin API.

* Plugins: To locate module kind, use core Nuitka code that handles more cases.

* The test suite runners are also now autoformatted and checked with PyLint.

» The Scons file is now PyLint clean too.

» Avoid bui | d_def i ni ti ons. h to be included everywhere, in that it's only used in the main program
part. This makes C linter hate us much less for using a non-existent file.

Tests

* Run the tests using Travis on macOS for Python2 too.

» More standalone tests have been properly whitelisting to cover openSSL usage from local system.
« Disabled PySide2 test, it's not useful to fail and ignore it.

» Tests: Fixups for coverage testing mode.

 Tests: Temporarily disable some checks for constants code in reflected tests as it only exposes
mar shal not being deterministic.

Summary

This release is huge again. Main points are compatibility fixes, esp. on the coroutine side. These have
become apparently very compatible now and we might eventually focus on making them better.

Again, GSoC 2019 is also showing effects, and will definitely continue to do soin the next release.

Many use cases have been improved, and on an organizational level, the adoption of Visual Studio Code
seems an huge improvement to have a well configured IDE out of the box too.

In upcoming releases, more built-ins will be optimized, and hopefully the specialization of operations will hit
more and more code with more of the infrastructure getting there.

Nuitka Release 0.6.4

This release contains many bug fixes all across the board. There is also new optimization and many
organisational improvements.

Bug Fixes

* When linking very large programs or packages, with gcc compiler, Scons can produce commands
that are too large for the OS. This happens sooner on the Windows OS, but also on Linux. We now
have a workaround that avoids long command lines by using @our ces. t np syntax.

« Standalone: Remove temporary module after its use, instead of keeping it in sys. nodul es where
e.g. Quart code tripped overits __fil e__ value that is illegal on Windows.

» Fixed non-usage of our enhanced detection of gcc version for compilers if given as a full path.
* Fixed non-detection of gnu- cc as a form of gcc compiler.

» Python3.4: The __spec__ value corrections for compiled modules was not taking into account that
there was a __spec__ value, which can happen if something is wrapping imported modules.

« Standalone: Added implicit dependencies for passl i b.

* Windows: Added workaround for OS command line length limit in compilation with MinGW64.
» Python2: Revive the enumplugin, there are backports of the buggy code it tries to patch up.

» Windows: Fixup handling of SxS with non zero language id, these occur e.g. in Anaconda.

* Plugins: Handle multiple PyQt plugin paths, e.g. on openSUSE this is done, also enhanced finding
that path with Anaconda on Windows.

* Plugins: For mul ti processi ng on Windows, allow the . exe suffix to not be present, which can
happen when ran from command line.

* Windows: Better version checks for DLLs on Python3, the ctypes helper code needs more
definitions to work properly.

« Standalone: Added support for both pycr ypt odone and pycr ypt odomex.
* Fix, the chr built-in was not giving fully compatible error on non number input.
* Fix, the i d built-in doesn't raise an exception, but said otherwise.

» Python3: Proper C identifiers for names that fit into | at i n- 1, but are not asci i encodings.

New Features

* Windows: Catch most common user error of using compiler from one architecture against Python
from another. We now check those and compare it, and if they do not match, inform the user directly.
Previously the compilation could fail, or the linking, with cryptic errors.

» Distutils: Using setuptools and its runners works now too, not merely only pure distutils.
« Distutils: Added more ways to pass Nuitka specific options via distutils.

 Python3.8: Initial compatibility changes to get basic tests to work.

Organisational

* Nuitka is participating in the GSoC 2019 with 2 students, Batakrishna and Tommy.

* Point people creating PRs to using the pr e- commi t hook in the template. Due to making the style
issues automatic, we can hope to encounter less noise and resulting merge problems.

» Many improvements to the pr e- conmi t hook were done, hopefully completing its development.

» Updated to latest pyl i nt, bl ack, and i sort versions, also added codespel | to check for typos in
the source code, but that is not automated yet.

» Added description of how to use experimental flags for your PRs.

*« Removed mirroring from Bitbucket and Gitlab, as we increasingly use the Github organisation
features.

» Added support for Ubuntu Disco, removed support for Ubuntu Artful packages.
Optimization
» Windows: Attach data blobs as Windows resource files directly for programs and avoid using C data

files for modules or MinGW64, which can be slow.

» Specialization of helper codes for + is being done for more types and more thoroughly and fully
automatic with Jinja2 templating code. This does replace previously manual code.

» Added specialization of helper codes for * operation which is entirely new.
» Added specialization of helper codes for - operation which is entirely new.

» Dedicated nodes for specialized operations now allow to save memory and all use type shape based
analysis to predict result types and exception control flow.

» Better code generation for boolean type values, removing error checks when possible.

» Better static analysis for even more type operations.

Cleanups

» Fixed many kinds of typos in the code base with codespel I .
 Apply automatic formatting to more test runner code, these were previously not done.

» Avoid using shuti | . copyt r ee which fails to work when directory already exists, instead provide
nuitka.util.FileQperations.copyTree and use that exclusively.

Tests

» Added new mode of operation to test runners, onl y that executes just one test and stops, useful
during development.

» Added new mechanism for standalone tests to expression modules that need to be importable, or
else to skip the test by a special comment in the file, instead of by coded checks in the test runner.

» Added also for more complex cases, another form of special comment, that can be any expression,
that decides if the test makes sense.

» Cover also setuptools in our distutils tests and made the execution more robust against variable
behavior of distutils and setuptools.

» Added standalone test for Urllib3.
» Added standalone test for rsa.
» Added standalone test for Pmw.

» Added standalone test for passlib.

Summary

Again this release is a sign of increasing adoption of Nuitka. The GSoC 2019 is also showing effects,
definitely will in the next release.

This release has a lot of new optimization, called specialization, but for it to really used, in many instances,
we need to get away from working on C types for variables only, and get to them beig used for expressions
more often. Otherwise much of the new special code is not used for most code.

The focus of this release has been again to open up development further and to incorporate findings from
users. The number of fixes or new use cases working is astounding.

In upcoming releases, new built-ins will be optimized, and specialization of operations will hit more and
more code now that the infrastructure for it is in place.

Nuitka Release 0.6.3

This has a focus on organisational improvements. With more and more people joining Nuitka, normal
developers as well as many GSoC 2019 students, the main focus was to open up the development tools
and processes, and to improve documentation.

That said, an impressive amount of bug fixes was contributed, but optimization was on hold.
Bug Fixes

» Windows: Added support for running compiled binaries in unicode path names.

« Standalone: Added support for crytodomex and pycparser packages.

« Standalone: Added support for OpenSSL support in PyQt on Windows.

« Standalone: Added support for OpenGL support with QML in PyQt on Windows.

« Standalone: Added support for SciPy and extended the NumPy plugin to also handle it.

» Ul: The option - - pl ugi n-1i st still needed a positional argument to work.

» Make sure sys. base_prefi x is set correctly too.

» Python3: Also make sure sys. exec_prefi x and sys. base_exec_pr efi x are set correctly.
« Standalone: Added platform plugins for PyQt to the default list of sensible plugins to include.

* Fix detection of standard library paths that include . . path elements.
Optimization
* Avoid static C++ runtime library when using MinGW64.

New Features

* Plugins: A plugin may now also generate data files on the fly for a given module.

» Added support for FreeBSD/PowerPC arch which still uses gcc and not cl ang.

