
Telescope Pointing Machine
Specification
Version 2.2

Jeffrey W Percival
Space Astronomy Laboratory

University of Wisconsin

December 28, 2005

1

Pointing Machine Specification 2

Contents

1 Introduction 5
1.1 Vectors vs. Spherical Trigonometry 6
1.2 What is a State Vector? . 7
1.3 What is a State Machine? . 8
1.4 State Diagram and State Table 9
1.5 Programming Advantages of the Telescope Pointing Machine . 10

2 State Data 12
2.1 Independent State Data . 12
2.2 Dependent (derived) State Data 13
2.3 Relationships between State Data 14

3 Notes on Equinox and Epoch 16

4 Notes on Precession 17

5 Notes on Proper Motion 18

6 Notes on Apparent Places 19

7 Notes on State Transitions 20
7.1 T01: FK4 Precession to B1950 21
7.2 T02: FK5 Precession to J2000 21
7.3 T03: IAU 1980 Ecliptic to FK5 Equatorial 21
7.4 T04: IAU 1958 Galactic to FK4 B1950 21
7.5 T05: FK4 B1950 to FK5 J2000 22
7.6 T06: Heliocentric Parallax . 23
7.7 T07: Geocentric Parallax . 23
7.8 T08: Light Deflection . 24
7.9 T09: Aberration . 24
7.10 T10: Precession from FK5 J2000 to Date 24
7.11 T11: Nutation . 24
7.12 T12: Earth’s Rotation . 25
7.13 T13: (HA, Dec) to (Az, El) 26
7.14 T14: Refraction . 26
7.15 T15: WHAM Coordinate System 26

Pointing Machine Specification 3

8 Speed and Accuracy 28
8.1 Internal Accuracy . 28
8.2 Accuracy Comparison with SLALIB 28
8.3 Absolute Accuracy . 29
8.4 Internal Timing . 30
8.5 Timing Comparison with SLALIB 30

9 Subroutine Prototypes 32
9.1 Telescope Pointing Machine 32
9.2 Proper Motion . 32
9.3 Cartesian/Spherical Conversions 34
9.4 Accessing State Vector Data 36
9.5 Converting To and From Catalog Data 37

10 Examples 38
10.1 Galactic to Equatorial . 39
10.2 Precession . 40
10.3 Mean to Observed . 41
10.4 Tuning the Load . 42

11 Summary 44

12 Acknowledgements 45

A FK4/FK5 Test Programs 57

B State Machine Timing Program 58

C State Machine Reversibility Program 59

D SLALIB Test Suite 60

List of Figures

1 Telescope Pointing Machine State Diagram 46
2 Telescope Pointing Machine State Data 47
3 Telescope Pointing Machine Time Transitions 48

Pointing Machine Specification 4

4 Telescope Pointing Machine State Data Structure 49
5 State Machine Reversibility Errors 50
6 State Machine Compared to SLALIB 51
7 State Machine and SLALIB Compared to USNO List 52

List of Tables

1 State Table (part 1) for the Telescope Pointing Machine. . . . 53
2 State Table (part 2) for the Telescope Pointing Machine. . . . 54
3 Execution Times for State Transitions 55
4 TPM/SLALIB Timing Comparisons 56

Pointing Machine Specification 5

1 Introduction

This document specifies the Telescope Pointing Machine (TPM) software.
This is a table-driven software state machine that produces and reduces co-
ordinates for the purposes of pointing a telescope, but which is generally
applicable to any astronomical coordinate application. We emphasize the
pointing of a telescope to underscore the fact that the Telescope Pointing Ma-
chine is a fast, compact, rigorous, and portable implementation that allows
the user to control and tune the computational load in real time environments
such as telescope control systems. It contains no vendor or platform depen-
dencies, however, and is therefore suitable for any astronomical coordinate
application.

The TPM can transform any set of coordinates (positions and velocities)
between any pair of 21 different states, which include galactic, ecliptic, equa-
torial and topocentric systems, in either direction, with a single subroutine
call.

The TPM uses rigorous vector/matrix methods for its transformations,
avoiding spherical trigonometry and its associated singularity problems. The
transformation between any two states is reversible to within 4 milliarcsec-
onds, and all transformations agree with Starlink’s SLALIB, considered to be
definitive, to within 5 milliarcseconds, with the differences being attributable
to floating point precision limits. SLALIB comparison programs are included
in the TPM distribution. The TPM computes apparent places of stars in
agreement with the United States Naval Observatory’s NOVAS code, used
to produce the Astronomical Almanac, to within 10 milliarcseconds. This
error is comparable to the precision of the data provided by the USNO, and
so the two codes are indistinguishable at this level of error.

The paragraphs below establish a context for subsequent sections. They
define some terms, lay out the big picture, and describe some of the special
features of this software.

In this paper, we often refer to the Explanatory Supplement to the As-
tronomical Almanac (1992), Yallop et al. (1989, AJ, 97, 274), Kaplan et al.
(1989, AJ, 97, 1197), and Aoki et al. (1983, Astronomy and Astrophysics,
128, 263). We will refer to these sources as ES, Yallop, Kaplan, and Aoki.

Pointing Machine Specification 6

1.1 Vectors vs. Spherical Trigonometry

There has been a general trend in recent years in which algorithms are ex-
pressed in vector and matrix notation instead of using spherical trigonometry.
In some cases, the trigonometric expression is mathematically equivalent to
the vector expression, but in other cases it may only be, say, a first or higher
order approximation. Two examples will suffice to make the point.

First, consider the aberration of light. Classical aberration is given in the
ES (Equation 3.253-1) as

cos δ∆α = −Ẋ

c
sin α +

Ẏ

c
cos α

+
1

c2
(Ẋ sin α − Ẏ cos α)(Ẋ cos α + Ẏ sin α) sec δ + ... (1)

∆δ = −Ẋ

c
cos α sin δ − Ẏ

c
sin α sin δ +

Ż

c
cos δ

− 1

2c2
(Ẋ sin α − Ẏ cos α)2 tan δ

+
1

c2
(Ẋ cos δ cos α + Ẏ cos δ sin α + Ż sin δ)

×(Ẋ sin δ cos α + Ẏ sin δ sin α − Ż cos δ) + ... (2)

where Ẋ, Ẏ , and Ż represent the observer’s barycentric velocity.
Expressed as a vector equation, and accurate to the milliarcsecond level,

aberration is given in the ES (Equation 3.255-2) as

#p2 = #p1 + |#p1|
#v1

c
(3)

where #p and #v are the position and velocity vectors, respectively.
Equation 3 is easier to look at than Equations 1 and 2, it is easier to

implement, faster to compute, and retains much more physical meaning: the
effect is largest when #p1 and #v1 are perpendicular, and is proportional to
the observer’s speed. Also note that the classical expression contains polar
singularities, but the vector expression has no such restrictions.

Second, consider the reduction for parallax from barycentric place to geo-
centric place (ES, Equation 3.243-1):

α2 = α1 + π(X sin α − Y cos α)/(15 cos δ) (4)

Pointing Machine Specification 7

and

δ2 = δ1 + π(X cos α sin δ + Y sin α sin δ − Z cos δ) (5)

where π is the parallax in arcseconds and (X, Y, Z) are the Earth’s barycen-
tric coordinates.

In vector form, we have (ES Equation 3.325-1)

#p2 = #p1 − #E (6)

where #p1 is the barycentric target vector, #p2 is the geocentric target vector,
and #E is the barycentric position vector of the Earth. Again, simplicity,
speed, and clarity prevail.

The TPM system uses vector and matrix formulations throughout. No
conversions are done back and forth between Cartesian and spherical nota-
tion. In addition, this software system uses state vectors, not merely position
vectors.

1.2 What is a State Vector?

The TPM transforms state vectors from one state, or reference frame, to
another. A state vector is a 6-element vector whose elements specify the
target’s position and velocity. The state vector can be expressed in either
Cartesian (x, y, z, ẋ, ẏ, ż) or spherical (r, α, δ, ṙ, α̇, δ̇) form, with subroutines
provided for switching from one to the other. The position and velocity are
real, 3-dimensional true-length vectors, as opposed to unit vectors comprising
direction cosines, for example. The state vector is expressed in units of AU
and AU/day, for compatibility with the JPL DE-200 Planetary Ephemeris.

Using real 3-D positions, rather than unit vectors, simplifies many point-
ing calculations. For example, applying barycentric parallax (moving from
barycentric to geocentric coordinates) is done merely by subtracting the
barycentric position vector of the Earth (three subtractions). If a target
vector were kept as a unit vector, the Earth’s position vector would have
to be scaled down before the subtraction, and then the target vector would
have to be renormalized to retain its unit length after the subtraction. This
is extra work that doesn’t have to be done with true-length target vectors.

Carrying along the velocity vector with the position vector, and imple-
menting the algorithms as 6-dimensional phase-space problems instead of the

Pointing Machine Specification 8

usual 3-dimensional position problems is another big improvement over the
usual unit-vector, position-only methods. If the simple vector subtraction
given above for annual parallax is performed in 6-D, then you end up not
only with the geocentric position, but the geocentric velocity as well. This
velocity is ready-made for, say, calculating the aberration of light or for mea-
suring orbitally-induced spectroscopic Doppler shifts seen at the telescope.
Working with 6-D state vectors means that velocity vector is transformed
wherever appropriate; proper motions in equatorial coordinates end up as
proper motions in azimuth and elevation, for example.

There is something even subtler you get by using true-length 6-D state
vectors. When applying proper motion, it is usually sufficient, but not rig-
orously correct, to use

α2 = α1 + α̇∆T (7)

and

δ2 = δ1 + δ̇∆T. (8)

Why isn’t this rigorous? It ignores the radial velocity, and when the full
space motion (ṙ, α̇, δ̇) is applied to a position it changes the radial velocity
and parallax (see Equations 40 and 43). In 6-D, if one applies space motion
according to

#p2 = #p1 + #v1∆T (9)

and then rigorously converts #p2 back into a spherical representation, using
Equations 40-45, the radial velocity and parallax will be correct.

