
The Org Manual
Release 8.3.1 (release˙8.3.1)

by Carsten Dominik
with contributions by Bastien Guerry, Nicolas Goaziou, Eric Schulte, Jambunathan K, Dan
Davison, Thomas Dye, David O’Toole, and Philip Rooke.

This manual is for Org version 8.3.1 (release˙8.3.1).

Copyright c© 2004–2015 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual.”

i

Short Contents

1 Introduction . 1

2 Document structure . 6

3 Tables . 19

4 Hyperlinks . 38

5 TODO items . 46

6 Tags . 59

7 Properties and columns . 64

8 Dates and times . 73

9 Capture - Refile - Archive . 89

10 Agenda views . 100

11 Markup for rich export . 128

12 Exporting . 139

13 Publishing . 184

14 Working with source code . 194

15 Miscellaneous . 223

A Hacking . 236

B MobileOrg . 251

C History and acknowledgments . 253

D GNU Free Documentation License . 259

Concept index . 267
Key index . 276

Command and function index . 281

Variable index . 285

ii

Table of Contents

1 Introduction . 1
1.1 Summary . 1
1.2 Installation . 2
1.3 Activation . 3
1.4 Feedback . 3
1.5 Typesetting conventions used in this manual . 5

2 Document structure . 6
2.1 Outlines . 6
2.2 Headlines . 6
2.3 Visibility cycling . 6

2.3.1 Global and local cycling . 6
2.3.2 Initial visibility . 8
2.3.3 Catching invisible edits . 8

2.4 Motion . 8
2.5 Structure editing . 9
2.6 Sparse trees . 11
2.7 Plain lists . 12
2.8 Drawers . 15
2.9 Blocks . 16
2.10 Footnotes . 16
2.11 The Orgstruct minor mode . 18
2.12 Org syntax . 18

3 Tables . 19
3.1 The built-in table editor . 19
3.2 Column width and alignment . 22
3.3 Column groups . 23
3.4 The Orgtbl minor mode . 24
3.5 The spreadsheet . 24

3.5.1 References . 24
3.5.2 Formula syntax for Calc . 27
3.5.3 Emacs Lisp forms as formulas . 29
3.5.4 Durations and time values . 29
3.5.5 Field and range formulas . 29
3.5.6 Column formulas . 30
3.5.7 Lookup functions . 31
3.5.8 Editing and debugging formulas . 31
3.5.9 Updating the table . 34
3.5.10 Advanced features . 34

3.6 Org-Plot . 36

iii

4 Hyperlinks . 38
4.1 Link format . 38
4.2 Internal links . 38

4.2.1 Radio targets . 39
4.3 External links . 39
4.4 Handling links . 41
4.5 Using links outside Org . 44
4.6 Link abbreviations . 44
4.7 Search options in file links . 45
4.8 Custom Searches . 45

5 TODO items . 46
5.1 Basic TODO functionality . 46
5.2 Extended use of TODO keywords . 47

5.2.1 TODO keywords as workflow states . 47
5.2.2 TODO keywords as types . 48
5.2.3 Multiple keyword sets in one file . 48
5.2.4 Fast access to TODO states . 49
5.2.5 Setting up keywords for individual files 49
5.2.6 Faces for TODO keywords . 50
5.2.7 TODO dependencies . 50

5.3 Progress logging . 52
5.3.1 Closing items . 52
5.3.2 Tracking TODO state changes . 52
5.3.3 Tracking your habits . 53

5.4 Priorities . 55
5.5 Breaking tasks down into subtasks . 56
5.6 Checkboxes . 56

6 Tags . 59
6.1 Tag inheritance . 59
6.2 Setting tags . 59
6.3 Tag hierarchy . 62
6.4 Tag searches . 63

7 Properties and columns . 64
7.1 Property syntax . 64
7.2 Special properties . 66
7.3 Property searches . 66
7.4 Property Inheritance . 67
7.5 Column view . 67

7.5.1 Defining columns . 68
7.5.1.1 Scope of column definitions . 68
7.5.1.2 Column attributes . 68

7.5.2 Using column view . 70
7.5.3 Capturing column view . 71

7.6 The Property API . 72

iv

8 Dates and times . 73
8.1 Timestamps, deadlines, and scheduling . 73
8.2 Creating timestamps . 74

8.2.1 The date/time prompt . 75
8.2.2 Custom time format . 77

8.3 Deadlines and scheduling . 77
8.3.1 Inserting deadlines or schedules . 78
8.3.2 Repeated tasks . 79

8.4 Clocking work time . 80
8.4.1 Clocking commands . 81
8.4.2 The clock table . 82
8.4.3 Resolving idle time and continuous clocking 85

8.5 Effort estimates . 86
8.6 Taking notes with a timer . 87

9 Capture - Refile - Archive . 89
9.1 Capture . 89

9.1.1 Setting up capture . 89
9.1.2 Using capture . 89
9.1.3 Capture templates . 90

9.1.3.1 Template elements . 91
9.1.3.2 Template expansion . 93
9.1.3.3 Templates in contexts . 94

9.2 Attachments . 94
9.3 RSS feeds . 96
9.4 Protocols for external access . 96
9.5 Refile and copy . 96
9.6 Archiving . 97

9.6.1 Moving a tree to the archive file . 98
9.6.2 Internal archiving . 98

10 Agenda views . 100
10.1 Agenda files . 100
10.2 The agenda dispatcher . 101
10.3 The built-in agenda views . 102

10.3.1 The weekly/daily agenda . 102
10.3.2 The global TODO list . 104
10.3.3 Matching tags and properties . 105
10.3.4 Timeline for a single file . 107
10.3.5 Search view . 108
10.3.6 Stuck projects . 108

10.4 Presentation and sorting . 109
10.4.1 Categories . 109
10.4.2 Time-of-day specifications . 109
10.4.3 Sorting agenda items . 110
10.4.4 Filtering/limiting agenda items . 110

10.5 Commands in the agenda buffer . 113

v

10.6 Custom agenda views . 121
10.6.1 Storing searches . 122
10.6.2 Block agenda . 123
10.6.3 Setting options for custom commands 123

10.7 Exporting agenda views . 124
10.8 Using column view in the agenda . 126

11 Markup for rich export . 128
11.1 Structural markup elements . 128
11.2 Images and Tables . 130
11.3 Literal examples . 131
11.4 Include files . 132
11.5 Index entries . 133
11.6 Macro replacement . 134
11.7 Embedded LATEX . 134

11.7.1 Special symbols . 135
11.7.2 Subscripts and superscripts . 135
11.7.3 LATEX fragments . 136
11.7.4 Previewing LATEX fragments . 136
11.7.5 Using CDLATEX to enter math . 137

11.8 Special blocks . 138

12 Exporting . 139
12.1 The export dispatcher . 139
12.2 Export back-ends . 140
12.3 Export settings . 140
12.4 ASCII/Latin-1/UTF-8 export . 143
12.5 Beamer export . 144

12.5.1 Beamer export commands . 144
12.5.2 Beamer specific export settings . 144
12.5.3 Sectioning, Frames and Blocks in Beamer 145
12.5.4 Beamer specific syntax . 146
12.5.5 Editing support . 147
12.5.6 A Beamer example . 147

12.6 HTML export . 148
12.6.1 HTML export commands . 148
12.6.2 HTML Specific export settings . 148
12.6.3 HTML doctypes . 149
12.6.4 HTML preamble and postamble . 150
12.6.5 Quoting HTML tags . 150
12.6.6 Links in HTML export . 151
12.6.7 Tables in HTML export . 151
12.6.8 Images in HTML export . 152
12.6.9 Math formatting in HTML export . 152
12.6.10 Text areas in HTML export . 152
12.6.11 CSS support . 153
12.6.12 JavaScript supported display of web pages 154

12.7 LATEX and PDF export . 155

vi

12.7.1 LATEX export commands . 155
12.7.2 LATEX specific export settings . 155
12.7.3 Header and sectioning structure . 156
12.7.4 Quoting LATEX code . 157
12.7.5 LATEX specific attributes . 157

12.8 Markdown export . 161
12.9 OpenDocument Text export . 162

12.9.1 Pre-requisites for ODT export . 162
12.9.2 ODT export commands . 162
12.9.3 ODT specific export settings . 163
12.9.4 Extending ODT export . 163
12.9.5 Applying custom styles . 163
12.9.6 Links in ODT export . 164
12.9.7 Tables in ODT export . 164
12.9.8 Images in ODT export . 165
12.9.9 Math formatting in ODT export . 166
12.9.10 Labels and captions in ODT export 168
12.9.11 Literal examples in ODT export . 168
12.9.12 Advanced topics in ODT export . 168

12.10 Org export . 173
12.11 Texinfo export . 174

12.11.1 Texinfo export commands . 174
12.11.2 Texinfo specific export settings . 174
12.11.3 Document preamble . 175
12.11.4 Headings and sectioning structure . 176
12.11.5 Indices . 176
12.11.6 Quoting Texinfo code . 177
12.11.7 Texinfo specific attributes . 177
12.11.8 An example . 177

12.12 iCalendar export . 179
12.13 Other built-in back-ends . 180
12.14 Export in foreign buffers . 180
12.15 Advanced configuration . 180

13 Publishing . 184
13.1 Configuration . 184

13.1.1 The variable org-publish-project-alist 184
13.1.2 Sources and destinations for files . 184
13.1.3 Selecting files . 185
13.1.4 Publishing action . 185
13.1.5 Options for the exporters . 186
13.1.6 Links between published files . 190
13.1.7 Generating a sitemap . 190
13.1.8 Generating an index . 191

13.2 Uploading files . 191
13.3 Sample configuration . 192

13.3.1 Example: simple publishing configuration 192
13.3.2 Example: complex publishing configuration 192

vii

13.4 Triggering publication . 193

14 Working with source code 194
14.1 Structure of code blocks . 194
14.2 Editing source code . 195
14.3 Exporting code blocks . 195
14.4 Extracting source code . 196
14.5 Evaluating code blocks . 197
14.6 Library of Babel . 198
14.7 Languages . 199
14.8 Header arguments . 200

14.8.1 Using header arguments . 200
14.8.2 Specific header arguments . 202

14.8.2.1 :var . 202
14.8.2.2 :results . 207
14.8.2.3 :file . 208
14.8.2.4 :file-desc . 209
14.8.2.5 :file-ext . 209
14.8.2.6 :output-dir . 209
14.8.2.7 :dir and remote execution . 209
14.8.2.8 :exports . 210
14.8.2.9 :tangle . 210
14.8.2.10 :mkdirp . 210
14.8.2.11 :comments . 211
14.8.2.12 :padline . 211
14.8.2.13 :no-expand . 211
14.8.2.14 :session . 211
14.8.2.15 :noweb . 212
14.8.2.16 :noweb-ref . 212
14.8.2.17 :noweb-sep . 213
14.8.2.18 :cache . 213
14.8.2.19 :sep . 214
14.8.2.20 :hlines . 214
14.8.2.21 :colnames . 215
14.8.2.22 :rownames . 216
14.8.2.23 :shebang . 216
14.8.2.24 :tangle-mode . 216
14.8.2.25 :eval . 217
14.8.2.26 :wrap . 217
14.8.2.27 :post . 217
14.8.2.28 :prologue . 218
14.8.2.29 :epilogue . 218

14.9 Results of evaluation . 219
14.9.1 Non-session . 219

14.9.1.1 :results value . 219
14.9.1.2 :results output . 219

14.9.2 Session . 219
14.9.2.1 :results value . 219

viii

14.9.2.2 :results output . 219
14.10 Noweb reference syntax . 220
14.11 Key bindings and useful functions . 221
14.12 Batch execution . 221

15 Miscellaneous . 223
15.1 Completion . 223
15.2 Easy templates . 223
15.3 Speed keys . 224
15.4 Code evaluation and security issues . 224
15.5 Customization . 225
15.6 Summary of in-buffer settings . 225
15.7 The very busy C-c C-c key . 229
15.8 A cleaner outline view . 230
15.9 Using Org on a tty . 231
15.10 Interaction with other packages . 232

15.10.1 Packages that Org cooperates with . 232
15.10.2 Packages that lead to conflicts with Org mode 233

15.11 org-crypt.el . 235

Appendix A Hacking . 236
A.1 Hooks . 236
A.2 Add-on packages . 236
A.3 Adding hyperlink types . 236
A.4 Adding export back-ends . 238
A.5 Context-sensitive commands . 238
A.6 Tables and lists in arbitrary syntax . 239

A.6.1 Radio tables . 239
A.6.2 A LATEX example of radio tables . 240
A.6.3 Translator functions . 241
A.6.4 Radio lists . 242

A.7 Dynamic blocks . 243
A.8 Special agenda views . 244
A.9 Speeding up your agendas . 245
A.10 Extracting agenda information . 246
A.11 Using the property API . 247
A.12 Using the mapping API . 248

Appendix B MobileOrg . 251
B.1 Setting up the staging area . 251
B.2 Pushing to MobileOrg . 251
B.3 Pulling from MobileOrg . 252

ix

Appendix C History and acknowledgments
. 253

C.1 From Carsten . 253
C.2 From Bastien . 254
C.3 List of contributions . 254

Appendix D GNU Free Documentation License
. 259

Concept index . 267

Key index . 276

Command and function index 281

Variable index . 285

Chapter 1: Introduction 1

1 Introduction

1.1 Summary

Org is a mode for keeping notes, maintaining TODO lists, and project planning with a
fast and effective plain-text system. It also is an authoring system with unique support for
literate programming and reproducible research.