Organisational

* Nuitka is participating in the GSoC 2019.

» Added documentation on how to create or use Nuitka plugins.

» Added more API doc to functions that were missing them as part of the ongoing effort to complete it.
» Updated to latest PyLint 2.3.1 for checking the code.

* Scons: Using newer Scons inline copy with Python 2.7 as, the old one remains only used with Python
2.6, making it easier to know the relevant code.

 Autoformat was very much enhanced and handles C and ReST files too now. For Python code it
does pylint comment formatting, import statement sorting, and blackening.

» Added script mi sc/install-git-hooks. py that adds a commit hook that runs autoformat on
commit. Currently it commits unstaged content and therefore is not yet ready for prime time.

» Moved adapted CPython test suites to Github repository under Nuitka Organisation.

» Moved Nuitka-website repository to Github repository under Nuitka Organisation.

» Moved Nuitka-speedcenter repository to Github repository under Nuitka Organisation.
* There is now a Gitter chat for Nuitka community.

» Many typo and spelling corrections on all the documentation.

» Added short installation guide for Nuitka on Windows.

Cleanups

» Moved commandline parsing helper functions from common code helpers to the main program where
of course their only usage is.

» Moved post processing of the created standalone binary from main control to the freezer code.
« Avoid using chnod binary to remove executable bit from created extension modules.

» Windows: Avoid using rt . exe and nt . exe to deal with copying the manifest from the pyt hon. exe
to created binaries. Instead use new code that extracts and adds Windows resources.

* Fixed many Resour ceWar ni ngs on Python3 by improved ways of handling files.
» Fixed deprecation warnings related to not using col | ect i ons. abc.

» The runners in bi n directory are now formatted with bl ack too.

Tests

 Detect Windows permission errors for two step execution of Nuitka as well, leading to retries should
they occur.

» The salt value for CPython cached results was improved to take more things into account.

* Tests: Added more trick assignments and generally added more tests that were so far missing.

Summary

With the many organisational changes in place, my normal work is expected to resume for after and yield
quicker improvements now.

https://github.com/Nuitka/Nuitka-CPython-tests
https://github.com/Nuitka/Nuitka-website
https://github.com/Nuitka/Nuitka-speedcenter
https://gitter.im/Nuitka-chat/community

It is also important that people are now enabled to contribute to the Nuitka web site and the Nuitka
speedcenter. Hope is to see more improvements on this otherwise neglected areas.

And generally, it's great to see that a community of people is now looking at this release in excitement and
pride. Thanks to everybody who contributed!

Nuitka Release 0.6.2

This release has a huge focus on organizational things. Nuitka is growing in terms of contributors and
supported platforms.

Bug Fixes

* Fix, the Python flag - - pyt hon- f | ag=- O was removing doc strings, but that should only be done
with - - pyt hon- f | ag=- OOwhich was added too.

* Fix, accelerated binaries failed to load packages from the vi rt ual env (not venv) that they were
created and ran with, due to not propagating sys. prefi x.

« Standalone: Do not include pl at - * directories as frozen code, and also on some platforms they can
also contain code that fails to import without error.

« Standalone: Added missing implicit dependency needed for newer NumPy versions.

New Features

» Added support for Alpine Linux.
» Added support for MSYS2 based Python on Windows.
» Added support for Python flag - - pyt hon f 1 ag=- OO, which allows to remove doc strings.

» Added experimental support for pefi | e based dependency scans on Windows, thanks to Orsiris for
this contribution.

» Added plugin for proper Tkinter standalone support on Windows, thanks to Jorj for this contribution.

* There is now a __conpi | ed__ attribute for each module that Nuitka has compiled. Should be like
this now, and contains Nuitka version information for you to wuse, similar to what
sys. ver si on_i nf o gives as a namedt upl e for your checks.

__nuitka_version__(mgjor=0, mnor=6, mcro=2, rel easel evel ="rel ease")

Optimization

» Experimental code for variant types for i nt and | ong values, that can be plain C value, as well as
the PyQbj ect *. This is not yet completed though.

» Minor refinements of specialized code variants reducing them more often the actual needed code.
Organisational

» The Nuitka Github Organisation that was created a while ago and owns the Nuitka repo now, has
gained members. Check out https://github.com/orgs/Nuitka/people for their list. This is an exciting
transformation for Nuitka.

* Nuitka is participating in the GSoC 2019 under the PSF umbrella. We hope to grow even further.
Thanks to the mentors who volunteered for this important task. Check out the GSoC 2019 page and
thanks to the students that are already helping out.

https://github.com/orgs/Nuitka/people
https://nuitka.net/pages/gsoc2019.html#mentors

» Added Nuitka internal APl documentation that will receive more love in the future. It got some for this
release, but a lot is missing.

» The Nuitka code has been bl ack-ened and is formatted with an automatic tool now all the way,
which makes contributors lives easier.

» Added documentation for questions received as part of the GSoC applications and ideas work.

» Some proof reading pull requests were merged for the documentation, thanks to everybody who
addresses these kinds of errors. Sometimes typos, sometimes broken links, etc.

» Updated inline copy of Scons used for Python3 to 3.0.4, which hopefully means more bugs are fixed.

Summary

This release is a sign of increasing adoption of Nuitka. The GSoC 2019 is showing early effects, as is more
developers joining the effort. These are great times for Nuitka.

This release has not much on the optimization side that is user visible, but the work that has begun is
capable of producing glorious benchmarks once it will be finished.

The focus on this and coming releases is definitely to open up the Nuitka development now that people are
coming in as permanent or temporary contributors in (relatively) high numbers.

Nuitka Release 0.6.1

This release comes after a relatively long time, and contains important new optimization work, and even
more bug fixes.

Bug Fixes

* Fix, the options - -[no] f ol | ow- i mport -t o=package_nanme was supposed to not follow into the
given package, but the check was executed too broadly, so that e.g. package_nanme2 was also
affected. Fixed in 0.6.0.1 already.

* Fix, wasn't detecting multiple recursions into the same package in module mode, when attempting to
compile a whole sub-package. Fixed in 0.6.0.1 already.

* Fix, constant values are used as C boolean values still for some of the cases. Fixed in 0.6.0.1
already.

* Fix, referencing a function cannot raise an exception, but that was not annotated. Fixed in 0.6.0.2
already.

* macOS: Use standard include of C bool type instead of rolling our own, which was not compatible
with newest Clang. Fixed in 0.6.0.3 already.

» Python3: Fix, the byt es built-in type actually does have a __f | oat __ slot. Fixed in 0.6.0.4 already.

» Python3.7: Types that are also sequences still need to call the method __cl ass_getitem _ for
consideration. Fixed in 0.6.0.4 already.

» Python3.7: Error exits from program exit could get lost on Windows due to __spec__ handling not
preserving errors. Fixed in 0.6.0.4 already.

» Windows: Negative exit codes from Nuitka, e.g. due to a triggered assertion in debug mode were not
working. Fixed in 0.6.0.4 already.

* Fix, conditional and expressions were mis-optimized when not used to not execute the right hand
side still. Fixed in 0.6.0.4 already.

» Python3.6: Fix, generators, coroutines, and asyncgen were not properly supporting annotations for
local variables. Fixed in 0.6.0.5 already.

https://nuitka.net/apidoc

» Python3.7: Fix, class declarations had memory leaks that were untestable before 3.7.1 fixed
reference count issues in CPython. Fixed in 0.6.0.6 already.