Finally, we should point out that while many pointing codes assume that
space motion is small and always represents stellar proper motion, we make
no assumptions about the length of the velocity vector. The velocity vector
can represent the motion of solar system objects such as asteroids or comets,
and the fact that these are not linear in an equatorial frame is mitigated by
the fact that they can be expressed in an ecliptic frame, where the linear
approximation is much better.

1.3 What is a State Machine?

Computer programs are typically written as a sequence of subroutine calls.
First do A, then B, then C, and so on. The subroutines are locked in place

Pointing Machine Specification 9

in the program, and the sequence of operations is fixed and immutable. A
software state machine, on the other hand, is written as a loop, and at the
beginning of each trip through the loop, the program asks a scheduler what
to do next. In effect, the program says “OK, here’s what I just did, and here’s
what I’m trying to do, what should I do next?” The execution is dynamic in
the sense that the scheduler can assign subroutines on the fly, depending on
circumstances that can change at any time.

In the case of the TPM, there are only two circumstances that matter:
where in the calculation the program currently is and where it’s trying to
go. The scheduler is implemented in the form of a lookup table. This is a
two-dimensional grid of numbers whose rows are indexed by the current state
of the program, and whose columns are indexed by the desired end state. For
example, if the current state is “galactic coordinates” and the desired state
is “topocentric observed azimuth and elevation,” the lookup table will yield
two data: the next thing to do (convert to FK4 B1950 equatorial), and the
state that results (FK4 B1950 equatorial). On the next trip through the
loop, the scheduler will see (FK4 equatorial, topocentric observed) and will
dictate “convert from FK4 to FK5” as the next thing to do. The program
will keep looping until the state table says “you’re done,” at which point the
end-to-end algorithm is complete.

All the knowledge of the program is encoded into the state table, and the
state table embodies all the relationships between all possible states.

1.4 State Diagram and State Table

The Telescope Pointing Machine handles all the states and transitions shown
in Figure 1. Each transition is implemented only once, in a single place, with
the required transition being given as a function of the current state and the
destination state. The algorithms for each state transition are described in
detail below.

The state table is given in Tables 1 and 2. The rows are prefixed with the
current state, and the columns are headed with the destination state. Each
table entry is a pair of numbers that denote the required transition and the
new state resulting from that transition. Note that the transition alone does
not define the resulting state, because a given transition can appear more
than once in Figure 1, connecting different pairs of states.

Pointing Machine Specification 10

1.5 Programming Advantages of the Telescope Point-
ing Machine

The two biggest advantages of the state machine approach is that all possible
transitions have been coded into the state table, and only one subroutine call
is needed to execute any coordinate transformation.

The first advantage means that the programmer doesn’t need to know the
algorithmic details of coding up a coordinate transformation. For example,
does nutation precede or follow precession? Is aberration done before or after
gravitational deflection of light? Do galactic coordinates map into FK4 or
FK5 equatorial coordinates? While it is true that procedural toolkits can
mimic this encapsulation by preparing certain “super routines” that group
together commonly needed subroutines, the state machine implementation
embodies the correct sequence of events for all possible transformations.

The second advantage means that the programmer doesn’t need to know
the programmatic details of coding up a coordinate transformation. Is the
precession routine called with time arguments of Julian Dates, Modified Ju-
lian Dates, or floating point year values? If years, are they tropical years or
Julian years? The state machine makes all the lower-level subroutine calls,
and the subroutine interfaces are internal to the state machine. This pro-
vides an additional related advantage: the underlying code base is easier to
change, if needed, because the programmer’s interface is fixed and constant.

Another advantage of the table-driven state machine is the easy way
in which new states can be added. The TPM programmer merely needs to
specify the new state, connect it to the computationally nearest existing state
by providing a forward and back calculation, and update the state table. The
new state is now connected to all existing states, and is accessible without
changing the subroutine interface at all!

A final thing to realize about this implementation is that it is a multiple-
pass state machine, not just a table lookup. For example, one might have
considered indexing a state table by the start and end states, with the state
table giving a complete specification of the desired transformation. At each
intersection we could have just inserted the whole laundry list of transforma-
tions required to get from the start state to the end state. This is a bad idea.
Consider adding a state: a new recipe would have to be concocted for each
combination of the new state and existing states, with the new state being
either a start or destination. The programmer would have to understand all

Pointing Machine Specification 11

transformations to get this right.
In this implementation, the state table just gives the next thing to do,

not all things to do. The state table embodies the relationships between
transformations. The state machine keeps looping through, doing one trans-
formation at a time, until it discovers it is done. To add a new state, it is
only necessary to connect it to the nearest state, not to all states, reducing
the breadth of knowledge required by the programmer as well as reducing
the potential of introducing errors.

Pointing Machine Specification 12

2 State Data

The transformation of coordinates between any two states in Fig. 1 is driven
by 30 numerical quantities. Twelve of these are independent variables, chosen
by the user. The remaining 18 are dependent variables, derived in due course
from the independent variables.

2.1 Independent State Data

The independent variables (and their units) are:

• DAT (seconds of time): the accumulated number of leap seconds, cur-
rently 29 on 18 November 1995.

• UTC (Julian date): coordinated universal time, formerly GMT.

• DUT (seconds of time): the current value of the difference UT1 - UTC,
varying between -0.3 and +0.7 seconds.

• Polar motion X,Y (radians): two angles describing the current wan-
dering of the instantaneous rotation axis of the Earth. Polar motion
affects pointing at about the 0.3” level.

• Geodetic east longitude (radians): the mean longitude of the observer,
reckoned negatively for the Western hemisphere.

• Geodetic mean north latitude (radians): the observer’s north latitude.

• Altitude (meters): the observer’s height above mean sea level.

• Temperature (Kelvins): the atmospheric temperature at the observer.

• Pressure (millibars): the atmospheric pressure at the observer.

• Relative humidity (fraction, 0-1): the atmospheric relative humidity at
the observer.

• Observing wavelength (nanometers): the wavelength of light being ob-
served, used for the refraction correction.

Pointing Machine Specification 13

2.2 Dependent (derived) State Data

The dependent variables are:

• TAI (Julian date): International Atomic Time, the time measured by
an ensemble of atomic standards.

• TDT (Julian date): Terrestrial Dynamical Time, the time used as the
independent variable in geocentric ephemerides.

• TDB (Julian date): Barycentric Dynamical Time, the time used as the
independent variable in solar system barycentric ephemerides.

• UT1 (Julian date): The rotational time scale of the Earth, corrected
for polar motion.

• GMST (radians): Greenwich Mean Sidereal Time.

• GAST (radians): Greenwich Apparent Sidereal Time.

• LAST (radians): Local Apparent Sidereal Time.

• Precession matrix: a 6x6 matrix used to precess coordinates from J2000
to date in the inertial FK5 reference frame.

• Nutation matrix: a 3x3 matrix used to account for the small lunar and
solar torques on the Earth.

• Obliquity of the ecliptic (radians): the instantaneous angle between the
ecliptic and mean equatorial planes.

• Nutation in obliquity (radians): the instantaneous angle between the
mean and true equatorial planes.

• Nutation in longitude (radians): the instantaneous angle between the
mean and true location of the vernal equinox, measured along the eclip-
tic plane.

• Refraction coefficients A and B (arcseconds): these two angles are
computed from the basic atmospheric data, and parameterize a simple
model of the elevation dependence of atmospheric refraction.

Pointing Machine Specification 14

• Earth’s barycentric and heliocentric state vectors (AU and AU/day):
the state vectors of the Earth, referred to the mean equator and equinox
of J2000.

• Observer’s mean earth-fixed state vector (AU and AU/day): the geo-
centric state vector of the observer, expressed in a reference frame ro-
tating with the earth, referred to the mean geodetic pole.

• Observer’s true earth-fixed state vector (AU and AU/day): the geocen-
tric state vector of the observer, expressed in a reference frame rotating
with the earth, referred to the true geodetic pole. Polar motion is in-
cluded here.

• Observer’s space-fixed state vector (AU and AU/day): the geocentric
state vector of the observer expressed in a space-fixed reference frame,
referred to the mean equator and equinox of J2000.

2.3 Relationships between State Data

Figure 2 shows these 30 data in the form of a family tree, highlighting the
relationships between them. In this figure, the independent variables lie
across the top of the tree, in the first generation. The dependent variables
flow down from the independent ones, with the lines tracing the dependencies.

The 18 dependent variables fall into three broad categories: those that
change quickly, on time scales smaller than a second, those that change on
time scales of minutes to hours, and those that change on time scales of
days to years. They fall into a different three categories as well: those that
are cheap to compute (a few additions and multiplications), those that are
moderately expensive to compute (a dozen or so trigonometric evaluations),
and those that are expensive to compute (numerical integrations, thousands
of trigonometric evaluations, and iterative procedures).

Nature is kind to us in this area, because the most expensive things to
compute generally change on the longer time scales (like the nutation in
longitude, for example), so that they do not need to be computed as often
as the quickly changing things (like the sidereal time, for example).

Figure 2 categorizes each item by computational cost, and groups to-
gether items of similar time scale of change. The TPM system provides a

Pointing Machine Specification 15

simple subroutine called tpm_data() for initializing the state data and for
computing the fast, medium, slow, and refraction data separately or together.

Figure 3 shows the relationship between the various civil, dynamical,
and rotational times. The TPM subroutine library provides subroutines and
preprocessor macros to execute all the transitions shown in Figure 3.

Figure 4 shows the C structure declaration for the state data.