Org is implemented on top of Outline mode, which makes it possible to keep the content
of large files well structured. Visibility cycling and structure editing help to work with the
tree. Tables are easily created with a built-in table editor. Plain text URL-like links connect
to websites, emails, Usenet messages, BBDB entries, and any files related to the projects.

Org develops organizational tasks around notes files that contain lists or information
about projects as plain text. Project planning and task management makes use of metadata
which is part of an outline node. Based on this data, specific entries can be extracted in
queries and create dynamic agenda views that also integrate the Emacs calendar and diary.
Org can be used to implement many different project planning schemes, such as David
Allen’s GTD system.

Org files can serve as a single source authoring system with export to many different
formats such as HTML, LATEX, Open Document, and Markdown. New export backends can
be derived from existing ones, or defined from scratch.

Org files can include source code blocks, which makes Org uniquely suited for authoring
technical documents with code examples. Org source code blocks are fully functional; they
can be evaluated in place and their results can be captured in the file. This makes it possible
to create a single file reproducible research compendium.

Org keeps simple things simple. When first fired up, it should feel like a straightforward,
easy to use outliner. Complexity is not imposed, but a large amount of functionality is
available when needed. Org is a toolbox. Many users actually run only a (very personal)
fraction of Org’s capabilities, and know that there is more whenever they need it.

All of this is achieved with strictly plain text files, the most portable and future-proof
file format. Org runs in Emacs. Emacs is one of the most widely ported programs, so that
Org mode is available on every major platform.

There is a website for Org which provides links to the newest version of Org, as well as
additional information, frequently asked questions (FAQ), links to tutorials, etc. This page
is located at http://orgmode.org.

An earlier version (7.3) of this manual is available as a paperback book from Network
Theory Ltd.

http://orgmode.org
http://www.network-theory.co.uk/org/manual/
http://www.network-theory.co.uk/org/manual/

Chapter 1: Introduction 2

1.2 Installation

Org is part of recent distributions of GNU Emacs, so you normally don’t need to install it.
If, for one reason or another, you want to install Org on top of this pre-packaged version,
there are three ways to do it:

• By using Emacs package system.

• By downloading Org as an archive.

• By using Org’s git repository.

We strongly recommend to stick to a single installation method.

Using Emacs packaging system

Recent Emacs distributions include a packaging system which lets you install Elisp libraries.
You can install Org with M-x package-install RET org.

Important: you need to do this in a session where no .org file has been visited, i.e., where
no Org built-in function have been loaded. Otherwise autoload Org functions will mess up
the installation.

Then, to make sure your Org configuration is taken into account, initialize the package
system with (package-initialize) in your .emacs before setting any Org option. If you
want to use Org’s package repository, check out the Org ELPA page.

Downloading Org as an archive

You can download Org latest release from Org’s website. In this case, make sure you set
the load-path correctly in your .emacs:

(add-to-list 'load-path "~/path/to/orgdir/lisp")

The downloaded archive contains contributed libraries that are not included in Emacs.
If you want to use them, add the contrib directory to your load-path:

(add-to-list 'load-path "~/path/to/orgdir/contrib/lisp" t)

Optionally, you can compile the files and/or install them in your system. Run make help

to list compilation and installation options.

Using Org’s git repository

You can clone Org’s repository and install Org like this:

$ cd ~/src/

$ git clone git://orgmode.org/org-mode.git

$ make autoloads

Note that in this case, make autoloads is mandatory: it defines Org’s version in
org-version.el and Org’s autoloads in org-loaddefs.el.

Remember to add the correct load-path as described in the method above.

You can also compile with make, generate the documentation with make doc, create a
local configuration with make config and install Org with make install. Please run make

help to get the list of compilation/installation options.

For more detailed explanations on Org’s build system, please check the Org Build System
page on Worg.

http://orgmode.org/elpa.html
http://orgmode.org/
http://orgmode.org/worg/dev/org-build-system.html

Chapter 1: Introduction 3

1.3 Activation

Since Emacs 22.2, files with the .org extension use Org mode by default. If you are using
an earlier version of Emacs, add this line to your .emacs file:

(add-to-list 'auto-mode-alist '("\\.org\\'" . org-mode))

Org mode buffers need font-lock to be turned on: this is the default in Emacs1.

There are compatibility issues between Org mode and some other Elisp packages, please
take the time to check the list (see Section 15.10.2 [Conflicts], page 233).

The four Org commands org-store-link, org-capture, org-agenda, and
org-iswitchb should be accessible through global keys (i.e., anywhere in Emacs, not just
in Org buffers). Here are suggested bindings for these keys, please modify the keys to your
own liking.

(global-set-key "\C-cl" 'org-store-link)

(global-set-key "\C-ca" 'org-agenda)

(global-set-key "\C-cc" 'org-capture)

(global-set-key "\C-cb" 'org-iswitchb)

To turn on Org mode in a file that does not have the extension .org, make the first line
of a file look like this:

MY PROJECTS -*- mode: org; -*-

which will select Org mode for this buffer no matter what the file’s name is. See also the
variable org-insert-mode-line-in-empty-file.

Many commands in Org work on the region if the region is active. To make use of this,
you need to have transient-mark-mode (zmacs-regions in XEmacs) turned on. In Emacs
23 this is the default, in Emacs 22 you need to do this yourself with

(transient-mark-mode 1)

If you do not like transient-mark-mode, you can create an active region by using the
mouse to select a region, or pressing C-SPC twice before moving the cursor.

1.4 Feedback

If you find problems with Org, or if you have questions, remarks, or ideas about it, please
mail to the Org mailing list emacs-orgmode@gnu.org. You can subscribe to the list on this
web page. If you are not a member of the mailing list, your mail will be passed to the list
after a moderator has approved it2.

For bug reports, please first try to reproduce the bug with the latest version of Org
available—if you are running an outdated version, it is quite possible that the bug has been
fixed already. If the bug persists, prepare a report and provide as much information as
possible, including the version information of Emacs (M-x emacs-version RET) and Org
(M-x org-version RET), as well as the Org related setup in .emacs. The easiest way to do
this is to use the command

1 If you don’t use font-lock globally, turn it on in Org buffer with (add-hook 'org-mode-hook 'turn-on-

font-lock)
2 Please consider subscribing to the mailing list, in order to minimize the work the mailing list moderators

have to do.

mailto:emacs-orgmode@gnu.org
https://lists.gnu.org/mailman/listinfo/emacs-orgmode
https://lists.gnu.org/mailman/listinfo/emacs-orgmode

Chapter 1: Introduction 4

M-x org-submit-bug-report RET

which will put all this information into an Emacs mail buffer so that you only need to add
your description. If you are not sending the Email from within Emacs, please copy and
paste the content into your Email program.

Sometimes you might face a problem due to an error in your Emacs or Org mode setup.
Before reporting a bug, it is very helpful to start Emacs with minimal customizations and
reproduce the problem. Doing so often helps you determine if the problem is with your
customization or with Org mode itself. You can start a typical minimal session with a
command like the example below.

$ emacs -Q -l /path/to/minimal-org.el

However if you are using Org mode as distributed with Emacs, a minimal setup is not
necessary. In that case it is sufficient to start Emacs as emacs -Q. The minimal-org.el

setup file can have contents as shown below.

;;; Minimal setup to load latest 'org-mode'

;; activate debugging

(setq debug-on-error t

debug-on-signal nil

debug-on-quit nil)

;; add latest org-mode to load path

(add-to-list 'load-path (expand-file-name "/path/to/org-mode/lisp"))

(add-to-list 'load-path (expand-file-name "/path/to/org-mode/contrib/lisp" t))

If an error occurs, a backtrace can be very useful (see below on how to create one). Often
a small example file helps, along with clear information about:

1. What exactly did you do?

2. What did you expect to happen?

3. What happened instead?

Thank you for helping to improve this program.

How to create a useful backtrace

If working with Org produces an error with a message you don’t understand, you may have
hit a bug. The best way to report this is by providing, in addition to what was mentioned
above, a backtrace. This is information from the built-in debugger about where and how
the error occurred. Here is how to produce a useful backtrace:

1. Reload uncompiled versions of all Org mode Lisp files. The backtrace contains much
more information if it is produced with uncompiled code. To do this, use

C-u M-x org-reload RET

or select Org -> Refresh/Reload -> Reload Org uncompiled from the menu.

2. Go to the Optionsmenu and select Enter Debugger on Error (XEmacs has this option
in the Troubleshooting sub-menu).

3. Do whatever you have to do to hit the error. Don’t forget to document the steps you
take.

Chapter 1: Introduction 5

4. When you hit the error, a *Backtrace* buffer will appear on the screen. Save this
buffer to a file (for example using C-x C-w) and attach it to your bug report.

1.5 Typesetting conventions used in this manual

TODO keywords, tags, properties, etc.

Org mainly uses three types of keywords: TODO keywords, tags and property names. In
this manual we use the following conventions:

TODO

WAITING TODO keywords are written with all capitals, even if they are user-defined.

boss

ARCHIVE User-defined tags are written in lowercase; built-in tags with special meaning
are written with all capitals.

Release

PRIORITY User-defined properties are capitalized; built-in properties with special meaning
are written with all capitals.

Moreover, Org uses option keywords (like #+TITLE to set the title) and environment
keywords (like #+BEGIN_HTML to start a HTML environment). They are written in uppercase
in the manual to enhance its readability, but you can use lowercase in your Org files3.

Keybindings and commands

The manual suggests a few global keybindings, in particular C-c a for org-agenda and C-c

c for org-capture. These are only suggestions, but the rest of the manual assumes that
these keybindings are in place in order to list commands by key access.

Also, the manual lists both the keys and the corresponding commands for accessing
a functionality. Org mode often uses the same key for different functions, depending on
context. The command that is bound to such keys has a generic name, like org-metaright.
In the manual we will, wherever possible, give the function that is internally called by
the generic command. For example, in the chapter on document structure, M-right will
be listed to call org-do-demote, while in the chapter on tables, it will be listed to call
org-table-move-column-right. If you prefer, you can compile the manual without the
command names by unsetting the flag cmdnames in org.texi.

3 Easy templates insert lowercase keywords and Babel dynamically inserts #+results.

Chapter 2: Document structure 6

2 Document structure

Org is based on Outline mode and provides flexible commands to edit the structure of the
document.

2.1 Outlines

Org is implemented on top of Outline mode. Outlines allow a document to be organized
in a hierarchical structure, which (at least for me) is the best representation of notes and
thoughts. An overview of this structure is achieved by folding (hiding) large parts of the
document to show only the general document structure and the parts currently being worked
on. Org greatly simplifies the use of outlines by compressing the entire show/hide function-
ality into a single command, org-cycle, which is bound to the TAB key.

2.2 Headlines

Headlines define the structure of an outline tree. The headlines in Org start with one or
more stars, on the left margin12. For example:

* Top level headline

** Second level

*** 3rd level

some text

*** 3rd level

more text

* Another top level headline

Note that a headline named after org-footnote-section, which defaults to ‘Footnotes’,
is considered as special. A subtree with this headline will be silently ignored by exporting
functions.

Some people find the many stars too noisy and would prefer an outline that has white-
space followed by a single star as headline starters. Section 15.8 [Clean view], page 230,
describes a setup to realize this.

An empty line after the end of a subtree is considered part of it and will be hidden when
the subtree is folded. However, if you leave at least two empty lines, one empty line will
remain visible after folding the subtree, in order to structure the collapsed view. See the
variable org-cycle-separator-lines to modify this behavior.

2.3 Visibility cycling

2.3.1 Global and local cycling

Outlines make it possible to hide parts of the text in the buffer. Org uses just two commands,
bound to TAB and S-TAB to change the visibility in the buffer.