» Python3.7: Fix, asyncgen expressions can be created in normal functions without an immediate
awaiting of the iterator. This new feature was not correctly supported.

* Fix, star imports on the module level should disable built-in name optimization except for the most
critical ones, otherwise e.g. names like al | or pow can become wrong. Previous workarounds for
pow were not good enough.

* Fix, the scons for Python3 failed to properly report build errors due to a regression of the Scons
version used for it. This would mask build errors on Windows.

» Python3.4: Fix, packages didn't indicate that they are packages in their __spec__ value, causing
issues with i nportli b_resources module.

» Python3.4: The _ spec__ values of compiled modules didn't have compatible ori gi n and
has_| ocati on values preventing i nport!|i b_resour ces module from working to load data files.

* Fix, packages created from . pt h files were also considered when checking for sub-packages of a
module.

« Standalone: Handle cases of conflicting DLLs better. On Windows pick the newest file version if
different, and otherwise just report and pick randomly because we cannot really decide which ought
to be loaded.

« Standalone: Warn about collisions of DLLs on non-Windows only as this can happen with wheels
apparently.

« Standalone: For Windows Python extension modules . pyd files, remove the SxS configuration for
cases where it causes problems, not needed.

* Fix: The exec statement on file handles was not using the proper filename when compiling, therefore
breaking e.g. i nspect . get sour ce on functions defined there.

« Standalone: Added support for OpenGL platform plugins to be included automatically.
« Standalone: Added missing implicit dependency for zng module.

» Python3.7: Fix, using the - X ut f 8 flag on the calling interpreter, aka - - pyt hon- f | ag=ut f 8_nbde
was not preserved in the compiled binary in all cases.

New Optimization

» Enabled C target type voi d which will catch creating unused stuff more immediately and give better
code for expression only statements.

» Enabled in-place optimization for module variables, avoiding write back to the module dict for
unchanged values, accelerating these operations.

» Compile time memory savings for the yi el d node of Python2, no need to track if it is in an exception
handler, not relevant there.

« Using the single child node for the yi el d nodes gives memory savings at compile time for these,
while also making them operate faster.

» More kinds of in-place operations are now optimized, e.g. i nt += i nt and the byt es ones were
specialized to perform real in-place extension where possible.

 Loop variables no longer loose type information, but instead collect the set of possible type shapes
allowing optimization for them.

Organizational

* Corrected download link for Arch AUR link of develop package.

» Added repository for Ubuntu Cosmic (18.10) for download.
» Added repository for Fedora 29 for download.
» Describe the exact format used for cl ang- f or mat in the Developer Manual.

» Added description how to use CondaCC on Windows to the User Manual.

Cleanups

» The operations used for async for, async wth, and await were all doing a look-up of an
awaitable, and then executing the yi el d f r omthat awaitable as one thing. Now this is split into two
parts, with a new Expr essi onYi el dFr omAwai t abl e as a dedicated node.

» The yi el d node types, now 3 share a base class and common computation for now, enhancing the
one for awaitiable, which was not fully annotating everything that can happen.

* In code generation avoid statement blocks that are not needed, because there are no local C
variables declared, and properly indent them.

Tests

* Fixups for the manual Valgrind runner and the Ul changes.

» Test runner detects lock issue of cl cache on Windows and considers it a permission problem that
causes a retry.

Summary

This addresses even more corner cases not working correctly, the out of the box experience should be
even better now.

The push towards C level performance for integer operation was held up by the realization that loop SSA
was not yet there really, and that it had to be implemented, which of course now makes a huge difference
for the cases where e.g. bool are being used. There is no C type for i nt used yet, which limits the impact
of optimization to only taking shortcuts for the supported types. These are useful and faster of course, but
only building blocks for what is to come.

Most of the effort went into specialized helpers that e.g. add a f | oat and and i nt value in a dedicated
fashion, as well as comparison operations, so we can fully operate some minimal examples with
specialized code. This is too limited still, and must be applied to ever more operations.

What's more is that the benchmarking situation has not improved. Work will be needed in this domain to
make improvements more demonstrable. It may well end up being the focus for the next release to
improve Nuitka speedcenter to give more fine grained insights across minor changes of Nuitka and graphs
with more history.

Nuitka Release 0.6.0

This release adds massive improvements for optimization and a couple of bug fixes.
It also indicates reaching the mile stone of doing actual type inference, even if only very limited.

And with the new version numbers, lots of Ul changes go along. The options to control recursion into
modules have all been renamed, some now have different defaults, and finally the filenames output have
changed.

Bug Fixes

» Python3.5: Fix, the awaiting flag was not removed for exceptions thrown into a coroutine, so next time
it appeared to be awaiting instead of finished.

» Python3: Classes in generators that were using built-in functions crashed the compilation with C
errors.

» Some regressions for XML outputs from previous changes were fixed.
* Fix, hasat t r was not raising an exception if used with non-string attributes.

* For really large compilations, MSVC linker could choke on the input file, line length limits, which is
now fixed for the inline copy of Scons.

« Standalone: Follow changed hidden dependency of PyQ 5 to PyQ 5. si p for newer versions

« Standalone: Include certificate file using by r equest s module in some cases as a data file.

New Optimization

» Enabled C target type nui t ka_bool for variables that are stored with boolean shape only, and
generate C code for those

« Using C target type nui t ka_bool many more expressions are now handled better in conditions.
* Enhancedi s andi s not to be C source type aware, so they can be much faster for them.
» Use C target type for bool built-in giving more efficient code for some source values.

» Annotate the not result to have boolean type shape, allowing for more compile time optimization with
it.

» Restored previously lost optimization of loop break handling St opl t er at i on which makes loops
much faster again.

* Restore lost optimization of subscripts with constant integer values making them faster again.

» Optimize in-place operations for cases where left, right, or both sides have known type shapes for
some values. Initially only a few variants were added, but there is more to come.

» When adjacent parts of an f-string become known string constants, join them at compile time.
» When there is only one remaining part in an f-string, use that directly as the result.

» Optimize empty f-strings directly into empty strings constant during the tree building phase.

» Added specialized attribute check for use in re-formulations that doesn't expose exceptions.

* Remove locals sync operation in scopes without local variables, e.g. classes or modules, making
exec and the like slightly leaner there.

* Remove t r y nodes that did only re-raise exceptions.
» The del of variables is now driven fully by C types and generates more compatible code.

* Removed useless double exception exits annotated for expressions of conditions and added code
that allows conditions to adapt themselves to the target shape bool during optimization.

New Features

» Added support for using . egg files in PYTHONPATH, one of the more rare uses, where Nuitka wasn't
yet compatible.

 Qutput binaries in standalone mode with platform suffix, on non-Windows that means no suffix. In
accelerated mode on non-Windows, use . bi n as a suffix to avoid collision with files that have no
suffix.

» Windows: It's now possible to use cl ang-cl . exe for CC with Nuitka as a third compiler on
Windows, but it requires an existing MSVC install to be used for resource compilation and linking.

» Windows: Added support for using ccache. exe and cl cache. exe, so that object files can now be
cached for re-compilation.

» For debug mode, report missing in-place helpers. These kinds of reports are to become more
universal and are aimed at recognizing missed optimization chances in Nuitka. This features is still in
its infancy. Subsequent releases will add more like these.