Pointing Machine Specification 16

3 Notes on Equinox and Epoch

The meanings of equinox and epoch are perennial sources of confusion for
the non-specialist. In order to be absolutely clear on this subject, we will
demonstrate the relationship of the relevant dates used in pointing by treating
the problem in its simplest form. Define the current position #r of a moving
target in some coordinate system to be

#p = #p0 + #v(t − ep) (10)

where #p0 is the position at time ep, and #v is the velocity of the target. In this
equation, time t is the desired time of observation (i.e. “now” when pointing
a telescope). Time ep is the epoch. Now consider a second coordinate system,
rotated with respect to the first by some time-varying angle θ. In other words,

θ = θ0 + θ̇(t − eq) (11)

where θ0 is the angle at time eq and θ̇ is the angular rate of rotation. Time eq
is the equinox. If R(θ) represents the coordinate rotation, and #q the position
in the rotated frame, then

q = R(θ0 + θ̇(t − eq)) ∗ (#p0 + #v(t − ep)). (12)

Note that we have three times here: the current time t, the target motion’s
reference time ep, and the coordinate frame’s reference time, eq. All of these
can differ from each other. For example, when using catalog entries to point
a telescope, eq will often be the same as ep (say, J2000), but t will be now.
At the turn of the century, all three would be equal for an instant. When
viewing a comet, on the other hand, an ephemeris will often be generated
for a recent epoch (say, last night or a week ago), but in the reference frame
of J2000. In this case, t will nearly equal ep, but not quite, and both will
differ markedly from eq. All three will differ if one extracts positions from
a reference image exposed in, say, 1990, but using J2000 reference positions,
for an object to be observed in 2008.

Pointing Machine Specification 17

4 Notes on Precession

There are different equinoxes involved in precession in various parts of Fig. 1.
A user-supplied equinox (eq in the C code) is used in T01 and T02. eq is the
starting time in the forward directions (+T01 and +T02), and the ending
time in the reverse direction (-T01 and -T02).

In transition T10, the starting time for the precession is J2000, and the
ending time is “now”, specified by the value of UTC in the state data struc-
ture. These are of course reversed in -T10.

Note that some coordinate transformations require two invocations of
TPM. Consider precession from one equinox to a different equinox (S02 to
S02). There is only one equinox argument to the tpm routine, and in addition,
asking for start and end states to be both S02 will cause TPM to return
without having done anything.

In this example, the user would do S02 to S06 (with the starting equinox)
in the first invocation, leaving the state vector temporarily referred to J2000,
and then do S06 to S02 (with the ending equinox) in the second invocation.

Pointing Machine Specification 18

5 Notes on Proper Motion

Proper motion is the trickiest subject in using TPM. First note that TPM
never actually applies proper motion to the position. The user supplies a
position as a 3-D cartesian vector in AU, and the velocity as another 3-D
vector in AU/day. TPM performs its coordinate transformations on both
vectors. Rather than applying the proper motion, it transforms it from one
frame to another.

But if proper motion is never applied, why does the user supply an epoch
when calling the tpm subroutine? The answer is that T05 (FK4/FK5) re-
quires an application of space motion. The FK4 equinox correction must be
applied to the position referred to the epoch and equinox of 1984 Jan 1.

In applying +T05, TPM applies proper motion from the user-supplied
epoch value to B1950. The FK4-to-FK5 correction then applies proper mo-
tion from B1950 to 1984 Jan 1.0, applies the FK4 equinox correction, then
applies more proper motion from 1984 to J2000. In keeping with the intent
of not actually applying proper motion to the position vector, TPM then
removes proper motion from the position, going from a J2000 position back
to the position at the user-supplied epoch.

The net effect of +T05 is to transform a position referred to B1950 at
a user-supplied epoch, into a position referred to J2000, but at the same
user-supplied epoch.

In -T05, the user’s position is brought from the user-supplied epoch to
J2000, sent back to 1984, then to B1950, then back to the user-supplied
epoch.

Pointing Machine Specification 19

6 Notes on Apparent Places

Algorithms for computing the apparent (geocentric) places of stars exist in
different forms, some using spherical trigonometry while others use vectors
and matrices. Some exist as approximations, while others are exact. These
variations have an historical heritage. Many derive from times when com-
puting was tedious or expensive. For example, the traditional splitting up
of aberration into annual (geocentric) and diurnal (topocentric) components
was clearly intended to ease the burden of computation. The annual com-
ponent could be done once, along with precession and nutation, on a fairly
coarse time grid and tabulated in advance (as was actually done for appar-
ent places). The site-specific diurnal correction could be ignored for most
applications (e.g. pointing telescopes) or easily applied for higher precision
work.

In a modern vector-based system using state vectors, there is less of an
argument for making these sorts of distinctions. There are even advantages
in abandoning them: not all observers are even on the Earth any more, and
if we treat, say, aberration as a single effect (as does the TPM system), then
we can consider “apparent places” for atypical observers such as orbiting
spacecraft.

The TPM can compute the traditional geocentric apparent places, but
it also defines a “topocentric” apparent place that uses the observer’s net
barycentric position and velocity in computing parallax and aberration. The
“topocentric” label is slightly misleading in this context, because the TPM
user can supply any state vector, for an observer anywhere in the solar sys-
tem.

Pointing Machine Specification 20

7 Notes on State Transitions

The following subsections present detailed notes on each state transition. We
describe the transformations using mathematical notation instead of, say,
subroutine interface descriptions. We can do this because the state machine
calls the subroutines, not the user’s program, so the programmer never needs
to know the calling interface. This is a vast improvement over procedural
toolkits, where many subroutines must be organized by the user with careful
attention paid to the order and detailed nature of each argument of each
subroutine.

We make extensive use of vector and matrix notation here. The standard
rotation matrices are taken from Yallop, and are reproduced here:

Rx(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (13)

Ry(θ) =

cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

 (14)

Rz(θ) =

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (15)

These orthonormal matrices have the property that

R−1
i (θ) = RT

i (θ) (16)

We further define, following Yallop,

Qi(θ, θ̇) =

[
Ri(θ) 0
Ṙi(θ) Ri(θ)

]

(17)

Q represents a 6-space rotation that operates on both the position and ve-
locity components of a state vector, and can handle the transformation from
non-inertial to inertial reference frames through the time derivative term
Ṙi(θ).

In the following sections, #s represents a full 6-space state vector, #p repre-
sents a 3-space position vector, and #v represents a 3-space velocity vector.

Pointing Machine Specification 21

7.1 T01: FK4 Precession to B1950

This transition precesses the target state vector from the mean FK4 equator
and equinox of date to that of B1950 according to

#s2 = Qz(−z, 0)Qy(θ, 0)Qz(−ζ , 0)#s1. (18)

The angles (z, θ, ζ) are those of Kinoshita (see Aoki).

7.2 T02: FK5 Precession to J2000

This transition precesses the target state vector from the mean FK5 equator
and equinox of date to that of J2000 according to Equation 18.

The angles (z, θ, ζ) are those adopted by the IAU (ES p. 104 or Yallop).

7.3 T03: IAU 1980 Ecliptic to FK5 Equatorial

This is a simple rotation about the X-axis (through the vernal equinox) to
remove the obliquity of the ecliptic:

#s2 = Qx(−ε, 0)#s1 (19)

where ε is the mean obliquity of the ecliptic of date (ES p. 114, Equa-
tion 3.222-1).

The existence of this state, combined with the ability to specify the veloc-
ity vector with values much larger than typical stellar proper motions, allows
a very powerful method for tracking solar system objects such as asteroids,
comets, and planets. These motions may be much more linear in the Ecliptic
frame than in the equatorial frame, thereby ensuring accurate positions for
a longer elapsed time than if the motions were given as rates of change in
Right Ascension and Declination.

7.4 T04: IAU 1958 Galactic to FK4 B1950

The galactic pole is at (α, δ) = (192.25◦, 27.4◦), and the longitude λ of the
ascending node of the galactic plane on the equator is 33◦.

The rotational transformation is

#s2 = Qz(−α, 0)Qy(−(90◦ − δ), 0)Qz(−(90◦ − λ), 0)#s1. (20)

Pointing Machine Specification 22

The E-terms of aberration are added after the rotation to equatorial co-
ordinates, and are subtracted before the inverse rotation to galactic coordi-
nates.

7.5 T05: FK4 B1950 to FK5 J2000

This is the subtle transformation between the rotating FK4 and inertial FK5
coordinate systems. The treatment is exactly that of Yallop and the ES,
except that where Yallop uses Andoyer’s precession, we follow the ES and
use Kinoshita’s.

We require additional modifications to the 6x6 matrix given in the ES,
because the ES uses a hybrid Cartesian/spherical treatment, with a unit vec-
tor for position and a velocity vector whose units are in km/s and arcseconds
per century.

Our 6-space vectors are simpler, giving the position and velocity in units
of AU and AU/day, and so we require fewer numerical conversions than the
standard treatment.

Specifically, we require these changes:

• The space-motion part of the matrix must be scaled by 1/(206265*CB),
where CB is the length of the tropical century in days, 36524.21987817305.
This happens automatically because our precession angle routines re-
turn radians and radians/day.

• The rotational term in the precession matrix must be scaled by (206265*CB).
This happens automatically because our precession angle routines re-
turn radians and radians/day.

• The proper motions do not have to be scaled by CJ/CB, where CJ is
the length of the Julian century in days, 36525, because we scale them
to days as part of the vector setup.

• In removing the E-terms, we must save and restore the true lengths of
#p and #v.

With these modifications, the transition consists of steps (c) and (d) from
the ES p. 185. Note that with our 6-space treatment, steps (a), (b), and (e)
are not required.

Pointing Machine Specification 23

The TPM software includes test programs that reproduce the Yallop and
ES matrices, as well as the modified versions required here. See Appendix A
for details.

7.6 T06: Heliocentric Parallax

The geocentric target state vector is derived from the heliocentric target state
vector by subtracting the Earth’s heliocentric state vector:

#s2 = #s1 − #E (21)

where #E is the Earth’s heliocentric state vector. #E is computed by a subrou-
tine derived from Stumpff (Astronomy and Astrophysics Supplement Series,
1980, 41, 1) by Patrick Wallace. The maximum errors, relative to the JPL
DE 96 ephemeris, are 4.2 × 10−4 km/s for velocities, 1.1 × 10−5 AU (1650
km) for heliocentric coordinates, and 4.6×10−5 AU (6900 km) for barycentric
coordinates.

Note that both the target’s position and velocity vectors are modified in
this transition. The resulting state vector gives the geocentric target state
vector.