1 See the variables org-special-ctrl-a/e, org-special-ctrl-k, and org-ctrl-k-protect-subtree to
configure special behavior of C-a, C-e, and C-k in headlines.

2 Clocking only works with headings indented less than 30 stars.

Chapter 2: Document structure 7

TAB org-cycle

Subtree cycling : Rotate current subtree among the states

,-> FOLDED -> CHILDREN -> SUBTREE --.

'-----------------------------------'

The cursor must be on a headline for this to work3. When the cursor is at the
beginning of the buffer and the first line is not a headline, then TAB actually
runs global cycling (see below)4. Also when called with a prefix argument (C-u
TAB), global cycling is invoked.

S-TAB org-global-cycle

C-u TAB Global cycling : Rotate the entire buffer among the states

,-> OVERVIEW -> CONTENTS -> SHOW ALL --.

'--------------------------------------'

When S-TAB is called with a numeric prefix argument N, the CONTENTS view
up to headlines of level N will be shown. Note that inside tables, S-TAB jumps
to the previous field.

C-u C-u TAB org-set-startup-visibility

Switch back to the startup visibility of the buffer (see Section 2.3.2 [Initial
visibility], page 8).

C-u C-u C-u TAB show-all

Show all, including drawers.

C-c C-r org-reveal

Reveal context around point, showing the current entry, the following heading
and the hierarchy above. Useful for working near a location that has been
exposed by a sparse tree command (see Section 2.6 [Sparse trees], page 11) or
an agenda command (see Section 10.5 [Agenda commands], page 113). With a
prefix argument show, on each level, all sibling headings. With a double prefix
argument, also show the entire subtree of the parent.

C-c C-k show-branches

Expose all the headings of the subtree, CONTENT view for just one subtree.

C-c TAB show-children

Expose all direct children of the subtree. With a numeric prefix argument N,
expose all children down to level N.

C-c C-x b org-tree-to-indirect-buffer

Show the current subtree in an indirect buffer5. With a numeric prefix argument
N, go up to level N and then take that tree. If N is negative then go up that
many levels. With a C-u prefix, do not remove the previously used indirect
buffer.

3 see, however, the option org-cycle-emulate-tab.
4 see the option org-cycle-global-at-bob.
5 The indirect buffer (see Section “Indirect Buffers” in GNU Emacs Manual) will contain the entire buffer,

but will be narrowed to the current tree. Editing the indirect buffer will also change the original buffer,
but without affecting visibility in that buffer.

Chapter 2: Document structure 8

C-c C-x v org-copy-visible

Copy the visible text in the region into the kill ring.

2.3.2 Initial visibility

When Emacs first visits an Org file, the global state is set to OVERVIEW, i.e., only the
top level headlines are visible6. This can be configured through the variable org-startup-
folded, or on a per-file basis by adding one of the following lines anywhere in the buffer:

#+STARTUP: overview

#+STARTUP: content

#+STARTUP: showall

#+STARTUP: showeverything

The startup visibility options are ignored when the file is open for the first time during the
agenda generation: if you want the agenda to honor the startup visibility, set org-agenda-
inhibit-startup to nil.

Furthermore, any entries with a ‘VISIBILITY’ property (see Chapter 7 [Properties and
columns], page 64) will get their visibility adapted accordingly. Allowed values for this
property are folded, children, content, and all.

C-u C-u TAB org-set-startup-visibility

Switch back to the startup visibility of the buffer, i.e., whatever is requested by
startup options and ‘VISIBILITY’ properties in individual entries.

2.3.3 Catching invisible edits

Sometimes you may inadvertently edit an invisible part of the buffer and be confused on
what has been edited and how to undo the mistake. Setting org-catch-invisible-edits

to non-nil will help prevent this. See the docstring of this option on how Org should catch
invisible edits and process them.

2.4 Motion

The following commands jump to other headlines in the buffer.

C-c C-n outline-next-visible-heading

Next heading.

C-c C-p outline-previous-visible-heading

Previous heading.

C-c C-f org-forward-same-level

Next heading same level.

C-c C-b org-backward-same-level

Previous heading same level.

C-c C-u outline-up-heading

Backward to higher level heading.

6 When org-agenda-inhibit-startup is non-nil, Org will not honor the default visibility state when first
opening a file for the agenda (see Section A.9 [Speeding up your agendas], page 245).

Chapter 2: Document structure 9

C-c C-j org-goto

Jump to a different place without changing the current outline visibility. Shows
the document structure in a temporary buffer, where you can use the following
keys to find your destination:

TAB Cycle visibility.
down / up Next/previous visible headline.
RET Select this location.
/ Do a Sparse-tree search
The following keys work if you turn off org-goto-auto-isearch

n / p Next/previous visible headline.
f / b Next/previous headline same level.
u One level up.
0-9 Digit argument.
q Quit

See also the option org-goto-interface.

2.5 Structure editing

M-RET org-insert-heading

Insert a new heading/item with the same level as the one at point.

If the cursor is in a plain list item, a new item is created (see Section 2.7 [Plain
lists], page 12). To prevent this behavior in lists, call the command with one
prefix argument. When this command is used in the middle of a line, the line
is split and the rest of the line becomes the new item or headline. If you do not
want the line to be split, customize org-M-RET-may-split-line.

If the command is used at the beginning of a line, and if there is a heading or
an item at point, the new heading/item is created before the current line. If the
command is used at the end of a folded subtree (i.e., behind the ellipses at the
end of a headline), then a headline will be inserted after the end of the subtree.

Calling this command with C-u C-u will unconditionally respect the headline’s
content and create a new item at the end of the parent subtree.

If point is at the beginning of a normal line, turn this line into a heading.

C-RET org-insert-heading-respect-content

Just like M-RET, except when adding a new heading below the current heading,
the new heading is placed after the body instead of before it. This command
works from anywhere in the entry.

M-S-RET org-insert-todo-heading

Insert new TODO entry with same level as current heading. See also the vari-
able org-treat-insert-todo-heading-as-state-change.

C-S-RET org-insert-todo-heading-respect-content

Insert new TODO entry with same level as current heading. Like C-RET, the
new headline will be inserted after the current subtree.

Chapter 2: Document structure 10

TAB org-cycle

In a new entry with no text yet, the first TAB demotes the entry to become a
child of the previous one. The next TAB makes it a parent, and so on, all the
way to top level. Yet another TAB, and you are back to the initial level.

M-left org-do-promote

Promote current heading by one level.

M-right org-do-demote

Demote current heading by one level.

M-S-left org-promote-subtree

Promote the current subtree by one level.

M-S-right org-demote-subtree

Demote the current subtree by one level.

M-S-up org-move-subtree-up

Move subtree up (swap with previous subtree of same level).

M-S-down org-move-subtree-down

Move subtree down (swap with next subtree of same level).

M-h org-mark-element

Mark the element at point. Hitting repeatedly will mark subsequent elements
of the one just marked. E.g., hitting M-h on a paragraph will mark it, hitting
M-h immediately again will mark the next one.

C-c @ org-mark-subtree

Mark the subtree at point. Hitting repeatedly will mark subsequent subtrees
of the same level than the marked subtree.

C-c C-x C-w org-cut-subtree

Kill subtree, i.e., remove it from buffer but save in kill ring. With a numeric
prefix argument N, kill N sequential subtrees.

C-c C-x M-w org-copy-subtree

Copy subtree to kill ring. With a numeric prefix argument N, copy the N
sequential subtrees.

C-c C-x C-y org-paste-subtree

Yank subtree from kill ring. This does modify the level of the subtree to make
sure the tree fits in nicely at the yank position. The yank level can also be
specified with a numeric prefix argument, or by yanking after a headline marker
like ‘****’.

C-y org-yank

Depending on the options org-yank-adjusted-subtrees and org-yank-

folded-subtrees, Org’s internal yank command will paste subtrees folded
and in a clever way, using the same command as C-c C-x C-y. With the
default settings, no level adjustment will take place, but the yanked tree will
be folded unless doing so would swallow text previously visible. Any prefix
argument to this command will force a normal yank to be executed, with the
prefix passed along. A good way to force a normal yank is C-u C-y. If you

Chapter 2: Document structure 11

use yank-pop after a yank, it will yank previous kill items plainly, without
adjustment and folding.

C-c C-x c org-clone-subtree-with-time-shift

Clone a subtree by making a number of sibling copies of it. You will be prompted
for the number of copies to make, and you can also specify if any timestamps
in the entry should be shifted. This can be useful, for example, to create a
number of tasks related to a series of lectures to prepare. For more details, see
the docstring of the command org-clone-subtree-with-time-shift.

C-c C-w org-refile

Refile entry or region to a different location. See Section 9.5 [Refile and copy],
page 96.

C-c ^ org-sort

Sort same-level entries. When there is an active region, all entries in the region
will be sorted. Otherwise the children of the current headline are sorted. The
command prompts for the sorting method, which can be alphabetically, numer-
ically, by time (first timestamp with active preferred, creation time, scheduled
time, deadline time), by priority, by TODO keyword (in the sequence the key-
words have been defined in the setup) or by the value of a property. Reverse
sorting is possible as well. You can also supply your own function to extract
the sorting key. With a C-u prefix, sorting will be case-sensitive.

C-x n s org-narrow-to-subtree

Narrow buffer to current subtree.

C-x n b org-narrow-to-block

Narrow buffer to current block.

C-x n w widen

Widen buffer to remove narrowing.

C-c * org-toggle-heading

Turn a normal line or plain list item into a headline (so that it becomes a
subheading at its location). Also turn a headline into a normal line by removing
the stars. If there is an active region, turn all lines in the region into headlines.
If the first line in the region was an item, turn only the item lines into headlines.
Finally, if the first line is a headline, remove the stars from all headlines in the
region.

When there is an active region (Transient Mark mode), promotion and demotion work
on all headlines in the region. To select a region of headlines, it is best to place both point
and mark at the beginning of a line, mark at the beginning of the first headline, and point
at the line just after the last headline to change. Note that when the cursor is inside a table
(see Chapter 3 [Tables], page 19), the Meta-Cursor keys have different functionality.

2.6 Sparse trees

An important feature of Org mode is the ability to construct sparse trees for selected
information in an outline tree, so that the entire document is folded as much as possible,

Chapter 2: Document structure 12

but the selected information is made visible along with the headline structure above it7.
Just try it out and you will see immediately how it works.

Org mode contains several commands for creating such trees, all these commands can
be accessed through a dispatcher:

C-c / org-sparse-tree

This prompts for an extra key to select a sparse-tree creating command.

C-c / r org-occur

Prompts for a regexp and shows a sparse tree with all matches. If the match
is in a headline, the headline is made visible. If the match is in the body
of an entry, headline and body are made visible. In order to provide minimal
context, also the full hierarchy of headlines above the match is shown, as well as
the headline following the match. Each match is also highlighted; the highlights
disappear when the buffer is changed by an editing command8, or by pressing
C-c C-c. When called with a C-u prefix argument, previous highlights are kept,
so several calls to this command can be stacked.

M-g n or M-g M-n next-error

Jump to the next sparse tree match in this buffer.

M-g p or M-g M-p previous-error

Jump to the previous sparse tree match in this buffer.

For frequently used sparse trees of specific search strings, you can use the option
org-agenda-custom-commands to define fast keyboard access to specific sparse trees.
These commands will then be accessible through the agenda dispatcher (see Section 10.2
[Agenda dispatcher], page 101). For example:

(setq org-agenda-custom-commands

'(("f" occur-tree "FIXME")))

will define the key C-c a f as a shortcut for creating a sparse tree matching the string
‘FIXME’.

The other sparse tree commands select headings based on TODO keywords, tags, or
properties and will be discussed later in this manual.

To print a sparse tree, you can use the Emacs command ps-print-buffer-with-faces

which does not print invisible parts of the document9. Or you can use C-c C-e C-v to
export only the visible part of the document and print the resulting file.

2.7 Plain lists

Within an entry of the outline tree, hand-formatted lists can provide additional structure.
They also provide a way to create lists of checkboxes (see Section 5.6 [Checkboxes], page 56).
Org supports editing such lists, and every exporter (see Chapter 12 [Exporting], page 139)
can parse and format them.

Org knows ordered lists, unordered lists, and description lists.

7 See also the variable org-show-context-detail to decide how much context is shown around each match.
8 This depends on the option org-remove-highlights-with-change
9 This does not work under XEmacs, because XEmacs uses selective display for outlining, not text

properties.

Chapter 2: Document structure 13

• Unordered list items start with ‘-’, ‘+’, or ‘*’10 as bullets.