Organizational

« Disabled comments on the web site, we are going to use Twitter instead, once the site is migrated to
an updated Nikola.

» The static C code is now formatted with cl ang-f ormat to make it easier for contributors to
understand.

» Moved the construct runner to top level binary and use it from there, with future changes coming that
should make it generally useful outside of Nuitka.

» Enhanced the issue template to tell people how to get the devel op version of Nuitka to try it out.
» Added documentation for how use the object caching on Windows to the User Manual.

» Removed the included GUI, originally intended for debugging, but XML outputs are more powerful
anyway, and it had been in disrepair for a long time.

* Removed long deprecated options, e.g. - - exe which has long been the default and is no more
accepted.

* Renamed options to include plugin files to --include-plugin-directory and
--include-pl ugi n-fil es for more clarity.

» Renamed options for recursion control to e.g. --fol | owi nports to better express what they
actually do.

* Removed - - pyt hon- ver si on support for switching the version during compilation. This has only
worked for very specific circumstances and has been deprecated for a while.

* Removed - - code- gen- no- st at enent - | i nes support for not having line numbers updated at run
time. This has long been hidden and probably would never gain all that much, while causing a lot of
incompatibilty.

Cleanups

» Moved command line arguments to dedicated module, adding checks was becoming too difficult.
» Moved rich comparison helpers to a dedicated C file.

» Dedicated binary and unary node bases for clearer distinction and more efficient memory usage of
unuary nodes. Unary operations also no longer have in-place operation as an issue.

» Major cleanup of variable accesses, split up into multiple phases and all including module variables
being performed through C types, with no special cases anymore.

« Partial cleanups of C type classes with code duplications, there is much more to resolve though.

» Windows: The way exec was performed is discouraged in the subpr ocess documentation, so use a
variant that cannot block instead.

» Code proving information about built-in names and values was using not very portable constructs,
and is now written in a way that PyPy would also like.

Tests

* Avoid using 2t 03 for basic operators test, removing test of some Python2 only stuff, that is covered
elsewhere.

» Added ability to cache output of CPython when comparing to it. This is to allow CI tests to not execute
the same code over and over, just to get the same value to compare with. This is not enabled yet.

Summary

This release marks a point, from which on performance improvements are likely in every coming release.
The C target types are a major milestone. More C target types are in the work, e.g. voi d is coming for
expressions that are done, but not used, that is scheduled for the next release.

Although there will be a need to also adapt optimization to take full advantage of it, progress should be
quick from here. There is a lot of ground to cover, with more C types to come, and all of them needing
specialized helpers. But as soon as e.g. i nt, str are covered, many more programs are going to
benefiting from this.

Nuitka Release 0.5.33

This release contains a bunch of fixes, most of which were previously released as part of hotfixes, and
important new optimization for generators.

Bug Fixes

* Fix, nested functions with local classes using outside function closure variables were not registering
their usage, which could lead to errors at C compile time. Fixed in 0.5.32.1 already.

* Fix, usage of built-in calls in a class level could crash the compiler if a class variable was updated
with its result. Fixed in 0.5.32.1 already.

» Python 3.7: The handling of non-type bases classes was not fully compatible and wrong usages were
giving At t ri but eErr or instead of TypeEr r or . Fixed in 0.5.32.2 already.

» Python 3.5: Fix, awai t expressions didn't annotate their exception exit. Fixed in 0.5.32.2 already.

» Python3: The enummodule usages with __new__ in derived classes were not working, due to our
automatic st ati cnet hod decoration. Turns out, that was only needed for Python2 and can be
removed, making enum work all the way. Fixed in 0.5.32.3 already.

* Fix, recursion into __mai n__ was done and could lead to compiler crashes if the main module was
named like that. This is not prevented. Fixed in 0.5.32.3 already.

» Python3: The name for list contraction's frames was wrong all along and not just changed for 3.7, so
drop that version check on it. Fixed in 0.5.32.3 already.

* Fix, the hashing of code objects has creating a key that could produce more overlaps for the hash
than necessary. Using a C1 on line 29 and Con line 129, was considered the same. And that is what
actually happened. Fixed in 0.5.32.3 already.

» macOS: Various fixes for newer Xcode versions to work as well. Fixed in 0.5.32.4 already.

» Python3: Fix, the default __annot ati ons__ was the empty dict and could be modified, leading to
severe corruption potentially. Fixed in 0.5.32.4 already.

» Python3: When an exception is thrown into a generator that currently does a yi el d fromis not to
be normalized.

» Python3: Some exception handling cases of yi el d fr omwere leaking references to objects. Fixed
in 0.5.32.5 already.

» Python3: Nested namespace packages were not working unless the directory continued to exist on
disk. Fixed in 0.5.32.5 already.

« Standalone: Do not include i cuuc. dl | which is a system DLL. Fixed in 0.5.32.5 already.

« Standalone: Added hidden dependency of newer version of si p. Fixed in 0.5.32.5 already.

« Standalone: Do not copy file permissions of DLLs and extension modules as that makes deleting and
modifying them only harder. Fixed in 0.5.32.6 already.

» Windows: The multiprocessing plugin was not always properly patching the run time for all module
loads, made it more robust. Fixed in 0.5.32.6 already.

« Standalone: Do not preserve permissions of copied DLLs, which can cause issues with read-only
files on Windows when later trying to overwrite or remove files.

» Python3.4: Make sure to disconnect finished generators from their frames to avoid potential data
corruption. Fixed in 0.5.32.6 already.

» Python3.5: Make sure to disconnect finished coroutines from their frames to avoid potential data
corruption. Fixed in 0.5.32.6 already.

» Python3.6: Make sure to disconnect finished asyncgen from their frames to avoid potential data
corruption. Fixed in 0.5.32.6 already.

» Python3.5: Explicit frame closes of frames owned by coroutines could corrupt data. Fixed in 0.5.32.7
already.

» Python3.6: Explicit frame closes of frames owned by asyncgen could corrupt data. Fixed in 0.5.32.7
already.

 Python 3.4: Fix threaded imports by properly handling _i ni ti al i zi ng in compiled modules " spec
attributes. Before it happen that another thread attempts to use an unfinished module. Fixed in
0.5.32.8 already.

* Fix, the options - - i ncl ude- nodul e and - -i ncl ude- package were present but not visible in the
help output. Fixed in 0.5.32.8 already.

» Windows: The multiprocessing plugin failed to properly pass compiled functions. Fixed in 0.5.32.8
already.

» Python3: Fix, optimization for in-place operations on mapping values are not allowed and had to be
disabled. Fixed in 0.5.32.8 already.

» Python 3.5: Fixed exception handling with coroutines and asyncgen t hr ow to not corrupt exception
objects.

» Python 3.7: Added more checks to class creations that were missing for full compatibility.

» Python3: Smarter hashing of unicode values avoids increased memory usage from cached converted
forms in debug mode.

Organizational

» The issue tracker on Github is now the one that should be used with Nuitka, winning due to easier
issue templating and integration with pull requests.

» Document the threading model and exception model to use for MinGW64.

* Removed the enumplug-in which is no longer useful after the improvements to the st at i cnet hod
handling for Python3.

» Added Python 3.7 testing for Travis.
» Make it clear in the documentation that pyenv is not supported.

» The version output includes more information now, OS and architecture, so issue reports should
contain that now.

» On PyPI we didn't yet indicated Python 3.7 as supported, which it of course is.