7.7 T07: Geocentric Parallax

The topocentric target state vector is derived from the geocentric target state
vector by subtracting the observer’s geocentric state vector:

#s2 = #s1 − #O (22)

where #O is the observer’s geocentric state vector. #O is computed according

to Equations 3.351-1 and 3.351-2 in the ES, and #̇O = ωẑ ∧ #O where ω is the
standard (Aoki) value of the angular velocity of the Earth.

Note that both the target’s position and velocity vectors are modified in
this transition. The resulting state vector gives the topocentric target state
vector.

Pointing Machine Specification 24

7.8 T08: Light Deflection

We implement Equation 14 from Kaplan, reproduced here:

#p2 = #p1 +
g1

g2
[(#p1 · q̂)ê − (#p1 · ê)q̂] (23)

where q̂ is the heliocentric target vector and ê is the heliocentric earth vector,
both of unit length, and g1 and g2 are the dimensionless scalar quantities
defined in Kaplan’s Equation 13. We differ from Kaplan in using #p1 instead
of p̂1. Following SLALIB, we limit the value of g2 to 10−5, representing a 922
arcsecond disk centered on the sun.

7.9 T09: Aberration

We use Kaplan’s Equation 18, which ignores relativistic terms of order 1 mil-
liarcsecond:

#p2 = #p1 + |#p1|
#v1

c
(24)

where #p1 and #v1 are the barycentric position and velocity of the observer.
Note that we do not split aberration up into annual and diurnal contribu-

tions. Rather, we compute the effect using the total barycentric velocity of
the observer. This transition is suitable for any observer in the solar system,
providing the observer’s state vector is properly computed.

7.10 T10: Precession from FK5 J2000 to Date

This transition precesses the target state vector from the mean FK5 equator
and equinox of J2000 to that of date according to Equation 18.

The angles (z, θ, ζ) are those adopted by the IAU (ES p. 104 or Yallop).

7.11 T11: Nutation

Nutation is handled by rotating from the mean equator into the plane of the
ecliptic, doing the nutation, then rotating back to the true equator:

#s2 = Q−1
x (ε + ∆ε, 0)Qz(−φ, 0)Qx(ε, 0)#s1 (25)

Pointing Machine Specification 25

where ε is the mean obliquity of the ecliptic, ∆ε is the nutation in obliquity
of the ecliptic, and φ is the nutation in longitude.

The nutations φ and ∆ε are computed using the 108-term trigonometric
series of Kaplan (USNO circular 163, 1981) with the corrections from the ES
p. 116, including the planetary terms of Vondrak, ES, p. 118-119. The mean
obliquity ε is from ES p. 114, Equation 3.222-1.

7.12 T12: Earth’s Rotation

For this transition we rotate the target vector by the Greenwich Apparent
Sidereal Time θ, compensate for the polar motion angles x and y, and then
rotate by the observer’s mean geodetic longitude:

#s2 = Qz(λm, 0)Qy(−x, 0)Qx(−y, 0)Qz(θ, 0)#s1 (26)

Finally, we switch from a right-handed coordinate system to a left-handed
one by negating the Y-components of position and velocity.

We should point out a misleading, if not erroneous, statement in the ES
concerning polar motion. On p. 140, polar motion is properly expressed in
Equation 3.27-1 as follows:

#r = Ry(−x)Rx(−y)#r0. (27)

The next paragraph states that polar motion can be alternatively expressed
as a variation in longitude λ and latitude φ as follows (Equation 3.27-3):

∆λ = (x sin λm + y cos λm) tan φm (28)

and

∆φ = x cos λm − y sin λm. (29)

This is clearly incomplete, as the former expression is a two-angle rotation,
while the latter is just a slight relocation of the observer. What is really
meant by Equation 3.27-1, we believe, is that the first order departures from
mean geodetic coordinates are useful in determining the circumstances of a
star in transit, but not generally in determining its direction when not on
the meridian. That is, ∆φ gives the error due to polar motion of the zenith
distance at transit, and ∆λ gives the variation in the sidereal time of transit
(and therefore is used to deduce UT1 from UT0), but these two data do not

Pointing Machine Specification 26

tell how the direction of a star is affected by polar motion when it is not on
the meridian.

The rigorous Equation 3.27-1 (our Equation 27) is, of course, the form
implemented in the TPM.

7.13 T13: (HA, Dec) to (Az, El)

This is a rotation of (90◦ − latitude) in the plane of the meridian, followed
by a polar rotation of 180◦:

#s2 = Qz(180◦, 0)Qy(90◦ − φm, 0)#s1. (30)

We use the mean geodetic latitude φm because the effects of polar motion
are handled in transition T12.

7.14 T14: Refraction

The refraction procedure follows that of Patrick Wallace’s SLALIB routines.
Two rigorous numerical integrations are performed through a model atmo-
sphere (see ES section 3.28) at different zenith distances, and the resulting
refractions are used to derive A and B in the approximation

z = zo + A tan(zo) + B tan3(zo) (31)

where z is the zenith distance in a vacuum and zo is the refracted zenith
distance.

The state machine actually only computes the approximation; the deriva-
tion of A and B is done in the refraction section of tpm_data(). The numer-
ical integrations are done using the very efficient Romberg integration from
Numerical Recipes.

7.15 T15: WHAM Coordinate System

This is built in for the WHAM telescope, which is an alt-az telescope tipped
90◦ to the north. It is a left-handed Cartesian system whose z-axis points to
the northern horizon, and whose x-axis points straight up, toward the zenith.
The y-axis points to the western horizon. The (0,0) point is straight up. The
“azimuth” angle is referred to as siderostat longitude, and the “elevation”
angle is referred to as siderostat latitude.

Pointing Machine Specification 27

The transformation between the topocentric observed az/el and WHAM
frame is

#s2 = Qz(180◦, 0)Qy(90◦, 0)#s1 (32)

Pointing Machine Specification 28

8 Speed and Accuracy

The TPM software includes programs for measuring execution times, internal
accuracy, accuracy compared to the definitive procedural toolkit, Starlink’s
SLALIB, and accuracy compared to the United States Naval Observatory’s
NOVAS code.

We present results in this section, and provide the details of the programs
in various appendices.

8.1 Internal Accuracy

We measured the internal accuracy of the TPM by transforming coordinates
forward and back between every possible pair of states. We compute the
angle between the original position vector and the one resulting from the
forward and back trip, and plot the 212 errors in the histogram shown in
Figure 5.

The TPM is reversible to within 4 milliarcseconds between any pair of
states. We believe that the 4 mas errors result from simple least significant
bit variations in the floating point calculations.

See Appendix C for details on the reversibility test program.

8.2 Accuracy Comparison with SLALIB

We compared the TPM to SLALIB for these calculations:

Calculation flow
Galactic to FK4 Equatorial S04-S05
FK4 to FK5 Equatorial S05-S06
Ecliptic to FK5 Equatorial S03-S02
Mean to Apparent S06-S11
Apparent to Mean S11-S06
Apparent to Observed S11-S19

For each test, we drew 100,000 synthetic catalog positions from a 9-
dimensional grid, using a uniformly distributed random number generator
along each axis. The axes and their ranges are given as follows:

Pointing Machine Specification 29

datum name minimum maximum units
ep0 catalog epoch 1950 2050 years
eq0 catalog eq. 1950 2050 years
ep1 current epoch 1950 2050 years
r0 α 0 360 degrees
d0 δ -90 90 degrees
pr α̇ -500 500 ”/cy
pd δ̇ -500 500 ”/cy
px parallax 0 1 ”
rv radial vel. -100 100 km/s

Figure 6 shows error histograms for each of the tests. For the Apparent-
to-Observed test, results were discarded if the resulting observed elevation
was lower than 15◦, so fewer errors are represented in the histogram for that
test.

We see that the TPM matches the SLALIB results in all cases to within
5 milliarcseconds. As with the reversibility test, we attribute the residuals
to LSB variations in the floating point calculations.

See Appendix D for more details.

8.3 Absolute Accuracy

We are not equipped to measure the absolute accuracy of the Telescope Point-
ing Machine directly with observations on the sky, so we measure “absolute
accuracy” by comparing our results with those of a reliable third party. (We
compare SLALIB to this reliable third party as well.) The United States
Naval Observatory has kindly provided a list of apparent places of all FK5
stars for a specific epoch (UTC 2450136.3 = 1996 Feb 22) computed with the
NOVAS (Naval Observatory Vector Astrometry Subroutines) code. This is
the code used in producing the Astronomical Almanac, and can be considered
properly calibrated.

To give a broader perspective on the results, we computed the USNO
positions using both the TPM and SLALIB, which we already demonstrated
to be consistent with each other. Figure 7 shows the error histograms giving
the number of errors as a function of the error in milliarcseconds. The TPM
histogram is shown with solid line, the SLALIB with a dashed line.

Pointing Machine Specification 30

This figure shows that the TPM system closely matches SLALIB, with
the two systems giving nearly indistinguishable error histograms. The broad
peak of errors in the range of 2-10 milliarcseconds is due to the precision of
the data provided by the U. S. Naval Observatory. The USNO listed the
apparent place Right Ascensions to the nearest 1 millisecond of time, and
Declinations to the nearest 10 milliarcseconds, so we cannot expect agreement
on scales smaller than this.

8.4 Internal Timing

We timed various TPM calculations by executing each of them 104 times
within a special test program, using the Unix time(1) command to measure
the execution time. (See Appendix B for details about the timing test pro-
gram.) We ran the test on three different computers: an SGI Indy with a 150
Mhz R4400 CPU running IRIX 5.3, a DECStation 5000/200 running Ultrix
4.4, and a Sparc 20 with a 60 Mhz CPU running Solaris. The results vary
slightly with each run due to the multitasking nature of the workstations
and the limitations of the Unix time(1) command, but they are probably
accurate to better than 10%.

Table 3 shows the results, measured in milliseconds. The calculations
shown include the Cartesian to spherical and spherical to Cartesian vector
operations, the various sections of tpm_data(), each of the state machine
transitions, and a number of “flows,” each flow representing a typical pointing
problem. See Figure 1 to decode the flows shown in Table 3.