• Ordered list items start with a numeral followed by either a period or a right paren-
thesis11, such as ‘1.’ or ‘1)’12. If you want a list to start with a different value (e.g.,
20), start the text of the item with [@20]13. Those constructs can be used in any item
of the list in order to enforce a particular numbering.

• Description list items are unordered list items, and contain the separator ‘ :: ’ to
distinguish the description term from the description.

Items belonging to the same list must have the same indentation on the first line. In
particular, if an ordered list reaches number ‘10.’, then the 2–digit numbers must be written
left-aligned with the other numbers in the list. An item ends before the next line that is
less or equally indented than its bullet/number.

A list ends whenever every item has ended, which means before any line less or equally
indented than items at top level. It also ends before two blank lines14. In that case, all
items are closed. Here is an example:

** Lord of the Rings

My favorite scenes are (in this order)

1. The attack of the Rohirrim

2. Eowyn's fight with the witch king

+ this was already my favorite scene in the book

+ I really like Miranda Otto.

3. Peter Jackson being shot by Legolas

- on DVD only

He makes a really funny face when it happens.

But in the end, no individual scenes matter but the film as a whole.

Important actors in this film are:

- Elijah Wood :: He plays Frodo

- Sean Austin :: He plays Sam, Frodo's friend. I still remember

him very well from his role as Mikey Walsh in The Goonies.

Org supports these lists by tuning filling and wrapping commands to deal with them
correctly15, and by exporting them properly (see Chapter 12 [Exporting], page 139). Since
indentation is what governs the structure of these lists, many structural constructs like
#+BEGIN_... blocks can be indented to signal that they belong to a particular item.

10 When using ‘*’ as a bullet, lines must be indented or they will be seen as top-level headlines. Also, when
you are hiding leading stars to get a clean outline view, plain list items starting with a star may be hard
to distinguish from true headlines. In short: even though ‘*’ is supported, it may be better to not use it
for plain list items.

11 You can filter out any of them by configuring org-plain-list-ordered-item-terminator.
12 You can also get ‘a.’, ‘A.’, ‘a)’ and ‘A)’ by configuring org-list-allow-alphabetical. To minimize

confusion with normal text, those are limited to one character only. Beyond that limit, bullets will
automatically fallback to numbers.

13 If there’s a checkbox in the item, the cookie must be put before the checkbox. If you have activated
alphabetical lists, you can also use counters like [@b].

14 See also org-list-empty-line-terminates-plain-lists.
15 Org only changes the filling settings for Emacs. For XEmacs, you should use Kyle E. Jones’

filladapt.el. To turn this on, put into .emacs: (require 'filladapt)

Chapter 2: Document structure 14

If you find that using a different bullet for a sub-list (than that used for the current
list-level) improves readability, customize the variable org-list-demote-modify-bullet.
To get a greater difference of indentation between items and their sub-items, customize
org-list-indent-offset.

The following commands act on items when the cursor is in the first line of an item (the
line with the bullet or number). Some of them imply the application of automatic rules to
keep list structure intact. If some of these actions get in your way, configure org-list-

automatic-rules to disable them individually.

TAB org-cycle

Items can be folded just like headline levels. Normally this works only if the
cursor is on a plain list item. For more details, see the variable org-cycle-

include-plain-lists. If this variable is set to integrate, plain list items
will be treated like low-level headlines. The level of an item is then given by
the indentation of the bullet/number. Items are always subordinate to real
headlines, however; the hierarchies remain completely separated. In a new
item with no text yet, the first TAB demotes the item to become a child of the
previous one. Subsequent TABs move the item to meaningful levels in the list
and eventually get it back to its initial position.

M-RET org-insert-heading

Insert new item at current level. With a prefix argument, force a new heading
(see Section 2.5 [Structure editing], page 9). If this command is used in the
middle of an item, that item is split in two, and the second part becomes the
new item16. If this command is executed before item’s body, the new item is
created before the current one.

M-S-RET Insert a new item with a checkbox (see Section 5.6 [Checkboxes], page 56).

S-up

S-down Jump to the previous/next item in the current list17, but only if org-support-
shift-select is off. If not, you can still use paragraph jumping commands
like C-up and C-down to quite similar effect.

M-up

M-down Move the item including subitems up/down18 (swap with previous/next item
of same indentation). If the list is ordered, renumbering is automatic.

M-left

M-right Decrease/increase the indentation of an item, leaving children alone.

M-S-left

M-S-right

Decrease/increase the indentation of the item, including subitems. Initially, the
item tree is selected based on current indentation. When these commands are
executed several times in direct succession, the initially selected region is used,

16 If you do not want the item to be split, customize the variable org-M-RET-may-split-line.
17 If you want to cycle around items that way, you may customize org-list-use-circular-motion.
18 See org-list-use-circular-motion for a cyclic behavior.

Chapter 2: Document structure 15

even if the new indentation would imply a different hierarchy. To use the new
hierarchy, break the command chain with a cursor motion or so.

As a special case, using this command on the very first item of a list will
move the whole list. This behavior can be disabled by configuring org-list-

automatic-rules. The global indentation of a list has no influence on the text
after the list.

C-c C-c If there is a checkbox (see Section 5.6 [Checkboxes], page 56) in the item line,
toggle the state of the checkbox. In any case, verify bullets and indentation
consistency in the whole list.

C-c - Cycle the entire list level through the different itemize/enumerate bullets (‘-’,
‘+’, ‘*’, ‘1.’, ‘1)’) or a subset of them, depending on org-plain-list-ordered-

item-terminator, the type of list, and its indentation. With a numeric prefix
argument N, select the Nth bullet from this list. If there is an active region
when calling this, selected text will be changed into an item. With a prefix
argument, all lines will be converted to list items. If the first line already was a
list item, any item marker will be removed from the list. Finally, even without
an active region, a normal line will be converted into a list item.

C-c * Turn a plain list item into a headline (so that it becomes a subheading at its
location). See Section 2.5 [Structure editing], page 9, for a detailed explanation.

C-c C-* Turn the whole plain list into a subtree of the current heading. Checkboxes (see
Section 5.6 [Checkboxes], page 56) will become TODO (resp. DONE) keywords
when unchecked (resp. checked).

S-left/right

This command also cycles bullet styles when the cursor in on the bullet or
anywhere in an item line, details depending on org-support-shift-select.

C-c ^ Sort the plain list. You will be prompted for the sorting method: numeri-
cally, alphabetically, by time, by checked status for check lists, or by a custom
function.

2.8 Drawers

Sometimes you want to keep information associated with an entry, but you normally don’t
want to see it. For this, Org mode has drawers. They can contain anything but a headline
and another drawer. Drawers look like this:

** This is a headline

Still outside the drawer

:DRAWERNAME:

This is inside the drawer.

:END:

After the drawer.

You can interactively insert drawers at point by calling org-insert-drawer, which is
bound to C-c C-x d. With an active region, this command will put the region inside the
drawer. With a prefix argument, this command calls org-insert-property-drawer and

Chapter 2: Document structure 16

add a property drawer right below the current headline. Completion over drawer keywords
is also possible using M-TAB.

Visibility cycling (see Section 2.3 [Visibility cycling], page 6) on the headline will hide
and show the entry, but keep the drawer collapsed to a single line. In order to look inside
the drawer, you need to move the cursor to the drawer line and press TAB there. Org mode
uses the PROPERTIES drawer for storing properties (see Chapter 7 [Properties and columns],
page 64), and you can also arrange for state change notes (see Section 5.3.2 [Tracking TODO
state changes], page 52) and clock times (see Section 8.4 [Clocking work time], page 80) to
be stored in a drawer LOGBOOK. If you want to store a quick note in the LOGBOOK drawer,
in a similar way to state changes, use

C-c C-z Add a time-stamped note to the LOGBOOK drawer.

You can select the name of the drawers which should be exported with org-export-

with-drawers. In that case, drawer contents will appear in export output. Property
drawers are not affected by this variable: configure org-export-with-properties instead.

2.9 Blocks

Org mode uses begin...end blocks for various purposes from including source code examples
(see Section 11.3 [Literal examples], page 131) to capturing time logging information (see
Section 8.4 [Clocking work time], page 80). These blocks can be folded and unfolded by
pressing TAB in the begin line. You can also get all blocks folded at startup by configuring
the option org-hide-block-startup or on a per-file basis by using

#+STARTUP: hideblocks

#+STARTUP: nohideblocks

2.10 Footnotes

Org mode supports the creation of footnotes. In contrast to the footnote.el package, Org
mode’s footnotes are designed for work on a larger document, not only for one-off documents
like emails.

A footnote is started by a footnote marker in square brackets in column 0, no indentation
allowed. It ends at the next footnote definition, headline, or after two consecutive empty
lines. The footnote reference is simply the marker in square brackets, inside text. For
example:

The Org homepage[fn:1] now looks a lot better than it used to.

...

[fn:1] The link is: http://orgmode.org

Org mode extends the number-based syntax to named footnotes and optional inline def-
inition. Using plain numbers as markers (as footnote.el does) is supported for backward
compatibility, but not encouraged because of possible conflicts with LATEX snippets (see
Section 11.7 [Embedded LATEX], page 134). Here are the valid references:

[1] A plain numeric footnote marker. Compatible with footnote.el, but not rec-
ommended because something like ‘[1]’ could easily be part of a code snippet.

[fn:name]

A named footnote reference, where name is a unique label word, or, for simplicity
of automatic creation, a number.

Chapter 2: Document structure 17

[fn:: This is the inline definition of this footnote]

A LATEX-like anonymous footnote where the definition is given directly at the
reference point.

[fn:name: a definition]

An inline definition of a footnote, which also specifies a name for the note. Since
Org allows multiple references to the same note, you can then use [fn:name]

to create additional references.

Footnote labels can be created automatically, or you can create names yourself. This
is handled by the variable org-footnote-auto-label and its corresponding #+STARTUP

keywords. See the docstring of that variable for details.

The following command handles footnotes:

C-c C-x f The footnote action command.

When the cursor is on a footnote reference, jump to the definition. When it is
at a definition, jump to the (first) reference.

Otherwise, create a new footnote. Depending on the option org-footnote-

define-inline19, the definition will be placed right into the text as part
of the reference, or separately into the location determined by the option
org-footnote-section.

When this command is called with a prefix argument, a menu of additional
options is offered:

s Sort the footnote definitions by reference sequence. During editing,
Org makes no effort to sort footnote definitions into a particular
sequence. If you want them sorted, use this command, which will
also move entries according to org-footnote-section. Automatic
sorting after each insertion/deletion can be configured using the
option org-footnote-auto-adjust.

r Renumber the simple fn:N footnotes. Automatic renumbering
after each insertion/deletion can be configured using the option
org-footnote-auto-adjust.

S Short for first r, then s action.
n Normalize the footnotes by collecting all definitions (including

inline definitions) into a special section, and then numbering them
in sequence. The references will then also be numbers. This is
meant to be the final step before finishing a document (e.g., sending
off an email).

d Delete the footnote at point, and all definitions of and references
to it.

Depending on the variable org-footnote-auto-adjust20, renumbering and
sorting footnotes can be automatic after each insertion or deletion.

C-c C-c If the cursor is on a footnote reference, jump to the definition. If it is a the
definition, jump back to the reference. When called at a footnote location with
a prefix argument, offer the same menu as C-c C-x f.

19 The corresponding in-buffer setting is: #+STARTUP: fninline or #+STARTUP: nofninline
20 the corresponding in-buffer options are fnadjust and nofnadjust.

Chapter 2: Document structure 18

C-c C-o or mouse-1/2
Footnote labels are also links to the corresponding definition/reference, and you
can use the usual commands to follow these links.

C-c '

C-c ' Edit the footnote definition corresponding to the reference at point in a seperate
window. This may be useful if editing footnotes in a narrowed buffer. The
window can be closed by pressing C-c '.

2.11 The Orgstruct minor mode

If you like the intuitive way the Org mode structure editing and list formatting works,
you might want to use these commands in other modes like Text mode or Mail mode as
well. The minor mode orgstruct-mode makes this possible. Toggle the mode with M-x

orgstruct-mode RET, or turn it on by default, for example in Message mode, with one of:

(add-hook 'message-mode-hook 'turn-on-orgstruct)

(add-hook 'message-mode-hook 'turn-on-orgstruct++)

When this mode is active and the cursor is on a line that looks to Org like a headline
or the first line of a list item, most structure editing commands will work, even if the same
keys normally have different functionality in the major mode you are using. If the cursor is
not in one of those special lines, Orgstruct mode lurks silently in the shadows.