New Features

» Added support for MiniConda Python.
Optimization

» Using goto based generators that return from execution and resume based on heap storage. This
makes tests using generators twice as fast and they no longer use a full C stack of 2MB, but only 1K
instead.

e Conditionala if cond else b,a and b ,a or b expressions of which the result value is are
now transformed into conditional statements allowing to apply further optimizations to the right and
left side expressions as well.

* Replace unused function creations with side effects from their default values with just those,
removing more unused code.

« Put all statement related code and declarations for it in a dedicated C block, making things slightly
more easy for the C compiler to re-use the stack space.

» Avoid linking against | i bpyt hon in module mode on everything but Windows where it is really
needed. No longer check for static Python, not needed anymore.

» More compact function, generator, and asyncgen creation code for the normal cases, avoid
gualname if identical to name for all of them.

» Python2 class dictionaries are now indeed directly optimized, giving more compact code.

» Module exception exits and thus its frames have become optional allowing to avoid some code for
some special modules.

» Uncompiled generator integration was backported to 3.4 as well, improving compatibility and speed
there as well.

Cleanups

» Frame object and their cache declarations are now handled by the way of allocated variable
descriptions, avoid special handling for them.

» The interface to "forget" a temporary variable has been replaced with a new method that skips a
number for it. This is done to keep expression use the same indexes for all their child expressions,
but this is more explicit.

* Instead of passing around C variables names for temporary values, we now have full descriptions,
with C type, code name, storage location, and the init value to use. This makes the information more
immediately available where it is needed.

« Variable declarations are now created when needed and stored in dedicated variable storage objects,
which then in can generate the code as necessary.

* Module code generation has been enhanced to be closer to the pattern used by functions,
generators, etc.

 There is now only one spot that creates variable declaration, instead of previous code duplications.

» Code objects are now attached to functions, generators, coroutines, and asyncgen bodies, and not
anymore to the creation of these objects. This allows for simpler code generation.

» Removed fiber implementations, no more needed.

Tests

« Finally the asyncgen tests can be enabled in the CPython 3.6 test suite as the corrupting crash has
been identified.

 Cover ever more cases of spurious permission problems on Windows.

» Added the ability to specify specific modules a comparison test should recurse to, making some
CPython tests follow into modules where actual test code lives.

Summary
This release is huge in many ways.

First, finishing "goto generators” clears an old scalability problem of Nuitka that needed to be addressed.
No more do generators/coroutines/asyncgen consume too much memory, but instead they become as
lightweight as they ought to be.

Second, the use of variable declarations carying type information all through the code generation, is an
important pre-condition for "C types" work to resume and become possible, what will be 0.6.0 and the next
release.

Third, the improved generator performance will be removing a lot of cases, where Nuitka wasn't as fast, as
its current state not using "C types" yet, should allow. It is now consistently faster than CPython for
everything related to generators.

Fourth, the fibers were a burden for the debugging and linking of Nuitka on various platforms, as they
provided deprecated interfaces or not. As they are now gone, Nuitka ought to definitely work on any
platform where Python works.

From here on, C types work can take it, and produce the results we are waiting for in the next major
release cycle that is about to start.

Also the amount of fixes for this release has been incredibly high. Lots of old bugs esp. for coroutines and
asyncgen have been fixed, this is not only faster, but way more correct. Mainly due to the easier
debugging and interface to the context code, bugs were far easier to avoid and/or find.

Nuitka Release 0.5.32

This release contains substantial new optimization, bug fixes, and already the full support for Python 3.7.
Among the fixes, the enhanced coroutine work for compatibility with uncompiled ones is most important.

Bug Fixes

* Fix, was optimizing write backs of attribute in-place assignments falsely.

* Fix, generator stop future was not properly supported. It is now the default for Python 3.7 which
showed some of the flaws.

* Python3.5: The __qual nanme___ of coroutines and asyncgen was wrong.

» Python3.5: Fix, for dictionary unpackings to calls, check the keys if they are string values, and raise
an exception if not.

» Python3.6: Fix, need to check assignment unpacking for too short sequences, we were giving
I ndexEr r or instead of Val ueErr or for these. Also the error messages need to consider if they
should refer to "at least" in their wording.

* Fix, outline nodes were cloned more than necessary, which would corrupt the code generation if they
later got removed, leading to a crash.

» Python3.5: Compiled coroutines awaiting uncompiled coroutines was not working properly for
finishing the uncompiled ones. Also the other way around was raising a Runt i meEr r or when trying
to pass an exception to them when they were already finished. This should resolve issues with
asynci o module.

* Fix, side effects of a detected exception raise, when they had an exception detected inside of them,
lead to an infinite loop in optimization. They are now optimized in-place, avoiding an extra step later
on.

New Features

* Support for Python 3.7 with only some corner cases not supported yet.
Optimization

« Delay creation of St opl t er ati on exception in generator code for as long as possible. This gives
more compact code for generations, which now pass the return values via compiled generator
attribute for Python 3.3 or higher.

» Python3: More immediate re-formulation of classes with no bases. Avoids noise during optimization.

» Python2: For class dictionaries that are only assigned from values without side effects, they are not
converted to temporary variable usages, allowing the normal SSA based optimization to work on
them. This leads to constant values for class dictionaries of simple classes.

* Explicit cleanup of nodes, variables, and local scopes that become unused, has been added, allowing
for breaking of cyclic dependencies that prevented memory release.

Tests

» Adapted 3.5 tests to work with 3.7 coroutine changes.
» Added CPython 3.7 test suite.

Cleanups

» Removed remaining code that was there for 3.2 support. All uses of version comparisons with 3.2
have been adapted. For us, Python3 now means 3.3, and we will not work with 3.2 at all. This
removed a fair bit of complexity for some things, but not all that much.

» Have dedicated file for import released helpers, so they are easier to find if necessary. Also do not
have code for importing a name in the header file anymore, not performance relevant.

« Disable Python warnings when running scons. These are particularly given when using a Python
debug binary, which is happening when Nuitka is run with - - pyt hon- debug option and the inline
copy of Scons is used.

» Have a factory function for all conditional statement nodes created. This solved a TODO and handles
the creation of statement sequences for the branches as necessary.

* Split class reformulation into two files, one for Python2 and one for Python3 variant. They share no
code really, and are too confusing in a single file, for the huge code bodies.

* Locals scopes now have a registry, where functions and classes register their locals type, and then it
is created from that.

» Have a dedicated helper function for single argument calls in static code that does not require an
array of objects as an argument.

Organizational

» There are now r equi r enent s-devel .t xt and requi renents. txt files aimed at usage with
scons and by users, but they are not used in installation.

Summary

This releases has this important step to add conversion of locals dictionary usages to temporary variables.
It is not yet done everywhere it is possible, and the resulting temporary variables are not yet propagated in
the all the cases, where it clearly is possible. Upcoming releases ought to achieve that most Python2
classes will become to use a direct dictionary creation.

Adding support for Python 3.7 is of course also a huge step. And also this happened fairly quickly and
soon after its release. The generic classes it adds were the only real major new feature. It breaking the
internals for exception handling was what was holding back initially, but past that, it was really easy.

Expect more optimization to come in the next releases, aiming at both the ability to predict Python3
metaclasses __prepare__ results, and at more optimization applied to variables after they became
temporary variables.