8.5 Timing Comparison with SLALIB

We compared the performance of the TPM with SLALIB. This is a little
tricky, because the programs modularize various calculations in different
ways. Both systems separate the slow parts from the fast parts, and both
allow the slow parts to be done less often. This effectively renders them irrel-
evant for serious timing comparisons. For example, Table 3 shows that the
slow+refraction calculations take about 14 ms on an SGI Indy. If we assume
that this needs to be done once per minute and we are in a 20 Hz telescope
pointing loop, the 14 ms is averaged over 1200 loops for an effective per-loop
load of 12 µs. This is clearly negligible. The real measure of performance is

Pointing Machine Specification 31

the part that must be done in every loop, and which cannot easily be broken
down into any finer pieces.

For this timing test, we chose to time the transformation from mean to
observed coordinates, and broke it up into four pieces: the setup for the
mean-to-apparent flow (mappa in SLALIB parlance), the actual mean-to-
apparent flow (mapqk), the setup for the apparent-to-observed flow (aoppa),
and the actual apparent-to-observed flow (aoppat+aopqk). This last flow is
the most important, because it must be done in every loop.

For comparison with the TPM, we chose a “best match” to the SLALIB
flows: for the MAPPA part, we ran tpm_data() with the fast, medium and
slow flags. For the MAPQK part, we ran tpm() from states S06 to S16. For
the AOPPA part, we ran tpm_data() with the fast and refraction flags.
Finally, for the AOPQK part we ran tpm() from states S16 to S19. Table 4
shows the results. For all practical purposes, there is no timing difference be-
tween TPM and SLALIB. SLALIB is a little faster on the infrequent MAPPA
and MAPQK flows, a little slower on the infrequent AOPPA flow and the
hard-real-time AOPQK flow. Both systems execute the time-critical flows
(AOPQK) in well under a millisecond (on the SGI Indy R4400).

Pointing Machine Specification 32

9 Subroutine Prototypes

9.1 Telescope Pointing Machine

The state data management routine is declared as follows:

void tpm_data(struct s_tstate *tstate, int flags)

where tstate points to the state data structure and flags is a bitfield spec-
ifying the desired calculations, whose bits are defined as follows:

flag name action
TPM INIT initialize tstate with default values
TPM FAST do fast calculations
TPM MEDIUM do medium calculations
TPM SLOW do slow calculations
TPM REFRACTION do refraction calculations
TPM ALL do all calculations (except init)

The user can request a logical OR of any combination of them. If more
than one set of calculations is requested, they will be performed in the proper
order according to the dependencies shown in Fig 2.

The main TPM subroutine is declared as follows:

int tpm(struct s_v6 pvec[N_TPM_STATES],
int s1, int s2, double ep, double eq, struct s_tstate *tstate)

where pvec points to an array of state vectors, of which pvec[s1] is the
desired starting state, s2 is the desired end state, ep is the epoch of the state
vector, eq is the equinox (if relevant) of the given state vector, and tstate
points to the state data structure. eq is used only in transitions T01 and
T02.

9.2 Proper Motion

Proper motion is not applied by the state machine. The user must apply
proper motion to the state vector before invoking the state machine using
the subroutine proper_motion():

Pointing Machine Specification 33

struct s_v6 proper_motion(struct s_v6 s, double t, double t0)

applies proper motion to the state vector (#p,#v) according to

#p2 = #p1 + #v1(t − t0) (33)

Note that the state machine applies all its transformations to the velocity
vector as well as the position vector, so the velocity vector is always correct
for the given machine state. So, for example, equatorial velocities will be
properly converted to galactic longitude and latitude rates of change.

Pointing Machine Specification 34

9.3 Cartesian/Spherical Conversions

We provide routines for converting between Cartesian and spherical repre-
sentations of state vectors. The TPM handles all its conversions in Cartesian
coordinates, but conversions to and from spherical are needed to display re-
sults and read in catalog data.

The routine

struct s_v6 v6s2c(struct s_v6 v6)

converts from spherical coordinates to Cartesian according to

x = r cos δ cos α (34)

y = r cos δ sin α (35)

z = r sin δ (36)

The velocity is computed by taking the first derivative of Equations 34-36:

ẋ = −r(α̇ cos δ sin α + δ̇ sin δ cos α) + ṙ cos δ cos α (37)

ẏ = r(α̇ cos δ cos α − δ̇ sin δ sin α) + ṙ cos δ sin α (38)

ż = rδ̇ cos δ + ṙ sin δ (39)

The routine

struct s_v6 v6c2s(struct s_v6 v6)

converts from Cartesian coordinates to spherical by inverting Equations 34-
36:

r =
√

x2 + y2 + z2 (40)

α = tan−1(y/x) (41)

δ = sin−1(z/r) (42)

The velocity is computed by taking the first derivative of Equations 40-42:

ṙ =
xẋ + yẏ + zż

r
(43)

Pointing Machine Specification 35

α̇ =
xẏ − yẋ

(r cos δ)2
(44)

δ̇ =
ż − ṙ sin δ

r cos δ
(45)

Note that in Equations 40-45 there can be singularities. We handle these
explicitly, as follows.

1. If r = 0, then ṙ = ẋ and (α, δ, α̇, δ̇) = 0

2. If x = 0, then α = (−π/2, 0, π/2) according to whether y is negative,
zero, or positive.

3. Finally, if cos δ = 0, then ṙ = ż/ sin δ and either δ̇ = −ẏ/(r sin δ sin α)
or δ̇ = −ẋ/(r sin δ cos α) depending on whether cos α = 0.

Pointing Machine Specification 36

9.4 Accessing State Vector Data

The TPM libraries provide routines that allow the user to treat state vectors
as “objects” whose internal structure is never seen by the programmer. State
vectors are initialized with

struct s_v6 v6init(int type)

where type is either CARTESIAN or SPHERICAL.
The type can be queried with

int v6GetType(struct s_v6 v6),

but if you aren’t sure of what type you have it’s never wrong to enforce it:

v6 = v6s2c(v6)

will convert only if necessary; if v6 is already in Cartesian form, no conversion
will be attempted.

Cartesian components can be accessed using these calls:

double v6GetX(struct s_v6 v6);
double v6GetY(struct s_v6 v6);
double v6GetZ(struct s_v6 v6);
double v6GetXDot(struct s_v6 v6);
double v6GetYDot(struct s_v6 v6);
double v6GetZDot(struct s_v6 v6);
void v6SetX(struct s_v6 v6, double d);
void v6SetY(struct s_v6 v6, double d);
void v6SetZ(struct s_v6 v6, double d);
void v6SetXDot(struct s_v6 v6, double d);
void v6SetYDot(struct s_v6 v6, double d);
void v6SetZDot(struct s_v6 v6, double d);

Spherical components can be accessed using these calls:

double v6GetR(struct s_v6 v6);
double v6GetAlpha(struct s_v6 v6);
double v6GetDelta(struct s_v6 v6);
double v6GetRDot(struct s_v6 v6);
double v6GetAlphaDot(struct s_v6 v6);
double v6GetDeltaDot(struct s_v6 v6);
void v6SetR(struct s_v6 v6, double d);
void v6SetAlpha(struct s_v6 v6, double d);
void v6SetDelta(struct s_v6 v6, double d);
void v6SetRDot(struct s_v6 v6, double d);
void v6SetAlphaDot(struct s_v6 v6, double d);
void v6SetDeltaDot(struct s_v6 v6, double d);

Pointing Machine Specification 37

9.5 Converting To and From Catalog Data

Star catalogs typically list entries in a spherical coordinate system, with
parallax substituted for distance and mixed angular units of radians and
arcseconds per century (the user must be careful to distinguish proper mo-
tions as arcseconds per tropical century or arcseconds per Julian century).
Our state vectors, however, are represented as simple full-length 3-D posi-
tions and velocities whose units are (AU,AU/day) for Cartesian vectors and
(AU,radians,AU/day,radians/day) for spherical vectors. We provide subrou-
tines for going back and forth between catalog values and state vectors.

struct s_v6 cat2v6(
double r, /* Right Ascension in radians */
double d, /* Declination in radians */
double rd, /* PM in RA (’’/cy) */
double dd, /* PM in Dec (’’/cy) */
double px, /* parallax in arcseconds */
double rv, /* radial velocity in km/s */
double C) /* number of days per century, tropical or Julian */

converts from catalog values to state vectors. For C, use either 36525 for
Julian centuries or 36524.21987817305 for tropical centuries.

struct s_v6 v62cat(
double *r, /* Right Ascension in radians */
double *d, /* Declination in radians */
double *rd, /* PM in RA (’’/cy) */
double *dd, /* PM in Dec (’’/cy) */
double *px, /* parallax in arcseconds */
double *rv, /* radial velocity in km/s */
struct s_v6 v6; /* Cartesian state vector tobe converted */
double C) /* number of days per century, tropical or Julian */

converts from state vectors to catalog values.

Pointing Machine Specification 38

10 Examples

In the following examples, we show a few subroutines that act as “wrappers”
around the TPM interface. Note that each varies only slightly from the
others; regardless of the transformation being done, the TPM is invoked in
the same way. The only real difference is in using different start and end
states.

These subroutines are provided with the TPM distribution along with
a main program that calls them, in the file x_tpm_examples.c. The main
program is given here:
#include "astro.h"

int main(int argc, char *argv[])
{

double lon, lat;
double az, el;
double r1, d1;
double r2, d2;

lon = 0.0;
lat = d2r(90);
tpm_gal(lon, lat, &r2, &d2);
(void)fprintf(stdout, "tpm_gal (%s,%s)->(%s,%s)\n",

fmt_alpha(lon),
fmt_delta(lat),
fmt_alpha(r2),
fmt_delta(d2));

r1 = 0.0;
d1 = d2r(90);
tpm_pre(r1, d1, &r2, &d2);
(void)fprintf(stdout, "tpm_pre (%s,%s)->(%s,%s)\n",

fmt_alpha(r1),
fmt_delta(d1),
fmt_alpha(r2),
fmt_delta(d2));

r1 = 0.0;
d1 = d2r(90);
tpm_mop(r1, d1, &az, &el);
(void)fprintf(stdout, "tpm_mop (%s,%s)->(%s,%s)\n",

fmt_alpha(r1),
fmt_delta(d1),
fmt_alpha(az),
fmt_delta(el));

return(0);
}

More extensive examples can be found in the SLALIB test directory
src/astro/sla_tpm. See Appendix D for details.