When you use orgstruct++-mode, Org will also export indentation and autofill settings
into that mode, and detect item context after the first line of an item.

You can also use Org structure editing to fold and unfold headlines in any file, provided
you defined orgstruct-heading-prefix-regexp: the regular expression must match the
local prefix to use before Org’s headlines. For example, if you set this variable to ";;

" in Emacs Lisp files, you will be able to fold and unfold headlines in Emacs Lisp com-
mented lines. Some commands like org-demote are disabled when the prefix is set, but
folding/unfolding will work correctly.

2.12 Org syntax

A reference document providing a formal description of Org’s syntax is available as a draft
on Worg, written and maintained by Nicolas Goaziou. It defines Org’s core internal concepts
such as headlines, sections, affiliated keywords, (greater) elements and objects.
Each part of an Org file falls into one of the categories above.

To explore the abstract structure of an Org buffer, run this in a buffer:

M-: (org-element-parse-buffer) RET

It will output a list containing the buffer’s content represented as an abstract structure.
The export engine relies on the information stored in this list. Most interactive commands
(e.g., for structure editing) also rely on the syntactic meaning of the surrounding context.

http://orgmode.org/worg/dev/org-syntax.html
http://orgmode.org/worg/dev/org-syntax.html

Chapter 3: Tables 19

3 Tables

Org comes with a fast and intuitive table editor. Spreadsheet-like calculations are supported
using the Emacs calc package (see Gnu Emacs Calculator Manual).

3.1 The built-in table editor

Org makes it easy to format tables in plain ASCII. Any line with ‘|’ as the first non-
whitespace character is considered part of a table. ‘|’ is also the column separator1. A
table might look like this:

| Name | Phone | Age |

|-------+-------+-----|

| Peter | 1234 | 17 |

| Anna | 4321 | 25 |

A table is re-aligned automatically each time you press TAB or RET or C-c C-c inside the
table. TAB also moves to the next field (RET to the next row) and creates new table rows
at the end of the table or before horizontal lines. The indentation of the table is set by the
first line. Any line starting with ‘|-’ is considered as a horizontal separator line and will be
expanded on the next re-align to span the whole table width. So, to create the above table,
you would only type

|Name|Phone|Age|

|-

and then press TAB to align the table and start filling in fields. Even faster would be to
type |Name|Phone|Age followed by C-c RET.

When typing text into a field, Org treats DEL, Backspace, and all character keys in a
special way, so that inserting and deleting avoids shifting other fields. Also, when typing
immediately after the cursor was moved into a new field with TAB, S-TAB or RET, the field
is automatically made blank. If this behavior is too unpredictable for you, configure the
options org-enable-table-editor and org-table-auto-blank-field.

Creation and conversion
C-c | org-table-create-or-convert-from-region

Convert the active region to a table. If every line contains at least one TAB
character, the function assumes that the material is tab separated. If every line
contains a comma, comma-separated values (CSV) are assumed. If not, lines are
split at whitespace into fields. You can use a prefix argument to force a specific
separator: C-u forces CSV, C-u C-u forces TAB, C-u C-u C-u will prompt for a
regular expression to match the separator, and a numeric argument N indicates
that at least N consecutive spaces, or alternatively a TAB will be the separator.
If there is no active region, this command creates an empty Org table. But it
is easier just to start typing, like |Name|Phone|Age RET |- TAB.

Re-aligning and field motion
C-c C-c org-table-align

Re-align the table and don’t move to another field.

1 To insert a vertical bar into a table field, use \vert or, inside a word abc\vert{}def.

Chapter 3: Tables 20

C-c SPC org-table-blank-field

Blank the field at point.

<TAB> org-table-next-field

Re-align the table, move to the next field. Creates a new row if necessary.

S-TAB org-table-previous-field

Re-align, move to previous field.

RET org-table-next-row

Re-align the table and move down to next row. Creates a new row if necessary.
At the beginning or end of a line, RET still does NEWLINE, so it can be used
to split a table.

M-a org-table-beginning-of-field

Move to beginning of the current table field, or on to the previous field.

M-e org-table-end-of-field

Move to end of the current table field, or on to the next field.

Column and row editing
M-left org-table-move-column-left

M-right org-table-move-column-right

Move the current column left/right.

M-S-left org-table-delete-column

Kill the current column.

M-S-right org-table-insert-column

Insert a new column to the left of the cursor position.

M-up org-table-move-row-up

M-down org-table-move-row-down

Move the current row up/down.

M-S-up org-table-kill-row

Kill the current row or horizontal line.

M-S-down org-table-insert-row

Insert a new row above the current row. With a prefix argument, the line is
created below the current one.

C-c - org-table-insert-hline

Insert a horizontal line below current row. With a prefix argument, the line is
created above the current line.

C-c RET org-table-hline-and-move

Insert a horizontal line below current row, and move the cursor into the row
below that line.

C-c ^ org-table-sort-lines

Sort the table lines in the region. The position of point indicates the column
to be used for sorting, and the range of lines is the range between the nearest
horizontal separator lines, or the entire table. If point is before the first column,
you will be prompted for the sorting column. If there is an active region, the

Chapter 3: Tables 21

mark specifies the first line and the sorting column, while point should be in the
last line to be included into the sorting. The command prompts for the sorting
type (alphabetically, numerically, or by time). You can sort in normal or reverse
order. You can also supply your own key extraction and comparison functions.
When called with a prefix argument, alphabetic sorting will be case-sensitive.

Regions

C-c C-x M-w org-table-copy-region

Copy a rectangular region from a table to a special clipboard. Point and mark
determine edge fields of the rectangle. If there is no active region, copy just the
current field. The process ignores horizontal separator lines.

C-c C-x C-w org-table-cut-region

Copy a rectangular region from a table to a special clipboard, and blank all
fields in the rectangle. So this is the “cut” operation.

C-c C-x C-y org-table-paste-rectangle

Paste a rectangular region into a table. The upper left corner ends up in the
current field. All involved fields will be overwritten. If the rectangle does not
fit into the present table, the table is enlarged as needed. The process ignores
horizontal separator lines.

M-RET org-table-wrap-region

Split the current field at the cursor position and move the rest to the line below.
If there is an active region, and both point and mark are in the same column,
the text in the column is wrapped to minimum width for the given number of
lines. A numeric prefix argument may be used to change the number of desired
lines. If there is no region, but you specify a prefix argument, the current field
is made blank, and the content is appended to the field above.

Calculations
C-c + org-table-sum

Sum the numbers in the current column, or in the rectangle defined by the
active region. The result is shown in the echo area and can be inserted with
C-y.

S-RET org-table-copy-down

When current field is empty, copy from first non-empty field above. When not
empty, copy current field down to next row and move cursor along with it.
Depending on the option org-table-copy-increment, integer field values will
be incremented during copy. Integers that are too large will not be incremented.
Also, a 0 prefix argument temporarily disables the increment. This key is
also used by shift-selection and related modes (see Section 15.10.2 [Conflicts],
page 233).

Miscellaneous
C-c ` org-table-edit-field

Edit the current field in a separate window. This is useful for fields that are not
fully visible (see Section 3.2 [Column width and alignment], page 22). When
called with a C-u prefix, just make the full field visible, so that it can be edited

Chapter 3: Tables 22

in place. When called with two C-u prefixes, make the editor window follow the
cursor through the table and always show the current field. The follow mode
exits automatically when the cursor leaves the table, or when you repeat this
command with C-u C-u C-c `.

M-x org-table-import RET

Import a file as a table. The table should be TAB or whitespace separated. Use,
for example, to import a spreadsheet table or data from a database, because
these programs generally can write TAB-separated text files. This command
works by inserting the file into the buffer and then converting the region to
a table. Any prefix argument is passed on to the converter, which uses it to
determine the separator.

C-c | org-table-create-or-convert-from-region

Tables can also be imported by pasting tabular text into the Org buffer, se-
lecting the pasted text with C-x C-x and then using the C-c | command (see
above under Creation and conversion).

M-x org-table-export RET

Export the table, by default as a TAB-separated file. Use for data exchange
with, for example, spreadsheet or database programs. The format used to
export the file can be configured in the option org-table-export-default-

format. You may also use properties TABLE_EXPORT_FILE and TABLE_EXPORT_

FORMAT to specify the file name and the format for table export in a subtree. Org
supports quite general formats for exported tables. The exporter format is the
same as the format used by Orgtbl radio tables, see Section A.6.3 [Translator
functions], page 241, for a detailed description.

If you don’t like the automatic table editor because it gets in your way on lines which
you would like to start with ‘|’, you can turn it off with

(setq org-enable-table-editor nil)

Then the only table command that still works is C-c C-c to do a manual re-align.

3.2 Column width and alignment

The width of columns is automatically determined by the table editor. And also the align-
ment of a column is determined automatically from the fraction of number-like versus
non-number fields in the column.

Sometimes a single field or a few fields need to carry more text, leading to inconveniently
wide columns. Or maybe you want to make a table with several columns having a fixed
width, regardless of content. To set2 the width of a column, one field anywhere in the
column may contain just the string ‘<N>’ where ‘N’ is an integer specifying the width of the
column in characters. The next re-align will then set the width of this column to this value.

2 This feature does not work on XEmacs.

Chapter 3: Tables 23

|---+------------------------------| |---+--------|

| | | | | <6> |

| 1 | one | | 1 | one |

| 2 | two | ----\ | 2 | two |

| 3 | This is a long chunk of text | ----/ | 3 | This=> |

| 4 | four | | 4 | four |

|---+------------------------------| |---+--------|

Fields that are wider become clipped and end in the string ‘=>’. Note that the full text
is still in the buffer but is hidden. To see the full text, hold the mouse over the field—a
tool-tip window will show the full content. To edit such a field, use the command C-c `

(that is C-c followed by the grave accent). This will open a new window with the full field.
Edit it and finish with C-c C-c.

When visiting a file containing a table with narrowed columns, the necessary character
hiding has not yet happened, and the table needs to be aligned before it looks nice. Setting
the option org-startup-align-all-tables will realign all tables in a file upon visiting,
but also slow down startup. You can also set this option on a per-file basis with:

#+STARTUP: align

#+STARTUP: noalign

If you would like to overrule the automatic alignment of number-rich columns to the
right and of string-rich column to the left, you can use ‘<r>’, ‘<c>’3 or ‘<l>’ in a similar
fashion. You may also combine alignment and field width like this: ‘<r10>’.

Lines which only contain these formatting cookies will be removed automatically when
exporting the document.

3.3 Column groups

When Org exports tables, it does so by default without vertical lines because that is visually
more satisfying in general. Occasionally however, vertical lines can be useful to structure a
table into groups of columns, much like horizontal lines can do for groups of rows. In order
to specify column groups, you can use a special row where the first field contains only ‘/’.
The further fields can either contain ‘<’ to indicate that this column should start a group,
‘>’ to indicate the end of a column, or ‘<>’ (no space between ‘<’ and ‘>’) to make a column
a group of its own. Boundaries between column groups will upon export be marked with
vertical lines. Here is an example:

| N | N^2 | N^3 | N^4 | ~sqrt(n)~ | ~sqrt[4](N)~ |

|---+-----+-----+-----+-----------+--------------|

| / | < | | > | < | > |

| 1 | 1 | 1 | 1 | 1 | 1 |

| 2 | 4 | 8 | 16 | 1.4142 | 1.1892 |

| 3 | 9 | 27 | 81 | 1.7321 | 1.3161 |

|---+-----+-----+-----+-----------+--------------|

#+TBLFM: $2=$1^2::$3=$1^3::$4=$1^4::$5=sqrt($1)::$6=sqrt(sqrt(($1)))

It is also sufficient to just insert the column group starters after every vertical line you
would like to have:

3 Centering does not work inside Emacs, but it does have an effect when exporting to HTML.

Chapter 3: Tables 24

| N | N^2 | N^3 | N^4 | sqrt(n) | sqrt[4](N) |

|----+-----+-----+-----+---------+------------|

| / | < | | | < | |

3.4 The Orgtbl minor mode

If you like the intuitive way the Org table editor works, you might also want to use it
in other modes like Text mode or Mail mode. The minor mode Orgtbl mode makes this
possible. You can always toggle the mode with M-x orgtbl-mode RET. To turn it on by
default, for example in Message mode, use

(add-hook 'message-mode-hook 'turn-on-orgtbl)

Furthermore, with some special setup, it is possible to maintain tables in arbitrary
syntax with Orgtbl mode. For example, it is possible to construct LATEX tables with the
underlying ease and power of Orgtbl mode, including spreadsheet capabilities. For details,
see Section A.6 [Tables in arbitrary syntax], page 239.