Nuitka Release 0.5.31

This release is massive in terms of fixes, but also adds a lot of refinement to code generation, and more
importantly adds experimental support for Python 3.7, while enhancing support for Pyt5 in standalone
mode by a lot.

Bug Fixes

« Standalone: Added missing dependencies for PyQ 5. @ module.
* Plugins: Added support for PyQ@ 5. @& module and its qmi plugins.

* Plugins: The sensible plugin list for PyQt now includes that platforms plugins on Windows too, as they
are kind of mandatory.

» Python3: Fix, for uninstalled Python versions wheels that linked against the Pyt hon3 library as
opposed to Pyt hon3X, it was not found.

« Standalone: Prefer DLLs used by main program binary over ones used by wheels.

« Standalone: For DLLs added by Nuitka plugins, add the package directory to the search path for
dependencies where they might live.

* Fix, the var s built-in didn't annotate its exception exit.
» Python3: Fix, the byt es and conpl ex built-ins needs to be treated as a slot too.

* Fix, consider if del variable must be assigned, in which case no exception exit should be created.
This prevented Tki nt er compilation.

» Python3.6: Added support for the following language construct:

d = {"netaclass": M

class C(**d):
pass

* Python3.5: Added support for cyclic imports. Now a f r omimport with a name can really cause an
import to happen, not just a module attribute lookup.

* Fix, hasat t r was never raising exceptions.

* Fix, byt ear r ay constant values were considered to be non-iterable.

» Python3.6: Fix, now it is possible to del __annotations__ in a class and behave compatible.
Previously in this case we were falling back to the module variable for annotations used after that
which is wrong.

* Fix, some built-in type conversions are allowed to return derived types, but Nuitka assumed the exact
type, this affected byt es, i nt, | ong, uni code.

« Standalone: Fix, the _socket module was insisted on to be found, but can be compiled in.

New Features

» Added experimental support for Python 3.7, more work will be needed though for full support. Basic
tests are working, but there are are at least more coroutine changes to follow.

» Added support for building extension modules against statically linked Python. This aims at
supporting manylinux containers, which are supposed to be used for creating widely usable binary
wheels for Linux. Programs won't work with statically linked Python though.

» Added options to allow ignoring the Windows cache for DLL dependencies or force an update.
« Allow passing options from distutils to Nuitka compilation via setup options.

» Added option to disable the DLL dependency cache on Windows as it may become wrong after
installing new software.

» Added experimental ability to provide extra options for Nuitka to setuptools.

» Python3: Remove frame preservation and restoration of exceptions. This is not needed, but leaked
over from Python2 code.

Optimization

» Apply value tracing to local dict variables too, enhancing the optimization for class bodies and
function with exec statements by a lot.

« Better optimization for "must not have value", wasn't considering merge traces of uninitialized values,
for which this is also the case.

» Use 10% less memory at compile time due to specialized base classes for statements with a single
child only allowing __sl ot s__ usage by not having multiple inheritance for those.

» More immediately optimize branches with known truth values, so that merges are avoided and do not
prevent trace based optimization before the pass after the next one. In some cases, optimization
based on traces could fail to be done if there was no next pass caused by other things.

» Much faster handling for functions with a lot of eval and exec calls.
» Static optimization of t ype with known type shapes, the value is predicted at compile time.

» Optimize containers for all compile time constants into constant nodes. This also enables further
compile time checks using them, e.g. with i si nst ance ori n checks.

« Standalone: Using threads when determining DLL dependencies. This will speed up the un-cached
case on Windows by a fair bit.

* Also remove unused assignments for mutable constant values.
 Python3: Also optimize calls to byt es built-in, this was so far not done.
» Statically optimize iteration over constant values that are not iterable into errors.

* Removed Fortran, Java, LaTex, PDF, etc. stuff from the inline copies of Scons for faster startup and
leaner code. Also updated to 3.0.1 which is no important difference over 3.0.0 for Nuitka however.

» Make sure to always release temporary objects before checking for error exits. When done the other
way around, more C code than necessary will be created, releasing them in both normal case and
error case after the check.

« Also remove unused assignments in case the value is a mutable constant.

Cleanups

» Don't store "version" numbers of variable traces for code generation, instead directly use the
references to the value traces instead, avoiding later lookups.

» Added dedicated module for conpl ex built-in nodes.
» Moved C helpers for integer and complex types to dedicated files, solving the TODOs around them.

» Removed some Python 3.2 only codes.

Organizational

* For better bug reports, the - - ver si on output now contains also the Python version information and
the binary path being used.

« Started using specialized exceptions for some types of errors, which will output the involved data for
better debugging without having to reproduce anything. This does e.g. output XML dumps of
problematic nodes.

» When encountering a problem (compiler crash) in optimization, output the source code line that is
causing the issue.

» Added support for Fedora 28 RPM builds.
* Remove more instances of mentions of 3.2 as supported or usable.

» Renovated the graphing code and made it more useful.

Summary

This release marks important progress, as the locals dictionary tracing is a huge step ahead in terms of
correctness and proper optimization. The actual resulting dictionary is not yet optimized, but that ought to
follow soon now.

The initial support of 3.7 is important. Right now it apparently works pretty well as a 3.6 replacement
already, but definitely a lot more work will be needed to fully catch up.

For standalone, this accumulated a lot of improvements related to the plugin side of Nuitka. Thanks to
those involved in making this better. On Windows things ought to be much faster now, due to parallel
usage of dependency walker.

Nuitka Release 0.5.30

This release has improvements in all areas. Many bug fixes are accompanied with optimization changes
towards value tracing.

Bug Fixes

* Fix, the new setuptools runners were not used by pi p breaking the use of Nuitka from PyPI.
* Fix, imports of si x. moves could crash the compiler for built-in names. Fixed in 0.5.29.2 already.

* Windows: Make the nui t ka-run not a symlink as these work really bad on that platform, instead
make it a full copy just like we did for nui t ka3- r un already. Fixed in 0.5.29.2 already.

» Python3.5: In module mode, t ypes. cor out i ne was monkey patched into an endless recursion if
including more than one module, e.g. for a package. Fixed in 0.5.29.3 already.

» Python3.5: Dictionary unpackings with both star arguments and non star arguments could leak
memory. Fixed in 0.5.29.3 already.

c = {a: 1, **d}
* Fix, distutils usage was not working for Python2 anymore, due to using super for what are old style
classes on that version.

* Fix, some method calls to C function members could leak references.

class C
for_call = functools. parti al

def n():

self.for_call() # This |eaked a reference to the descriptor.

» Python3.5: The bases classes should be treated as an unpacking too.

class C(*D): # Allowed syntax that was not supported.
pass

» Windows: Added back batch files to run Nuitka from the command line. Fixed in 0.5.29.5 already.

New Features

» Added option - - i ncl ude- package to force inclusion of a whole package with the submodules in a
compilation result.

» Added options - - i ncl ude- nodul e to force inclusion of a single module in a compilation result.

* The "mul ti processi ng plug-in got adapted to Python 3.4 changes and will now also work in
accelerated mode on Windows.

o It is now possible to specify the Qt plugin directories with e.g.
- - pl ugi n- enabl e- =qt _pl ugi ns=i magef or mat s and have only those included. This should
avoid dependency creep for shared libraries.

* Plugins can now make the decision about recursing to a module or not.