Pointing Machine Specification 39

10.1 Galactic to Equatorial

This example converts galactic coordinates (lon,lat) into FK4 B1950 equa-
torial coordinates.

/*************************/
/* galactic to FK4 B1950 */
/*************************/
static void
tpm_gal(
double lon, /* galactic longitude */
double lat, /* galactic latitude */
double *r, /* RA */
double *d) /* Dec */
{

int s1; /* start state */
int s2; /* end state */
struct s_tstate tstate;
struct s_v6 pvec[N_TPM_STATES];
struct s_v6 v6; /* state vector */

/******************************/
/* set up the target position */
/******************************/
v6 = v6init(SPHERICAL);
v6SetR(v6, 1e9);
v6SetAlpha(v6, lon);
v6SetDelta(v6, lat);

/*************************/
/* don’t need state data */
/*************************/

/******************/
/* invoke the TPM */
/******************/
s1 = TPM_S04;
s2 = TPM_S05;
pvec[s1] = v6;
(void)tpm(pvec, s1, s2, B1950, B1950, &tstate);
v6 = pvec[s2];
v6 = v6c2s(v6); /* convert to spherical */
*r = v6GetAlpha(v6);
*d = v6GetDelta(v6);

return;
}

Pointing Machine Specification 40

10.2 Precession

This example precesses an FK5 J2000 position to date.

/**********************************/
/* precess from FK5 J2000 to date */
/**********************************/
static void
tpm_pre(
double r1, /* RA */
double d1, /* Dec */
double *r2, /* RA */
double *d2) /* Dec */
{

int s1; /* start state */
int s2; /* end state */
struct s_tstate tstate;
struct s_v6 pvec[N_TPM_STATES];
struct s_v6 v6; /* state vector */

/******************************/
/* set up the target position */
/******************************/
v6 = v6init(SPHERICAL);
v6SetR(v6, 1e9);
v6SetAlpha(v6, r1);
v6SetDelta(v6, d1);

/*************************/
/* set up the state data */
/*************************/
tpm_data(&tstate, TPM_INIT);
tstate.utc = utc_now();
tpm_data(&tstate, TPM_ALL);

/******************/
/* invoke the TPM */
/******************/
s1 = TPM_S14;
s2 = TPM_S15;
pvec[s1] = v6;
(void)tpm(pvec, s1, s2, J2000, J2000, &tstate);
v6 = pvec[s2];
v6 = v6c2s(v6); /* convert to spherical */
*r2 = v6GetAlpha(v6);
*d2 = v6GetDelta(v6);

return;
}

Pointing Machine Specification 41

10.3 Mean to Observed

This example converts a mean FK5 J2000 position to topocentric observed
azimuth and elevation.

/******************************/
/* FK5 J2000 mean to observed */
/******************************/
static void
tpm_mop(
double r1, /* RA */
double d1, /* Dec */
double *az, /* azimuth */
double *el) /* elevation */
{

int s1; /* start state */
int s2; /* end state */
struct s_tstate tstate;
struct s_v6 pvec[N_TPM_STATES];
struct s_v6 v6; /* state vector */

/******************************/
/* set up the target position */
/******************************/
v6 = v6init(SPHERICAL);
v6SetR(v6, 1e9);
v6SetAlpha(v6, r1);
v6SetDelta(v6, d1);

/*************************/
/* set up the state data */
/*************************/
tpm_data(&tstate, TPM_INIT);
tstate.utc = utc_now();
/* choose a location in Wisconsin */
tstate.lon = d2r(-90);
tstate.lat = d2r(43);
tpm_data(&tstate, TPM_ALL);

/******************/
/* invoke the TPM */
/******************/
s1 = TPM_S06;
s2 = TPM_S19;
pvec[s1] = v6;
(void)tpm(pvec, s1, s2, J2000, J2000, &tstate);
v6 = pvec[s2];
v6 = v6c2s(v6); /* convert to spherical */
*az = v6GetAlpha(v6);
*el = v6GetDelta(v6);

return;
}

Pointing Machine Specification 42

10.4 Tuning the Load

Table 3 shows that all the TPM transitions are quite fast, the slowest being
T01 (precession to FK4 B1950) at about 340µs on an SGI Indy. The ex-
pensive operations are in computing the state data, especially the slow state
data (1.5 ms) and refraction model (12.5 ms). In a telescope control system,
one needs to worry about spreading these calculations out over more pointing
cycles.

Here is a code fragment from the WHAM Telescope Control Program,
showing how the load is spread out in time (the tick variable increments
once per second):

ptcs->tstate.utc = utc_now();
if (ptcs->tick % 3600 == 0) {

tpm_data(&ptcs->tstate, TPM_SLOW|TPM_REFRACTION);
}
if (ptcs->tick % 60 == 0) {

tpm_data(&ptcs->tstate, TPM_MEDIUM);
}
tpm_data(&ptcs->tstate, TPM_FAST);

Assuming we are doing an FK4-to-Observed flow (S01-S19 in Table 3) 20
times per second, the average time T̄ consumed in each pointing cycle is

T̄ = 0.633 + 0.010 +
0.085

60 × 20
+

1.531 + 12.470

3600 × 20
(46)

or about 0.643 ms, for a duty cycle of less than 2%. Note that spreading
out the medium and slow tpm_data() calls over a minute and an hour,
respectively, effectively eliminates them as a consideration.

In the WIYN control system, however, the average flow time was not the
whole story, because the peak flow time was driven by the refraction call,
which by itself took too much of the 50 ms loop time allowed by the TCS.
We solved this simply by putting the slow and refraction calls to tpm_data()
calls into a separate process, running continually at low priority. This used
CPU cycles only as they were available, and still resulted in a refresh time
of less than a minute, much faster than was necessary.

Another scheme to tune the load is suggested by Table 3. For the flow
S01-S19, for example, one can transform the initial state vector from S01 to

Pointing Machine Specification 43

S06 once, and then repeatedly transform the S06 state vector to S19. This
saves about half the time per loop.

By the way, this is another subtle reason why using full 6-D state vec-
tors, and transforming velocities along with positions, is very useful. If only
positions were transformed, and if a target’s space motion was so large that
it needed to be applied continually (e.g. an asteroid), then S06 could not be
used as an intermediate flow point because the space motion would still be
expressed in the frame of S01. Because we transform the velocity to S06 as
well, the space motion updates can be done in S06.

Pointing Machine Specification 44

11 Summary

The Telescope Pointing Machine (TPM) is a fast, accurate, rigorous, com-
pact, modern, and extendible implementation of high-precision astronomical
pointing algorithms.

• Fast: it is as fast as the definitive procedural toolkit, SLALIB. The
hard-real-time transformation of apparent to observed place occurs in
150 µs on an SGI Indy with a 150 Mhz R4400 CPU.

• Accurate: it compares to SLALIB to within 5 milliarcseconds, and with
data tabulated by the United Stated Naval Observatory to within the
10 milliarcsecond precision of their provided data.

• Rigorous: No corners are cut in algorithms. For example, only sub-
milliarcsecond effects are ignored when computing the gravitational
aberration of light, and the effect of space motion on parallax and
radial velocity is included.

• Compact: The TPM system runs in the WIYN 3.5m Telescope Control
System, and compiles to an object file size of less than 60 kilobytes.

• Modern: The TPM system is a newly written set of ANSI-C subroutines
with no vendor or platform specific features.

– Orthogonal: The software is highly modularized, with no oper-
ational penalty, such that no algorithm (e.g. the value of the
obliquity of the ecliptic) exists in more than one place.

– Vector/matrix formulation: we use a vector and matrix formula-
tion throughout. We use no spherical trigonometry or low-order
trigonometric expansions in the state transitions.

• Extendible: by adding states and updating the state table, users can
fully integrate new reference frames into the TPM and effectively con-
nect them to all other states.

Pointing Machine Specification 45

12 Acknowledgements

We wish to thank Michael Nastvogel-Wörz of the European Southern Obser-
vatory for performing a timing and accuracy comparison with SLALIB that
pointed out areas for improving the Telescope Pointing Machine, We wish to
thank Dr. Thomas E. Corbin and Mr. Ellis Holdenried of the United States
Naval Observatory’s Astrometry Department for providing the definitive list
of FK5 apparent places. Finally, we wish to thank Dr. Patrick Wallace of
the Rutherford Appleton Laboratory for the generous use of his time and ex-
pertise in discussing many points, both grand and obscure, that are relevant
to high precision astrometric calculations.