3.5 The spreadsheet

The table editor makes use of the Emacs calc package to implement spreadsheet-like ca-
pabilities. It can also evaluate Emacs Lisp forms to derive fields from other fields. While
fully featured, Org’s implementation is not identical to other spreadsheets. For example,
Org knows the concept of a column formula that will be applied to all non-header fields
in a column without having to copy the formula to each relevant field. There is also a
formula debugger, and a formula editor with features for highlighting fields in the table
corresponding to the references at the point in the formula, moving these references by
arrow keys

3.5.1 References

To compute fields in the table from other fields, formulas must reference other fields or
ranges. In Org, fields can be referenced by name, by absolute coordinates, and by relative
coordinates. To find out what the coordinates of a field are, press C-c ? in that field, or
press C-c } to toggle the display of a grid.

Field references

Formulas can reference the value of another field in two ways. Like in any other spreadsheet,
you may reference fields with a letter/number combination like B3, meaning the 2nd field in
the 3rd row. However, Org prefers4 to use another, more general representation that looks
like this:

@row$column

Column specifications can be absolute like $1, $2,...$N, or relative to the current column
(i.e., the column of the field which is being computed) like $+1 or $-2. $< and $> are
immutable references to the first and last column, respectively, and you can use $>>> to
indicate the third column from the right.

4 Org will understand references typed by the user as ‘B4’, but it will not use this syntax when offering
a formula for editing. You can customize this behavior using the option org-table-use-standard-

references.

Chapter 3: Tables 25

The row specification only counts data lines and ignores horizontal separator lines
(hlines). Like with columns, you can use absolute row numbers @1, @2,...@N, and row
numbers relative to the current row like @+3 or @-1. @< and @> are immutable references
the first and last5 row in the table, respectively. You may also specify the row relative to
one of the hlines: @I refers to the first hline, @II to the second, etc. @-I refers to the first
such line above the current line, @+I to the first such line below the current line. You can
also write @III+2 which is the second data line after the third hline in the table.

@0 and $0 refer to the current row and column, respectively, i.e., to the row/column
for the field being computed. Also, if you omit either the column or the row part of the
reference, the current row/column is implied.

Org’s references with unsigned numbers are fixed references in the sense that if you use
the same reference in the formula for two different fields, the same field will be referenced
each time. Org’s references with signed numbers are floating references because the same
reference operator can reference different fields depending on the field being calculated by
the formula.

Here are a few examples:

@2$3 2nd row, 3rd column (same as C2)
$5 column 5 in the current row (same as E&)
@2 current column, row 2
@-1$-3 the field one row up, three columns to the left
@-I$2 field just under hline above current row, column 2
@>$5 field in the last row, in column 5

Range references

You may reference a rectangular range of fields by specifying two field references connected
by two dots ‘..’. If both fields are in the current row, you may simply use ‘$2..$7’, but
if at least one field is in a different row, you need to use the general @row$column format
at least for the first field (i.e the reference must start with ‘@’ in order to be interpreted
correctly). Examples:

$1..$3 first three fields in the current row
$P..$Q range, using column names (see under Advanced)
$<<<..$>> start in third column, continue to the last but one
@2$1..@4$3 6 fields between these two fields (same as A2..C4)
@-1$-2..@-1 3 fields in the row above, starting from 2 columns on the left
@I..II between first and second hline, short for @I..@II

Range references return a vector of values that can be fed into Calc vector functions. Empty
fields in ranges are normally suppressed, so that the vector contains only the non-empty
fields. For other options with the mode switches ‘E’, ‘N’ and examples see Section 3.5.2
[Formula syntax for Calc], page 27.

5 For backward compatibility you can also use special names like $LR5 and $LR12 to refer in a stable way
to the 5th and 12th field in the last row of the table. However, this syntax is deprecated, it should not
be used for new documents. Use @>$ instead.

Chapter 3: Tables 26

Field coordinates in formulas

One of the very first actions during evaluation of Calc formulas and Lisp formulas is to
substitute @# and $# in the formula with the row or column number of the field where the
current result will go to. The traditional Lisp formula equivalents are org-table-current-
dline and org-table-current-column. Examples:

if(@# % 2, $#, string(""))

Insert column number on odd rows, set field to empty on even rows.

$2 = '(identity remote(FOO, @@#$1))

Copy text or values of each row of column 1 of the table named FOO into column
2 of the current table.

@3 = 2 * remote(FOO, @1$$#)

Insert the doubled value of each column of row 1 of the table named FOO into
row 3 of the current table.

For the second/third example, the table named FOO must have at least as many
rows/columns as the current table. Note that this is inefficient6 for large number of
rows/columns.

Named references

‘$name’ is interpreted as the name of a column, parameter or constant. Constants are
defined globally through the option org-table-formula-constants, and locally (for the
file) through a line like

#+CONSTANTS: c=299792458. pi=3.14 eps=2.4e-6

Also properties (see Chapter 7 [Properties and columns], page 64) can be used as constants
in table formulas: for a property ‘:Xyz:’ use the name ‘$PROP_Xyz’, and the property
will be searched in the current outline entry and in the hierarchy above it. If you have
the constants.el package, it will also be used to resolve constants, including natural
constants like ‘$h’ for Planck’s constant, and units like ‘$km’ for kilometers7. Column
names and parameters can be specified in special table lines. These are described below,
see Section 3.5.10 [Advanced features], page 34. All names must start with a letter, and
further consist of letters and numbers.

Remote references

You may also reference constants, fields and ranges from a different table, either in the
current file or even in a different file. The syntax is

remote(NAME-OR-ID,REF)

where NAME can be the name of a table in the current file as set by a #+NAME: Name line
before the table. It can also be the ID of an entry, even in a different file, and the reference
then refers to the first table in that entry. REF is an absolute field or range reference as
described above for example @3$3 or $somename, valid in the referenced table.

6 The computation time scales as O(N^2) because the table named FOO is parsed for each field to be read.
7 constants.el can supply the values of constants in two different unit systems, SI and cgs. Which one is

used depends on the value of the variable constants-unit-system. You can use the #+STARTUP options
constSI and constcgs to set this value for the current buffer.

Chapter 3: Tables 27

Indirection of NAME-OR-ID: When NAME-OR-ID has the format @ROW$COLUMN it will
be substituted with the name or ID found in this field of the current table. For example
remote($1, @>$2) => remote(year_2013, @>$1). The format B3 is not supported because
it can not be distinguished from a plain table name or ID.

3.5.2 Formula syntax for Calc

A formula can be any algebraic expression understood by the Emacs Calc package. Note
that calc has the non-standard convention that ‘/’ has lower precedence than ‘*’, so that
‘a/b*c’ is interpreted as ‘a/(b*c)’. Before evaluation by calc-eval (see Section “Calling
Calc from Your Lisp Programs” in GNU Emacs Calc Manual), variable substitution takes
place according to the rules described above. The range vectors can be directly fed into the
Calc vector functions like ‘vmean’ and ‘vsum’.

A formula can contain an optional mode string after a semicolon. This string consists
of flags to influence Calc and other modes during execution. By default, Org uses the
standard Calc modes (precision 12, angular units degrees, fraction and symbolic modes
off). The display format, however, has been changed to (float 8) to keep tables compact.
The default settings can be configured using the option org-calc-default-modes.

List of modes:

p20 Set the internal Calc calculation precision to 20 digits.

n3, s3, e2, f4
Normal, scientific, engineering or fixed format of the result of Calc passed back
to Org. Calc formatting is unlimited in precision as long as the Calc calculation
precision is greater.

D, R Degree and radian angle modes of Calc.

F, S Fraction and symbolic modes of Calc.

T, t Duration computations in Calc or Lisp, see Section 3.5.4 [Durations and time
values], page 29.

E If and how to consider empty fields. Without ‘E’ empty fields in range references
are suppressed so that the Calc vector or Lisp list contains only the non-empty
fields. With ‘E’ the empty fields are kept. For empty fields in ranges or empty
field references the value ‘nan’ (not a number) is used in Calc formulas and
the empty string is used for Lisp formulas. Add ‘N’ to use 0 instead for both
formula types. For the value of a field the mode ‘N’ has higher precedence than
‘E’.

N Interpret all fields as numbers, use 0 for non-numbers. See the next section to
see how this is essential for computations with Lisp formulas. In Calc formulas
it is used only occasionally because there number strings are already interpreted
as numbers without ‘N’.

L Literal, for Lisp formulas only. See the next section.

Unless you use large integer numbers or high-precision-calculation and -display for floating
point numbers you may alternatively provide a ‘printf’ format specifier to reformat the

Chapter 3: Tables 28

Calc result after it has been passed back to Org instead of letting Calc already do the
formatting8. A few examples:

$1+$2 Sum of first and second field
$1+$2;%.2f Same, format result to two decimals
exp($2)+exp($1) Math functions can be used
$0;%.1f Reformat current cell to 1 decimal
($3-32)*5/9 Degrees F -> C conversion
$c/$1/$cm Hz -> cm conversion, using constants.el

tan($1);Dp3s1 Compute in degrees, precision 3, display SCI 1
sin($1);Dp3%.1e Same, but use printf specifier for display
taylor($3,x=7,2) Taylor series of $3, at x=7, second degree

Calc also contains a complete set of logical operations, (see Section “Logical Operations”
in GNU Emacs Calc Manual). For example

if($1 < 20, teen, string(""))

"teen" if age $1 is less than 20, else the Org table result field is set to empty
with the empty string.

if("$1" == "nan" || "$2" == "nan", string(""), $1 + $2); E f-1

Sum of the first two columns. When at least one of the input fields is empty
the Org table result field is set to empty. ‘E’ is required to not convert empty
fields to 0. ‘f-1’ is an optional Calc format string similar to ‘%.1f’ but leaves
empty results empty.

if(typeof(vmean($1..$7)) == 12, string(""), vmean($1..$7); E

Mean value of a range unless there is any empty field. Every field in the range
that is empty is replaced by ‘nan’ which lets ‘vmean’ result in ‘nan’. Then
‘typeof == 12’ detects the ‘nan’ from ‘vmean’ and the Org table result field is
set to empty. Use this when the sample set is expected to never have missing
values.

if("$1..$7" == "[]", string(""), vmean($1..$7))

Mean value of a range with empty fields skipped. Every field in the range that
is empty is skipped. When all fields in the range are empty the mean value is
not defined and the Org table result field is set to empty. Use this when the
sample set can have a variable size.

vmean($1..$7); EN

To complete the example before: Mean value of a range with empty fields
counting as samples with value 0. Use this only when incomplete sample sets
should be padded with 0 to the full size.

You can add your own Calc functions defined in Emacs Lisp with defmath and use them
in formula syntax for Calc.

8 The ‘printf’ reformatting is limited in precision because the value passed to it is converted into an
‘integer’ or ‘double’. The ‘integer’ is limited in size by truncating the signed value to 32 bits. The
‘double’ is limited in precision to 64 bits overall which leaves approximately 16 significant decimal digits.

Chapter 3: Tables 29

3.5.3 Emacs Lisp forms as formulas

It is also possible to write a formula in Emacs Lisp. This can be useful for string manipu-
lation and control structures, if Calc’s functionality is not enough.

If a formula starts with an apostrophe followed by an opening parenthesis, then it is
evaluated as a Lisp form. The evaluation should return either a string or a number. Just
as with calc formulas, you can specify modes and a printf format after a semicolon.

With Emacs Lisp forms, you need to be conscious about the way field references are
interpolated into the form. By default, a reference will be interpolated as a Lisp string
(in double-quotes) containing the field. If you provide the ‘N’ mode switch, all referenced
elements will be numbers (non-number fields will be zero) and interpolated as Lisp numbers,
without quotes. If you provide the ‘L’ flag, all fields will be interpolated literally, without
quotes. I.e., if you want a reference to be interpreted as a string by the Lisp form, enclose the
reference operator itself in double-quotes, like "$3". Ranges are inserted as space-separated
fields, so you can embed them in list or vector syntax.

Here are a few examples—note how the ‘N’ mode is used when we do computations in
Lisp:

'(concat (substring $1 1 2) (substring $1 0 1) (substring $1 2))

Swap the first two characters of the content of column 1.

'(+ $1 $2);N

Add columns 1 and 2, equivalent to Calc’s $1+$2.

'(apply '+ '($1..$4));N

Compute the sum of columns 1 to 4, like Calc’s vsum($1..$4).