* Plugins now can get their own options passed.
Optimization

* The re-raising of exceptions has gotten its own special node type. This aims at more readability (XML
output) and avoiding the overhead of checking potential attributes during optimization.

» Changed built-ini nt , | ong, and f | oat to using a slot mechanism that also analyses the type shape
and detects and warns about errors at compile time.

» Changed the variable tracing to value tracing. This meant to cleanup all the places that were using it
to find the variable.

* Enable must have / must not value value optimization for all kinds of variables including module and
closure variables. This often avoids error exits and leads to smaller and faster generated code.

Tests

» Added burn test with local install of pip distribution to virtualenv before making any PyPI upload. It
seems pip got its specific error sources too.

* Avoid calling 2t 03 and prefer <pyt hon> - m | i b2t 03 instead, as it seems at least Debian Testing
stopped to provide the binary by default. For Python 2.6 and 3.2 we continue to rely on it, as the don't
support that mode of operation.

» The PyLint checks have been made more robust and even more Python3 portable.
» Added PyLint to Travis builds, so PRs are automatically checked too.

» Added test for distutils usage with Nuitka that should prevent regressions for this new feature and to
document how it can be used.

» Make coverage taking work on Windows and provide the full information needed, the rendering stage
is not there working yet though.

» Expanded the trick assignment test cases to cover more slots to find bugs introduced with more
aggressive optimization of closure variables.

» New test to cover multiprocessing usage.

» Generating more code tests out of doctests for increased coverage of Nuitka.

Cleanups

* Stop using - - pyt hon- ver si on in tests where they still remained.

« Split the forms of i nt and | ong into two different nodes, they share nothing except the name. Create
the constants for the zero arg variant more immediately.

* Split the output comparison part into a dedicated testing module so it can be re-used, e.g. when doing
distutils tests.

» Removed dead code from variable closure taking.

» Have a dedicated module for the metaclass of nodes in the tree, so it is easier to find, and doesn't
clutter the node base classes module as much.

» Have a dedicated node for reraise statements instead of checking for all the arguments to be
non-present.

Organizational

 There is now a pull request template for Github when used.

 Deprecating the - - pyt hon- ver si on argument which should be replaced by using - m nui t ka with
the correct Python version. Outputs have been updated to recommend this one instead.

» Make automatic import sorting and autoformat tools properly executable on Windows without them
changing new lines.

» The documentation was updated to prefer the call method with - m nui t ka and manually providing
the Python binary to use.

Summary

This release continued the distutils integration adding first tests, but more features and documentation will
be needed.

Also, for the locals dictionary work, the variable tracing was made generic, but not yet put to use. If we use
this to also trace dictionary keys, we can expect a lot of improvements for class code again.

The locals dictionary tracing will be the focus before resuming the work on C types, where the ultimate
performance boost lies. However, currently, not the full compatibility has been achieved even with
currently using dictionaries for classes, and we would like to be able to statically optimize those better

anyway.

Nuitka Release 0.5.29

This release comes with a lot of improvements across the board. A lot of focus has been givevn to the
packaging side of Nuitka, but also there is a lot of compatibility work.

Bug Fixes

* Windows: When using Scons for Python3 and Scons for Python2 on the same build directory, a
warning would be given about the need to migrate. Make the Scons cache directory use the Python
ABI version as a key too, to avoid these issues. Fixed in 0.5.28.1 already.

» Windows: Fixup for Python3 and Scons no more generating the MinGW64 import library for Python
anymore properly. Was only working if cached from a previous install of Nuitka. Fixed in 0.5.28.1
already.

* Plugins: Made the data files plugin mandatory and added support for the scrapy package needs.

» Fix, added implicit dependencies for pkg_resources. ext ernal package. Fixed in 0.5.28.1
already.

* Fix, an import of x. y where this was not a package didn't cause the package x to be included.

« Standalone: Added support for si x. moves and r equest s. packages meta imports, these cause
hidden implicit imports, that are now properly handled.

« Standalone: Patch the __fil e__ value for technical bytecode modules loaded during Python library
initialization in a more compatible way.

« Standalone: Extension modules when loaded might actually raise legit errors, e.g. | mport Err or of
another module, don't make those into Syst enEr r or anymore.

* Python3.2: The __package__ of sub-packages was wrong, which could cause issues when doing
relative imports in that sub-package.

» Python3: Contractions in a finally clause could crash the compiler.
* Fix, unused closure variables could lead to a crash in they were passed to a nested function.

 Linux: Standalone dependency analysis could enter an endless recursion in case of cyclic
dependencies.

» Python3.6: Async generation expressions need to return a None value too.

* Python3.4: Fix, __spec__ is a package attribute and not a built-in value.

New Features

* It is now possible to run Nuitka with some_pyt hon_you_choose -m nuitka ... and therefore
know exactly which Python installation is going to be used. It does of course need Nuitka installed for
this to work. This mechanism is going to replace the - - pyt hon- ver si on mechanism in the future.

» There are dedicated runners for Python3, simply use nui t ka3 or nui t ka3- r un to execute Nuitka if
your code is Python3 code.

» Added warning for implicit exception raises due to mismatch in unpacking length. These are statically
detected, but so far were not warned about.

» Added cache for depends. exe results. This speeds up standalone mode again as some of these
calls were really slow.

» The import tracer is more robust against recursion and works with Python3 now.

» Added an option to assume yes for downloading questions. The currently only enables the download
of depends. exe and is intended for CI servers.

 There is now a report file for scons, which records the values used to run things, this could be useful
for debugging.

» Nuitka now registers with distutils and can be used with bdi st _wheel directly, but this lacks
documentation and tests. Many improvements in the distutils build.

Optimization

» Forward propagate compile time constants even if they are only potential usages. This is actually the
case where this makes the most sense, as it might remove its use entirely from the branches that do
not use it.

 Avoid extra copy of fi nal | y code. The cloning operation takes time and memory, and this shaved
of 0.3% of Nuitka memory usage, as these can also become dangling.

» Class dictionaries are now proper dictionarties in optimization, using some dedicated code for name
lookups that are transformed to dedicated locals dictionary or mapping (Python3) accesses. This
currently does not fully optimize, but will in coming releases, and saves about 25% of memory
compared to the old code.

 Treating module attributes __package_, loader_, file_,and__spec__ with dedicated
nodes, that allow or forbid optimization dependent on usage.

» Python3.6: Async generator expressions were not working fully, become more compatible.
* Fix, using super inside a contraction could crash the compiler.
* Fix, also accept __new__ as properly decorated in case it's a cl assnet hod too.

e Fix, removed obsolete --nofreeze-stdlib which only complicated using the
--recurse-stdlib which should be used instead.

Organizational

» The nui t ka Python package is now installed into the public namespace and used from there. There
are distinct copies to be installed for both Python2 and Python3 on platforms where it is supported.

» Using t wi ne for upload to PyPI now as recommended on their site.

* Running pyl i nt on Windows became practical again.

» Added RPM packages for Fedora 26 and 27, these used to fail due to packaging issues.

» Added RPM packages for openSUSE Leap 42.2, 42.3 and 15.0 which were simply missing.
» Added RPM packages for SLE 15.

» Added support for PyLint 1.8 and its new warnings.

» The RPM packages no longer contain nui t ka- r un3, it will be replaced by the new nui t ka3-run
which is in all packages.

» The runners used for installation are now easy install created, but patched to avoid overhead at run
time.