Pointing Machine Specification 46

Telescope Pointing Machine
Version $Revision: 1.12 $ ($Date: 2002/05/22 11:50:06 $)

(based on the Keck pointing flow by P. T. Wallace)

Heliocentric Parallax

Refraction

Heliocentric
IAU 1958 Galactic

Earth’s rotation

S04

T05

T03

T04

T12

T14

Precess to J2000

FK4-FK5

T13

T01 T02

T10T10

T11 Nutation

T06

T11

Precess to B1950

Precess to Date

Nutation

Precess to date

T07

Geocentric Parallax

Light deflection Light deflection

Aberration Aberration

T08

T09

T08

T09

T13

T15
Tilt to
North

S02

Heliocentric
Mean FK5

any equinox
S03

Heliocentric
IAU 1980 Ecliptic

Heliocentric
Mean FK5

J2000
S06

S07

S08

S09

S10

Geocentric
Apparent FK5

current equinox
S11

S12

S13

S14

S15

S16

Topocentric
Apparent FK5

current equinox

Topocentric
Observed WHAM

(lon, lat)
S21

Topocentric
Observed (Az, El)

S19

Topocentric
Observed (HA, Dec)

S20 S17

Topocentric
Apparent (HA, Dec)

Topocentric
Apparent (Az, El)

S18

S05

Heliocentric
Mean FK4

B1950

S01

Heliocentric
Mean FK4

any equinox

Geocentric
Mean FK5

J2000

Topocentric
Mean FK5

J2000

Figure 1: Telescope Pointing Machine State Diagram

Pointing Machine Specification 47

Te
le

sc
op

e
Po

in
tin

g
M

ac
hi

ne
D

at
a

D
ep

en
de

nc
ie

s
V

er
sio

n
$R

ev
isi

on
: 1

.3
 $

 ($
D

at
e:

 1
99

6/
01

/1
1

14
:1

1:
54

 $
)

U
TC

dU
T

ge
od

et
ic

ea
st

lo
ng

itu
de

ge
od

et
ic

no
rth

la
tit

ud
e

al
tit

ud
e

po
la

r
m

ot
io

n
X

,Y
dA

T

TD
B

pr
ec

es
sio

n
m

at
rix

nu
ta

tio
n

in
ob

liq
ui

ty
nu

ta
tio

n
in

lo
ng

itu
de

nu
ta

tio
n

m
at

rix

ob
liq

ui
ty

Lo
w

co
m

pu
te

co
st

H
ig

h
co

m
pu

te
co

st

In
te

rm
ed

ia
te

co
m

pu
te

co
st

TA
I

TD
T

U
T1

G
M

ST

G
A

ST

LA
ST

Re
fra

ct
io

n
A

, B

Te
m

p.
Pr

es
su

re
H

um
id

ity
W

av
el

en
gt

h

ob
s_

m

ob
s_

s

Ea
rth

SL
O

W

FA
ST

M E D I U M

ob
s_

t

Figure 2: Telescope Pointing Machine State Data

Pointing Machine Specification 48

Telescope Pointing Machine
Time Transitions

Version $Revision: 1.4 $ ($Date: 1996/02/06 11:36:53 $)

UT1
Universal Time

ET
Ephemeris Time

TDT
Terrestrial

Dynamical Time

TDB
Barycentric

Dynamical Time

GMST
Greenwich Mean

Sidereal Time

GAST
Greenwich Apparent

Sidereal Time

LAST
Local Apparent
Sidereal Time

UTC
Coordinated

Universal Time

TAI
International
Atomic Time

+ delta-UT + delta_AT

+ delta-ET

+ Equation of the Equinoxes

+ East Longitude

f(UT1) + 32.184 seconds

f(TDB)

+ delta-TT+ delta-T

Figure 3: Telescope Pointing Machine Time Transitions

Pointing Machine Specification 49

struct s_tstate {
/*************************/
/* independent variables */
/*************************/
double utc; /* coordinated universal time, in JD */
int delta_at; /* utc + delta_at = tai */
double delta_ut; /* utc + delta_ut = ut1 */
double lon; /* east longitude in radians */
double lat; /* latitude in radians */
double alt; /* altitude above geoid in meters */
double xpole; /* polar motion in radians */
double ypole; /* polar motion in radians */
double T; /* ambient temperature in Kelvins */
double P; /* ambient pressure in millibars */
double H; /* ambient humidity (0-1) */
double wavelength; /* observing wavelength in microns */

/*****************************/
/* dependent dynamical times */
/*****************************/
double tai; /* international atomic time */
double tdt; /* terrestrial dynamical time */
double tdb; /* barycentric dynamical time */

/************************************/
/* dependent geometrical quantities */
/************************************/
double obliquity; /* the obliquity of the ecliptic */
double nut_lon; /* the nutation in longitude */
double nut_obl; /* the nutation in the obliquity */
struct s_m3 nm; /* the nutation matrix for now */
struct s_m3 pm; /* the precession matrix from J2000 to now */

/******************************/
/* dependent rotational times */
/******************************/
double ut1; /* universal time */
double gmst; /* greenwich mean sidereal time */
double gast; /* greenwich apparent sidereal time */
double last; /* local apparent sidereal time */

/************************/
/* observer ephemerides */
/************************/
struct s_v6 eb; /* barycentric earth state vector */
struct s_v6 eh; /* heliocentric earth state vector */
struct s_v6 obs_m; /* geocentric earth-fixed mean state */
struct s_v6 obs_t; /* geocentric earth-fixed true state */
struct s_v6 obs_s; /* geocentric space-fixed mean state */

/*********************************/
/* dependent physical quantities */
/*********************************/
double refa; /* refraction coefficient */
double refb; /* refraction coefficient */

};

Figure 4: Telescope Pointing Machine State Data Structure

Pointing Machine Specification 50

Figure 5: State Machine Reversibility Errors

Pointing Machine Specification 51

Figure 6: State Machine Compared to SLALIB

Pointing Machine Specification 52

Figure 7: State Machine and SLALIB Compared to USNO List

Pointing Machine Specification 53

destination state
state S01 S02 S03 S04 S05 S06 S07 S08 S09 S10
S01 +T00 +T01 +T01 +T01 +T01 +T01 +T01 +T01 +T01 +T01

S01 S05 S05 S05 S05 S05 S05 S05 S05 S05
S02 +T02 +T00 -T03 +T02 +T02 +T02 +T02 +T02 +T02 +T02

S06 S02 S03 S06 S06 S06 S06 S06 S06 S06
S03 +T03 +T03 +T00 +T03 +T03 +T03 +T03 +T03 +T03 +T03

S02 S02 S03 S02 S02 S02 S02 S02 S02 S02
S04 +T04 +T04 +T04 +T00 +T04 +T04 +T04 +T04 +T04 +T04

S05 S05 S05 S04 S05 S05 S05 S05 S05 S05
S05 -T01 +T05 +T05 -T04 +T00 +T05 +T05 +T05 +T05 +T05

S01 S06 S06 S04 S05 S06 S06 S06 S06 S06
S06 -T05 -T02 -T02 -T05 -T05 +T00 +T06 +T06 +T06 +T06

S05 S02 S02 S05 S05 S06 S07 S07 S07 S07
S07 -T06 -T06 -T06 -T06 -T06 -T06 +T00 +T08 +T08 +T08

S06 S06 S06 S06 S06 S06 S07 S08 S08 S08
S08 -T08 -T08 -T08 -T08 -T08 -T08 -T08 +T00 +T09 +T09

S07 S07 S07 S07 S07 S07 S07 S08 S09 S09
S09 -T09 -T09 -T09 -T09 -T09 -T09 -T09 -T09 +T00 +T10

S08 S08 S08 S08 S08 S08 S08 S08 S09 S10
S10 -T10 -T10 -T10 -T10 -T10 -T10 -T10 -T10 -T10 +T00

S09 S09 S09 S09 S09 S09 S09 S09 S09 S10
S11 -T11 -T11 -T11 -T11 -T11 -T11 -T11 -T11 -T11 -T11

S10 S10 S10 S10 S10 S10 S10 S10 S10 S10
S12 -T07 -T07 -T07 -T07 -T07 -T07 -T07 -T07 -T07 -T07

S07 S07 S07 S07 S07 S07 S07 S07 S07 S07
S13 -T08 -T08 -T08 -T08 -T08 -T08 -T08 -T08 -T08 -T08

S12 S12 S12 S12 S12 S12 S12 S12 S12 S12
S14 -T09 -T09 -T09 -T09 -T09 -T09 -T09 -T09 -T09 -T09

S13 S13 S13 S13 S13 S13 S13 S13 S13 S13
S15 -T10 -T10 -T10 -T10 -T10 -T10 -T10 -T10 -T10 -T10

S14 S14 S14 S14 S14 S14 S14 S14 S14 S14
S16 -T11 -T11 -T11 -T11 -T11 -T11 -T11 -T11 -T11 -T11

S15 S15 S15 S15 S15 S15 S15 S15 S15 S15
S17 -T12 -T12 -T12 -T12 -T12 -T12 -T12 -T12 -T12 -T12

S16 S16 S16 S16 S16 S16 S16 S16 S16 S16
S18 -T13 -T13 -T13 -T13 -T13 -T13 -T13 -T13 -T13 -T13

S17 S17 S17 S17 S17 S17 S17 S17 S17 S17
S19 -T14 -T14 -T14 -T14 -T14 -T14 -T14 -T14 -T14 -T14

S18 S18 S18 S18 S18 S18 S18 S18 S18 S18
S20 +T13 +T13 +T13 +T13 +T13 +T13 +T13 +T13 +T13 +T13

S19 S19 S19 S19 S19 S19 S19 S19 S19 S19
S21 -T15 -T15 -T15 -T15 -T15 -T15 -T15 -T15 -T15 -T15

S19 S19 S19 S19 S19 S19 S19 S19 S19 S19

Table 1: State Table (part 1) for the Telescope Pointing Machine.

Pointing Machine Specification 54

destination state
state S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21
S01 +T01 +T01 +T01 +T01 +T01 +T01 +T01 +T01 +T01 +T01 +T01