3.5.4 Durations and time values

If you want to compute time values use the T flag, either in Calc formulas or Elisp formulas:

| Task 1 | Task 2 | Total |

|---------+----------+----------|

| 2:12 | 1:47 | 03:59:00 |

| 3:02:20 | -2:07:00 | 0.92 |

#+TBLFM: @2$3=$1+$2;T::@3$3=$1+$2;t

Input duration values must be of the form HH:MM[:SS], where seconds are optional.
With the T flag, computed durations will be displayed as HH:MM:SS (see the first formula
above). With the t flag, computed durations will be displayed according to the value of the
option org-table-duration-custom-format, which defaults to 'hours and will display
the result as a fraction of hours (see the second formula in the example above).

Negative duration values can be manipulated as well, and integers will be considered as
seconds in addition and subtraction.

3.5.5 Field and range formulas

To assign a formula to a particular field, type it directly into the field, preceded by ‘:=’,
for example ‘:=vsum(@II..III)’. When you press TAB or RET or C-c C-c with the cursor
still in the field, the formula will be stored as the formula for this field, evaluated, and the
current field will be replaced with the result.

Chapter 3: Tables 30

Formulas are stored in a special line starting with ‘#+TBLFM:’ directly below the table.
If you type the equation in the 4th field of the 3rd data line in the table, the formula
will look like ‘@3$4=$1+$2’. When inserting/deleting/swapping columns and rows with the
appropriate commands, absolute references (but not relative ones) in stored formulas are
modified in order to still reference the same field. To avoid this, in particular in range
references, anchor ranges at the table borders (using @<, @>, $<, $>), or at hlines using
the @I notation. Automatic adaptation of field references does of course not happen if you
edit the table structure with normal editing commands—then you must fix the equations
yourself.

Instead of typing an equation into the field, you may also use the following command

C-u C-c = org-table-eval-formula

Install a new formula for the current field. The command prompts for a formula
with default taken from the ‘#+TBLFM:’ line, applies it to the current field, and
stores it.

The left-hand side of a formula can also be a special expression in order to assign the
formula to a number of different fields. There is no keyboard shortcut to enter such range
formulas. To add them, use the formula editor (see Section 3.5.8 [Editing and debugging
formulas], page 31) or edit the #+TBLFM: line directly.

$2= Column formula, valid for the entire column. This is so common that Org treats
these formulas in a special way, see Section 3.5.6 [Column formulas], page 30.

@3= Row formula, applies to all fields in the specified row. @>= means the last row.

@1$2..@4$3=

Range formula, applies to all fields in the given rectangular range. This can
also be used to assign a formula to some but not all fields in a row.

$name= Named field, see Section 3.5.10 [Advanced features], page 34.

3.5.6 Column formulas

When you assign a formula to a simple column reference like $3=, the same formula will be
used in all fields of that column, with the following very convenient exceptions: (i) If the
table contains horizontal separator hlines with rows above and below, everything before the
first such hline is considered part of the table header and will not be modified by column
formulas. Therefore a header is mandatory when you use column formulas and want to
add hlines to group rows, like for example to separate a total row at the bottom from the
summand rows above. (ii) Fields that already get a value from a field/range formula will
be left alone by column formulas. These conditions make column formulas very easy to use.

To assign a formula to a column, type it directly into any field in the column, preceded
by an equal sign, like ‘=$1+$2’. When you press TAB or RET or C-c C-c with the cursor
still in the field, the formula will be stored as the formula for the current column, evaluated
and the current field replaced with the result. If the field contains only ‘=’, the previously
stored formula for this column is used. For each column, Org will only remember the most
recently used formula. In the ‘#+TBLFM:’ line, column formulas will look like ‘$4=$1+$2’.
The left-hand side of a column formula cannot be the name of column, it must be the
numeric column reference or $>.

Instead of typing an equation into the field, you may also use the following command:

Chapter 3: Tables 31

C-c = org-table-eval-formula

Install a new formula for the current column and replace current field with the
result of the formula. The command prompts for a formula, with default taken
from the ‘#+TBLFM’ line, applies it to the current field and stores it. With a
numeric prefix argument(e.g., C-5 C-c =) the command will apply it to that
many consecutive fields in the current column.

3.5.7 Lookup functions

Org has three predefined Emacs Lisp functions for lookups in tables.

(org-lookup-first VAL S-LIST R-LIST &optional PREDICATE)

Searches for the first element S in list S-LIST for which

(PREDICATE VAL S)

is t; returns the value from the corresponding position in list R-LIST. The
default PREDICATE is equal. Note that the parameters VAL and S are passed
to PREDICATE in the same order as the corresponding parameters are in the
call to org-lookup-first, where VAL precedes S-LIST. If R-LIST is nil, the
matching element S of S-LIST is returned.

(org-lookup-last VAL S-LIST R-LIST &optional PREDICATE)

Similar to org-lookup-first above, but searches for the last element for which
PREDICATE is t.

(org-lookup-all VAL S-LIST R-LIST &optional PREDICATE)

Similar to org-lookup-first, but searches for all elements for which
PREDICATE is t, and returns all corresponding values. This function can not
be used by itself in a formula, because it returns a list of values. However,
powerful lookups can be built when this function is combined with other
Emacs Lisp functions.

If the ranges used in these functions contain empty fields, the E mode for the formula
should usually be specified: otherwise empty fields will not be included in S-LIST and/or
R-LIST which can, for example, result in an incorrect mapping from an element of S-LIST
to the corresponding element of R-LIST.

These three functions can be used to implement associative arrays, count matching cells,
rank results, group data etc. For practical examples see this tutorial on Worg.

3.5.8 Editing and debugging formulas

You can edit individual formulas in the minibuffer or directly in the field. Org can also pre-
pare a special buffer with all active formulas of a table. When offering a formula for editing,
Org converts references to the standard format (like B3 or D&) if possible. If you prefer to
only work with the internal format (like @3$2 or $4), configure the option org-table-use-

standard-references.

C-c = or C-u C-c = org-table-eval-formula

Edit the formula associated with the current column/field in the minibuffer. See
Section 3.5.6 [Column formulas], page 30, and Section 3.5.5 [Field and range
formulas], page 29.

http://orgmode.org/worg/org-tutorials/org-lookups.html

Chapter 3: Tables 32

C-u C-u C-c = org-table-eval-formula

Re-insert the active formula (either a field formula, or a column formula) into
the current field, so that you can edit it directly in the field. The advantage
over editing in the minibuffer is that you can use the command C-c ?.

C-c ? org-table-field-info

While editing a formula in a table field, highlight the field(s) referenced by the
reference at the cursor position in the formula.

C-c } Toggle the display of row and column numbers for a table, using overlays
(org-table-toggle-coordinate-overlays). These are updated each time the
table is aligned; you can force it with C-c C-c.

C-c { Toggle the formula debugger on and off (org-table-toggle-formula-
debugger). See below.

C-c ' org-table-edit-formulas

Edit all formulas for the current table in a special buffer, where the formulas
will be displayed one per line. If the current field has an active formula, the
cursor in the formula editor will mark it. While inside the special buffer, Org
will automatically highlight any field or range reference at the cursor position.
You may edit, remove and add formulas, and use the following commands:

C-c C-c or C-x C-s org-table-fedit-finish

Exit the formula editor and store the modified formulas. With C-u

prefix, also apply the new formulas to the entire table.

C-c C-q org-table-fedit-abort

Exit the formula editor without installing changes.

C-c C-r org-table-fedit-toggle-ref-type

Toggle all references in the formula editor between standard (like
B3) and internal (like @3$2).

TAB org-table-fedit-lisp-indent

Pretty-print or indent Lisp formula at point. When in a line con-
taining a Lisp formula, format the formula according to Emacs Lisp
rules. Another TAB collapses the formula back again. In the open
formula, TAB re-indents just like in Emacs Lisp mode.

M-TAB lisp-complete-symbol

Complete Lisp symbols, just like in Emacs Lisp mode.

S-up/down/left/right

Shift the reference at point. For example, if the reference is B3 and
you press S-right, it will become C3. This also works for relative
references and for hline references.

M-S-up org-table-fedit-line-up

M-S-down org-table-fedit-line-down

Move the test line for column formulas in the Org buffer up and
down.

Chapter 3: Tables 33

M-up org-table-fedit-scroll-down

M-down org-table-fedit-scroll-up

Scroll the window displaying the table.

C-c } Turn the coordinate grid in the table on and off.

Making a table field blank does not remove the formula associated with the field, because
that is stored in a different line (the ‘#+TBLFM’ line)—during the next recalculation the field
will be filled again. To remove a formula from a field, you have to give an empty reply when
prompted for the formula, or to edit the ‘#+TBLFM’ line.

You may edit the ‘#+TBLFM’ directly and re-apply the changed equations with C-c C-c

in that line or with the normal recalculation commands in the table.

Using multiple #+TBLFM lines

You may apply the formula temporarily. This is useful when you switch the formula. Place
multiple ‘#+TBLFM’ lines right after the table, and then press C-c C-c on the formula to
apply. Here is an example:

| x | y |

|---+---|

| 1 | |

| 2 | |

#+TBLFM: $2=$1*1

#+TBLFM: $2=$1*2

Pressing C-c C-c in the line of ‘#+TBLFM: $2=$1*2’ yields:

| x | y |

|---+---|

| 1 | 2 |

| 2 | 4 |

#+TBLFM: $2=$1*1

#+TBLFM: $2=$1*2

Note: If you recalculate this table (with C-u C-c *, for example), you will get the following
result of applying only the first ‘#+TBLFM’ line.

| x | y |

|---+---|

| 1 | 1 |

| 2 | 2 |

#+TBLFM: $2=$1*1

#+TBLFM: $2=$1*2

Debugging formulas

When the evaluation of a formula leads to an error, the field content becomes the string
‘#ERROR’. If you would like see what is going on during variable substitution and calculation
in order to find a bug, turn on formula debugging in the Tblmenu and repeat the calculation,
for example by pressing C-u C-u C-c = RET in a field. Detailed information will be displayed.

Chapter 3: Tables 34

3.5.9 Updating the table

Recalculation of a table is normally not automatic, but needs to be triggered by a command.
See Section 3.5.10 [Advanced features], page 34, for a way to make recalculation at least
semi-automatic.

In order to recalculate a line of a table or the entire table, use the following commands:

C-c * org-table-recalculate

Recalculate the current row by first applying the stored column formulas from
left to right, and all field/range formulas in the current row.

C-u C-c *

C-u C-c C-c

Recompute the entire table, line by line. Any lines before the first hline are left
alone, assuming that these are part of the table header.

C-u C-u C-c * or C-u C-u C-c C-c org-table-iterate

Iterate the table by recomputing it until no further changes occur. This may be
necessary if some computed fields use the value of other fields that are computed
later in the calculation sequence.

M-x org-table-recalculate-buffer-tables RET

Recompute all tables in the current buffer.

M-x org-table-iterate-buffer-tables RET

Iterate all tables in the current buffer, in order to converge table-to-table de-
pendencies.

3.5.10 Advanced features

If you want the recalculation of fields to happen automatically, or if you want to be able to
assign names9 to fields and columns, you need to reserve the first column of the table for
special marking characters.

C-# org-table-rotate-recalc-marks

Rotate the calculation mark in first column through the states ‘ ’, ‘#’, ‘*’, ‘!’,
‘$’. When there is an active region, change all marks in the region.

Here is an example of a table that collects exam results of students and makes use of
these features:

9 Such names must start by an alphabetic character and use only alphanumeric/underscore characters.

Chapter 3: Tables 35

|---+---------+--------+--------+--------+-------+------|

| | Student | Prob 1 | Prob 2 | Prob 3 | Total | Note |

|---+---------+--------+--------+--------+-------+------|

| ! | | P1 | P2 | P3 | Tot | |

| # | Maximum | 10 | 15 | 25 | 50 | 10.0 |

| ^ | | m1 | m2 | m3 | mt | |

|---+---------+--------+--------+--------+-------+------|

| # | Peter | 10 | 8 | 23 | 41 | 8.2 |

| # | Sam | 2 | 4 | 3 | 9 | 1.8 |

|---+---------+--------+--------+--------+-------+------|

| | Average | | | | 25.0 | |

| ^ | | | | | at | |

| $ | max=50 | | | | | |

|---+---------+--------+--------+--------+-------+------|

#+TBLFM: $6=vsum($P1..$P3)::$7=10*$Tot/$max;%.1f::$at=vmean(@-II..@-I);%.1f

Important: please note that for these special tables, recalculating the table with C-u C-c *

will only affect rows that are marked ‘#’ or ‘*’, and fields that have a formula assigned to
the field itself. The column formulas are not applied in rows with empty first field.