» Added repository for Ubuntu Artful (17.10) for download, removed support for Ubuntu Yakkety, Vivid
and Zesty (no more supported by them).

» Removed support for Debian Wheezy and Ubuntu Precise (they are too old for modern packaging
used).

 There is now a issue template for Github when used.

Tests

» Windows: Standalone tests were referencing an old path to depends. exe that wasn't populated on
new installs.

» Refinements for CPython test suites to become more stable in results. Some tests occasionally fail to
clean up, or might do indetermistic outputs, or are not relevant at all.

* The tests don't use the runners, but more often do - m nui t ka to become executable without having
to find the proper runner. This improves usage during the RPM builds and generally.

* Travis: Do not test development versions of CPython, even for stable release, they break too often.

Summary

This release consolidates a lot of what we already had, adding hopeful stuff for distutils integration. This
will need tests and documentation though, but should make Nuitka really easy to use. A few features are
still missing to make it generally reliable in that mode, but they are going to come.

Also the locals dictionary work is kind of incomplete without a proper generic tracing of not only local
variables, but also dictionary keys. With that work in place, a lot of improvements will happen.

Nuitka Release 0.5.28

This release has a focus on compatibility work and contains bug fixes and work to enhance the usability of
Nuitka by integrating with distutils. The major improvement is that contractions no longer use pseudo
functions to achieve their own local scope, but that there is now a dedicated structure for that representing
an in-lined function.

Bug Fixes

» Python3.6: Fix, async f or was not yet implemented for async generators.

* Fix, functions with keyword arguments where the value was determined to be a static raise could
crash the compiler.

* Detect using MinGW64 32 bits C compiler being used with 64 bits Python with better error message.

* Fix, when extracting side effects of a static raise, extract them more recursively to catch expressions
that themselves have no code generation being used. This fixes at least static raises in keyword
arguments of a function call.

» Compatibility: Added support for proper operation of ~pkgutil.get_data by implementing
get _dat a in our meta path based loader.

» Compatibility: Added __spec__ module attribute was previously missing, present on Python3.4 and
higher.

» Compatibility: Made __| oader __ module attribute set when the module is loading already.

« Standalone: Resolve the @ pat h and @ oader _pat h from ot ool on macOS manually to actual
paths, which adds support for libraries compiled with that.

* Fix, nested functions calling super could crash the compiler.
* Fix, could not use - - r ecur se-di r ect or y with arguments that had a trailing slash.
* Fix, using - - r ecur se- di r ect or y on packages that are not in the search crashed the compiler.

» Compatibility: Python2 set and di ct contractions were using extra frames like Python3 does, but
those are not needed.

« Standalone: Fix, the way PYTHONHOVE was set on Windows had no effect, which allowed the
compiled binary to access the original installation still.

» Standalone: Added some newly discovered missing hidden dependencies of extension modules.

» Compatibility: The name mangling of private names (e.g. __var) in classes was applied to variable
names, and function declarations, but not to classes yet.

» Python3.6: Fix, added support for list contractions with awai t expressions in async generators.
» Python3.6: Fix, async f or was not working in async generators yet.

* Fix, for module tracebacks, we output the module name <nodul e nane> instead of merely
<nodul e>, but if the module was in a package, that was not indicated. Now it is
<nodul e package. nanme>.

» Windows: The cache directory could be unicode which then failed to pass as an argument to scons.
We now encode such names as UTF-8 and decode in Scons afterwards, solving the problem in a
generic way.

 Standalone: Need to recursively resolve shared libraries with | dd, otherwise not all could be
included.

« Standalone: Make sure sys. pat h has no references to CPython compile time paths, or else things
may work on the compiling machine, but not on another.

« Standalone: Added various missing dependencies.

« Standalone: Wasn't considering the DLLs directory for standard library extensions for freezing, which
would leave out these.

e Compatibility: For __future__ importsthe i mport _ function was called more than once.
Optimization

 Contractions are now all properly inlined and allow for optimization as if they were fully local. This
should give better code in some cases.

 Classes are now all building their locals dictionary inline to the using scope, allowing for more
compact code.

» The dictionary APl was not used in module template code, although it helps to generate more
compact code.

New Features

» Experimental support for building platform dependent wheel distribution.

pyt hon setup. py --conmmand-packages=nuitka.distutils clean -a bdist_nuitka

Use with caution, this is incomplete work.
» Experimental support for running tests against compiled installation with nose and py. t est ..

* When specifying what to recurse to, now patterns can be used, e.g. like this
--recurse-not-to=*.tests which will skip all tests in submodules from compilation.

* By setting NU TKA PACKAGE_packagenane=/ sone/ pat h the _ path__ of packages can be
extended automatically in order to allow and load uncompiled sources from another location. This can
be e.g. at est s sub-package or other plug-ins.

* By default when creating a module, now also a nodul e. pyi file is created that contains all imported
modules. This should be deployed alongside the extension module, so that standalone mode
creation can benefit from knowing the dependencies of compiled code.

» Added option - - pl ugi n-1i st that was mentioned in the help output, but still missing so far.

» The import tracing of the hi nt s module has achieved experimental status and can be used to test
compatibility with regards to import behavior.

Cleanups

» Rename tree and codegen Hel per modules to unique names, making them easier to work with.
* Share the code that decides to not warn for standard library paths with more warnings.

» Use the bool enum definition of Python2 which is more elegant than ours.

» Move quality tools, autoformat, isort, etc. to the nui t ka. t ool s. qual i t y namespace.

» Move output comparison tool to the nui t ka. t ool s. t esti ng hamespace.

» Made frame code generation capable of using nested frames, allowing the real inline of classes and
contraction bodies, instead of "direct" calls to pseudo functions being used.

» Proper base classes for functions that are entry points, and functions that are merely a local
expression using return statements.

Tests

» The search mode with pattern, was not working anymore.
» Resume hash values now consider the Python version too.

» Added test that covers using test runners like nose and py.t est with Nuitka compiled extension
modules.

Organizational

» Added support for Scons 3.0 and running Scons with Python3.5 or higher. The option to specify the
Python to use for scons has been renamed to reflect that it may also be a Python3 now. Only for
Python3.2 to Python3.4 we now need another Python installation.

» Made recursion the default for - - r ecur se- di r ect or y with packages. Before you also had to tell it
to recurse into that package or else it would only include the top level package, but nothing below.

» Updated the man pages, correct mentions of its C++ to C and don't use how deprecated options.

» Updated the help output which still said that standalone mode implies recursion into standard library,
which is no longer true and even not recommended.

» Added option to disable the output of . pyi file when creating an extension module.

» Removed Ubuntu Wily package download, no longer supported by Ubuntu.

Summary

This release was done to get the fixes and new features out for testing. There is work started that should
make generators use an explicit extra stack via pointer, and restore instruction state via goto dispatchers
at function entry, but that is not complete.

This feature, dubbed "goto generators” will remove the need for fibers (which is itself a lot of code), reduce
the memory footprint at run time for anything that uses a lot of generators, or coroutines.

Integrating with di st uti |l s is also a new thing, and once completed will make use of Nuitka for existing
projects automatic and trivial to do. There is a lot missing for that goal, but we will get there.

Also, documenting how to run tests against compiled code, if that test code lives inside of that package,
will make a huge difference, as that will make it easier for people to torture Nuitka with their own test
cases.

And then of course, nested frames now mean that every function could be in