S05 S05 S05 S05 S05 S05 S05 S05 S05 S05 S05
S02 +T02 +T02 +T02 +T02 +T02 +T02 +T02 +T02 +T02 +T02 +T02

S06 S06 S06 S06 S06 S06 S06 S06 S06 S06 S06
S03 +T03 +T03 +T03 +T03 +T03 +T03 +T03 +T03 +T03 +T03 +T03

S02 S02 S02 S02 S02 S02 S02 S02 S02 S02 S02
S04 +T04 +T04 +T04 +T04 +T04 +T04 +T04 +T04 +T04 +T04 +T04

S05 S05 S05 S05 S05 S05 S05 S05 S05 S05 S05
S05 +T05 +T05 +T05 +T05 +T05 +T05 +T05 +T05 +T05 +T05 +T05

S06 S06 S06 S06 S06 S06 S06 S06 S06 S06 S06
S06 +T06 +T06 +T06 +T06 +T06 +T06 +T06 +T06 +T06 +T06 +T06

S07 S07 S07 S07 S07 S07 S07 S07 S07 S07 S07
S07 +T08 +T07 +T07 +T07 +T07 +T07 +T07 +T07 +T07 +T07 +T07

S08 S12 S12 S12 S12 S12 S12 S12 S12 S12 S12
S08 +T09 -T08 -T08 -T08 -T08 -T08 -T08 -T08 -T08 -T08 -T08

S09 S07 S07 S07 S07 S07 S07 S07 S07 S07 S07
S09 +T10 -T09 -T09 -T09 -T09 -T09 -T09 -T09 -T09 -T09 -T09

S10 S08 S08 S08 S08 S08 S08 S08 S08 S08 S08
S10 +T11 -T10 -T10 -T10 -T10 -T10 -T10 -T10 -T10 -T10 -T10

S11 S09 S09 S09 S09 S09 S09 S09 S09 S09 S09
S11 +T00 -T11 -T11 -T11 -T11 -T11 -T11 -T11 -T11 -T11 -T11

S11 S10 S10 S10 S10 S10 S10 S10 S10 S10 S10
S12 -T07 +T00 +T08 +T08 +T08 +T08 +T08 +T08 +T08 +T08 +T08

S07 S12 S13 S13 S13 S13 S13 S13 S13 S13 S13
S13 -T08 -T08 +T00 +T09 +T09 +T09 +T09 +T09 +T09 +T09 +T90

S12 S12 S13 S14 S14 S14 S14 S14 S14 S14 S14
S14 -T09 -T09 -T09 +T00 +T10 +T10 +T10 +T10 +T10 +T10 +T10

S13 S13 S13 S14 S15 S15 S15 S15 S15 S15 S15
S15 -T10 -T10 -T10 -T10 +T00 +T11 +T11 +T11 +T11 +T11 +T11

S14 S14 S14 S14 S15 S16 S16 S16 S16 S16 S16
S16 -T11 -T11 -T11 -T11 -T11 +T00 +T12 +T12 +T12 +T12 +T12

S15 S15 S15 S15 S15 S16 S17 S17 S17 S17 S17
S17 -T12 -T12 -T12 -T12 -T12 -T12 +T00 +T13 +T13 +T13 +T13

S16 S16 S16 S16 S16 S16 S17 S18 S18 S18 S18
S18 -T13 -T13 -T13 -T13 -T13 -T13 -T13 +T00 +T14 +T14 +T14

S17 S17 S17 S17 S17 S17 S17 S18 S19 S19 S19
S19 -T14 -T14 -T14 -T14 -T14 -T14 -T14 -T14 +T00 -T13 +T15

S18 S18 S18 S18 S18 S18 S18 S18 S19 S20 S21
S20 +T13 +T13 +T13 +T13 +T13 +T13 +T13 +T13 +T13 +T00 +T13

S19 S19 S19 S19 S19 S19 S19 S19 S19 S20 S19
S21 -T15 -T15 -T15 -T15 -T15 -T15 -T15 -T15 -T15 -T15 +T00

S19 S19 S19 S19 S19 S19 S19 S19 S19 S19 S21

Table 2: State Table (part 2) for the Telescope Pointing Machine.

Pointing Machine Specification 55

transition execution time (ms)
Indy R4400 (150 MHz) DECStation 5000/200 Sparc 20 (60 MHz)

c2s 0.017 0.050 0.020
s2c 0.009 0.020 0.010
init 0.023 0.090 0.030

slow 1.531 6.180 2.540
medium 0.085 0.360 0.100

fast 0.010 0.030 0.010
refraction 12.470 46.280 18.800

T01 0.334 1.380 0.340
T02 0.256 1.170 0.260
T03 0.021 0.070 0.020
T04 0.078 0.280 0.080
T05 0.061 0.190 0.040
T06 0.009 0.020 < 0.010
T07 0.008 0.020 < 0.010
T08 0.035 0.100 0.020
T09 0.015 0.050 0.010
T10 0.024 0.100 0.020
T11 0.010 0.040 0.010
T12 0.051 0.200 0.050
T13 0.033 0.120 0.040
T14 0.042 0.150 0.050
T15 0.032 0.120 0.040

S01-S05 0.333 1.390 0.340
S01-S06 0.402 1.580 0.380
S01-S07 0.407 1.580 0.390
S01-S12 0.411 1.620 0.390
S01-S13 0.467 1.780 0.410
S01-S14 0.468 1.840 0.430
S01-S15 0.489 1.970 0.440
S01-S16 0.502 1.990 0.450
S01-S17 0.559 2.140 0.500
S01-S18 0.585 2.320 0.540
S01-S19 0.633 2.310 0.620

Table 3: Execution Times for State Transitions

Pointing Machine Specification 56

execution time (ms)
Indy R4400 DS5000/200 Sparc 20

calculation TPM SLALIB TPM SLALIB TPM SLALIB
mappa 1.83 0.72 7.06 2.65 2.68 1.50
mapqk 0.31 0.03 2.63 0.12 0.05 0.05
aoppa 12.54 16.17 46.69 67.71 19.26 26.34
aopqk 0.15 0.71 0.46 3.84 0.16 1.21

Table 4: TPM/SLALIB Timing Comparisons

Pointing Machine Specification 57

A FK4/FK5 Test Programs

We were very careful in implementing this transformation, because our state
vectors differ in units from those of the ES and Yallop. In the literature, the
position vector is a unit vector and the velocity vector, while Cartesian in
nature, has mixed units of km/s and arcseconds per century. The implicit
units conversions are built into the 6x6 matrices given in Yallop and the ES.
In our implementation, the state vectors are true 3-D positions and velocities
whose units are simply AU and AU/day. Therefore, parts of our 6x6 matrix
are scaled differently.

We approached this as follows. First, we made sure we could recreate the
standard matrix. The program x_fk45.c does this, from “first principles”,
following the recipe in Yallop. After creating the matrix, is then reads in the
file fk45.dat, which represents the FK4 catalog entries given in Table 3.58.1
of the ES. The program prints out the calculated FK5 entries, matching those
of Table 3.58.1. Note that command line options can force this program to
use the precession angles of Andoyer (as in Yallop) or Kinoshita (as in the
ES).

Second, we calculated our new, modified matrix, again according to Yal-
lop, but without the various unnecessary units conversions. The program
x_fk45x.c calculates the modified matrix, and then as before performs the
conversions in the ES Table 3.58.1.

The matrix generated by x_fk45x.c is the one actually coded into the
TPM’s subroutine library. That is, the output of x_fk45x.c was edited and
transcribed into the subroutine fk425().

Finally, we needed to test that the transcription mentioned above was
done correctly. The program x_fk45xx.c also performs the conversions in
the ES Table 3.58.1, but it does so using the TPM’s library routine fk425()
instead of having calculated the matrix itself. Again, the FK5 output matches
the answers in the ES Table 3.58.1.

These three test programs have their mirror-image counterparts in x_fk54.c,
x_fk54x.c, x_fk54xx.c, and k54.dat.

Pointing Machine Specification 58

B State Machine Timing Program

The TPM timing program is called x_tpm_timer.c. Command line options
to x_tpm_timer.c control the number of executions as well as the particular
calculation that is to be timed. Run the program with the help option to
get a short summary of options.

Here is the shell script x_tpm_timer.sh used to produce Table 3.

#! /bin/sh

pgm="x_tpm_timer.$MACHINE"
log="$pgm.out"

N="10000"

cp /dev/null $log

/bin/time $pgm -v -n $N -c2s 2>> $log
/bin/time $pgm -v -n $N -s2c 2>> $log

/bin/time $pgm -v -n $N -init 2>> $log
/bin/time $pgm -v -n $N -slow 2>> $log
/bin/time $pgm -v -n $N -medium 2>> $log
/bin/time $pgm -v -n $N -fast 2>> $log
/bin/time $pgm -v -n $N -refraction 2>> $log

for trans in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
do

/bin/time $pgm -v -n $N -trans $trans 2>> $log
done

s1=1
for s2 in 5 6 7 12 13 14 15 16 17 18 19
do

/bin/time $pgm -v -n $N -flow $s1 $s2 2>> $log
done

Pointing Machine Specification 59

C State Machine Reversibility Program

The state machine reversibility program is called tpm_fwd_bck.c. Command
line options to x_tpm_timer.c control the number of executions as well as
the particular calculation that is to be timed. Run the program with the
help option to get a short summary of options.

Here is the shell script x_tpm.sh used to produce Figure 5.

#! /bin/sh
use x_tpm to make a histogram of fwd/bck errors

pgm="x_tpm.$MACHINE"

program to make a histogram
HIST="../streams/hist.$MACHINE -nbins 10000 -ymin 0 -ymax 10000"

program to take the log of the y values
WINDOW="../streams/window.$MACHINE -ylog10"

$pgm | grep err | awk ’{print NR, $NF}’ | $HIST > $pgm.hist
$WINDOW < $pgm.hist > $pgm.hist.lg

Pointing Machine Specification 60

D SLALIB Test Suite

SLALIB is considered to be definitive in the area of pointing telescopes, so
a SLALIB comparison is required. (See the Introduction for ways in which
the Telescope Pointing Machine differs from SLALIB.)

The SLALIB comparison programs are in the src/astro/sla_tpm sub-
directory of the TPM distribution.

We first generated a synthetic stellar catalog with the program sla_tpm_data.c.
This program draws catalog entries from a 9-dimensional grid of

(α, δ, eq, α̇, δ̇, ep, π, ṙ, utc)

where eq is the catalog equinox, ep is the epoch of proper motions, and utc is
the time for which a position is to be calculated. For each axis of the grid, a
value is chosen at random, with uniform probability, from the ranges shown
in Section 8.2. The user can select the number of catalog entries generated;
we chose 105.

A separate program makes each of the comparison calculations:

Calculation flow program name
Galactic to FK4 Equatorial S04-S05 sla_tpm_gal.c
FK4 to FK5 Equatorial S05-S06 sla_tpm_fk45.c
Ecliptic to FK5 Equatorial S03-S02 sla_tpm_ecl.c
Mean to Apparent S06-S11 sla_tpm_map.c
Apparent to Mean S11-S06 sla_tpm_amp.c
Apparent to Observed S11-S19 sla_tpm_aop.c
Timing comparison various sla_tpm_timer.c

See sla_tpm.sh and sla_tpm_timer.sh for examples on running these
programs.

Using the verbose option causes the programs to print out intermediate
results. Without this option, you just get one line per input catalog entry,
giving as the last item on the line the deviation from SLALIB in milliarcsec-
onds.