The marking characters have the following meaning:

‘!’ The fields in this line define names for the columns, so that you may refer to a
column as ‘$Tot’ instead of ‘$6’.

‘^’ This row defines names for the fields above the row. With such a definition,
any formula in the table may use ‘$m1’ to refer to the value ‘10’. Also, if you
assign a formula to a names field, it will be stored as ‘$name=...’.

‘_’ Similar to ‘^’, but defines names for the fields in the row below.

‘$’ Fields in this row can define parameters for formulas. For example, if a field in
a ‘$’ row contains ‘max=50’, then formulas in this table can refer to the value
50 using ‘$max’. Parameters work exactly like constants, only that they can be
defined on a per-table basis.

‘#’ Fields in this row are automatically recalculated when pressing TAB or RET or
S-TAB in this row. Also, this row is selected for a global recalculation with C-u

C-c *. Unmarked lines will be left alone by this command.

‘*’ Selects this line for global recalculation with C-u C-c *, but not for automatic
recalculation. Use this when automatic recalculation slows down editing too
much.

‘ ’ Unmarked lines are exempt from recalculation with C-u C-c *. All lines that
should be recalculated should be marked with ‘#’ or ‘*’.

‘/’ Do not export this line. Useful for lines that contain the narrowing ‘<N>’ markers
or column group markers.

Finally, just to whet your appetite for what can be done with the fantastic calc.el

package, here is a table that computes the Taylor series of degree n at location x for a
couple of functions.

Chapter 3: Tables 36

|---+-------------+---+-----+--------------------------------------|

| | Func | n | x | Result |

|---+-------------+---+-----+--------------------------------------|

| # | exp(x) | 1 | x | 1 + x |

| # | exp(x) | 2 | x | 1 + x + x^2 / 2 |

| # | exp(x) | 3 | x | 1 + x + x^2 / 2 + x^3 / 6 |

| # | x^2+sqrt(x) | 2 | x=0 | x*(0.5 / 0) + x^2 (2 - 0.25 / 0) / 2 |

| # | x^2+sqrt(x) | 2 | x=1 | 2 + 2.5 x - 2.5 + 0.875 (x - 1)^2 |

| * | tan(x) | 3 | x | 0.0175 x + 1.77e-6 x^3 |

|---+-------------+---+-----+--------------------------------------|

#+TBLFM: $5=taylor($2,$4,$3);n3

3.6 Org-Plot

Org-Plot can produce graphs of information stored in org tables, either graphically or in
ASCII-art.

Graphical plots using Gnuplot

Org-Plot produces 2D and 3D graphs using Gnuplot http://www.gnuplot.info/ and
gnuplot-mode http://xafs.org/BruceRavel/GnuplotMode. To see this in action, ensure
that you have both Gnuplot and Gnuplot mode installed on your system, then call C-c " g

or M-x org-plot/gnuplot RET on the following table.

#+PLOT: title:"Citas" ind:1 deps:(3) type:2d with:histograms set:"yrange [0:]"

| Sede | Max cites | H-index |

|-----------+-----------+---------|

| Chile | 257.72 | 21.39 |

| Leeds | 165.77 | 19.68 |

| Sao Paolo | 71.00 | 11.50 |

| Stockholm | 134.19 | 14.33 |

| Morelia | 257.56 | 17.67 |

Notice that Org Plot is smart enough to apply the table’s headers as labels. Further
control over the labels, type, content, and appearance of plots can be exercised through the
#+PLOT: lines preceding a table. See below for a complete list of Org-plot options. The
#+PLOT: lines are optional. For more information and examples see the Org-plot tutorial
at http://orgmode.org/worg/org-tutorials/org-plot.html.

Plot Options

set Specify any gnuplot option to be set when graphing.

title Specify the title of the plot.

ind Specify which column of the table to use as the x axis.

deps Specify the columns to graph as a Lisp style list, surrounded by parentheses
and separated by spaces for example dep:(3 4) to graph the third and fourth
columns (defaults to graphing all other columns aside from the ind column).

type Specify whether the plot will be 2d, 3d, or grid.

http://www.gnuplot.info/
http://xafs.org/BruceRavel/GnuplotMode
http://orgmode.org/worg/org-tutorials/org-plot.html

Chapter 3: Tables 37

with Specify a with option to be inserted for every col being plotted (e.g., lines,
points, boxes, impulses, etc...). Defaults to lines.

file If you want to plot to a file, specify "path/to/desired/output-file".

labels List of labels to be used for the deps (defaults to the column headers if they
exist).

line Specify an entire line to be inserted in the Gnuplot script.

map When plotting 3d or grid types, set this to t to graph a flat mapping rather
than a 3d slope.

timefmt Specify format of Org mode timestamps as they will be parsed by Gnuplot.
Defaults to ‘%Y-%m-%d-%H:%M:%S’.

script If you want total control, you can specify a script file (place the file name be-
tween double-quotes) which will be used to plot. Before plotting, every instance
of $datafile in the specified script will be replaced with the path to the gen-
erated data file. Note: even if you set this option, you may still want to specify
the plot type, as that can impact the content of the data file.

ASCII bar plots

While the cursor is on a column, typing C-c " a or M-x orgtbl-ascii-plot RET create
a new column containing an ASCII-art bars plot. The plot is implemented through a
regular column formula. When the source column changes, the bar plot may be updated
by refreshing the table, for example typing C-u C-c *.

| Sede | Max cites | |

|---------------+-----------+--------------|

| Chile | 257.72 | WWWWWWWWWWWW |

| Leeds | 165.77 | WWWWWWWh |

| Sao Paolo | 71.00 | WWW; |

| Stockholm | 134.19 | WWWWWW: |

| Morelia | 257.56 | WWWWWWWWWWWH |

| Rochefourchat | 0.00 | |

#+TBLFM: $3='(orgtbl-ascii-draw $2 0.0 257.72 12)

The formula is an elisp call:

(orgtbl-ascii-draw COLUMN MIN MAX WIDTH)

COLUMN is a reference to the source column.

MIN MAX are the minimal and maximal values displayed. Sources values outside this
range are displayed as ‘too small’ or ‘too large’.

WIDTH is the width in characters of the bar-plot. It defaults to ‘12’.

Chapter 4: Hyperlinks 38

4 Hyperlinks

Like HTML, Org provides links inside a file, external links to other files, Usenet articles,
emails, and much more.

4.1 Link format

Org will recognize plain URL-like links and activate them as clickable links. The general
link format, however, looks like this:

[[link][description]] or alternatively [[link]]

Once a link in the buffer is complete (all brackets present), Org will change the display so
that ‘description’ is displayed instead of ‘[[link][description]]’ and ‘link’ is displayed
instead of ‘[[link]]’. Links will be highlighted in the face org-link, which by default is
an underlined face. You can directly edit the visible part of a link. Note that this can be
either the ‘link’ part (if there is no description) or the ‘description’ part. To edit also
the invisible ‘link’ part, use C-c C-l with the cursor on the link.

If you place the cursor at the beginning or just behind the end of the displayed text and
press BACKSPACE, you will remove the (invisible) bracket at that location. This makes the
link incomplete and the internals are again displayed as plain text. Inserting the missing
bracket hides the link internals again. To show the internal structure of all links, use the
menu entry Org->Hyperlinks->Literal links.

4.2 Internal links

If the link does not look like a URL, it is considered to be internal in the current file. The
most important case is a link like ‘[[#my-custom-id]]’ which will link to the entry with
the CUSTOM_ID property ‘my-custom-id’. You are responsible yourself to make sure these
custom IDs are unique in a file.

Links such as ‘[[My Target]]’ or ‘[[My Target][Find my target]]’ lead to a text
search in the current file.

The link can be followed with C-c C-o when the cursor is on the link, or with a mouse
click (see Section 4.4 [Handling links], page 41). Links to custom IDs will point to the
corresponding headline. The preferred match for a text link is a dedicated target : the same
string in double angular brackets, like ‘<<My Target>>’.

If no dedicated target exists, the link will then try to match the exact name of an element
within the buffer. Naming is done with the #+NAME keyword, which has to be put in the
line before the element it refers to, as in the following example

#+NAME: My Target

| a | table |

|----+------------|

| of | four cells |

If none of the above succeeds, Org will search for a headline that is exactly the link text
but may also include a TODO keyword and tags1.

1 To insert a link targeting a headline, in-buffer completion can be used. Just type a star followed by a
few optional letters into the buffer and press M-TAB. All headlines in the current buffer will be offered as
completions.

Chapter 4: Hyperlinks 39

During export, internal links will be used to mark objects and assign them a number.
Marked objects will then be referenced by links pointing to them. In particular, links
without a description will appear as the number assigned to the marked object2. In the
following excerpt from an Org buffer

- one item

- <<target>>another item

Here we refer to item [[target]].

The last sentence will appear as ‘Here we refer to item 2’ when exported.

In non-Org files, the search will look for the words in the link text. In the above example
the search would be for ‘my target’.

Following a link pushes a mark onto Org’s own mark ring. You can return to the previous
position with C-c &. Using this command several times in direct succession goes back to
positions recorded earlier.

4.2.1 Radio targets

Org can automatically turn any occurrences of certain target names in normal text into
a link. So without explicitly creating a link, the text connects to the target radioing its
position. Radio targets are enclosed by triple angular brackets. For example, a target ‘<<<My
Target>>>’ causes each occurrence of ‘my target’ in normal text to become activated as
a link. The Org file is scanned automatically for radio targets only when the file is first
loaded into Emacs. To update the target list during editing, press C-c C-c with the cursor
on or at a target.

4.3 External links

Org supports links to files, websites, Usenet and email messages, BBDB database entries
and links to both IRC conversations and their logs. External links are URL-like locators.
They start with a short identifying string followed by a colon. There can be no space after
the colon. The following list shows examples for each link type.

http://www.astro.uva.nl/~dominik on the web
doi:10.1000/182 DOI for an electronic resource
file:/home/dominik/images/jupiter.jpg file, absolute path
/home/dominik/images/jupiter.jpg same as above
file:papers/last.pdf file, relative path
./papers/last.pdf same as above
file:/myself@some.where:papers/last.pdf file, path on remote machine
/myself@some.where:papers/last.pdf same as above
file:sometextfile::NNN file, jump to line number
file:projects.org another Org file
file:projects.org::some words text search in Org file3

2 When targeting a #+NAME keyword, #+CAPTION keyword is mandatory in order to get proper numbering
(see Section 11.2 [Images and tables], page 130).

3

The actual behavior of the search will depend on the value of
the option org-link-search-must-match-exact-headline. If its value
is nil, then a fuzzy text search will be done. If it is t, then only the

Chapter 4: Hyperlinks 40

file:projects.org::*task title heading search in Org
file4

file+sys:/path/to/file open via OS, like double-click
file+emacs:/path/to/file force opening by Emacs
docview:papers/last.pdf::NNN open in doc-view mode at page
id:B7423F4D-2E8A-471B-8810-C40F074717E9 Link to heading by ID
news:comp.emacs Usenet link
mailto:adent@galaxy.net Mail link
mhe:folder MH-E folder link
mhe:folder#id MH-E message link
rmail:folder RMAIL folder link
rmail:folder#id RMAIL message link
gnus:group Gnus group link
gnus:group#id Gnus article link
bbdb:R.*Stallman BBDB link (with regexp)
irc:/irc.com/#emacs/bob IRC link
info:org#External links Info node or index link
shell:ls *.org A shell command
elisp:org-agenda Interactive Elisp command
elisp:(find-file-other-frame "Elisp.org") Elisp form to evaluate

On top of these built-in link types, some are available through the contrib/ directory
(see Section 1.2 [Installation], page 2). For example, these links to VM or Wanderlust mes-
sages are available when you load the corresponding libraries from the contrib/ directory:

vm:folder VM folder link
vm:folder#id VM message link
vm://myself@some.where.org/folder#id VM on remote machine
vm-imap:account:folder VM IMAP folder link
vm-imap:account:folder#id VM IMAP message link
wl:folder WANDERLUST folder link
wl:folder#id WANDERLUST message link

For customizing Org to add new link types Section A.3 [Adding hyperlink types],
page 236.

A link should be enclosed in double brackets and may contain a descriptive text to be
displayed instead of the URL (see Section 4.1 [Link format], page 38), for example:

[[http://www.gnu.org/software/emacs/][GNU Emacs]]

If the description is a file name or URL that points to an image, HTML export (see
Section 12.6 [HTML export], page 148) will inline the image as a clickable button. If
there is no description at all and the link points to an image, that image will be inlined into
the exported HTML file.

exact headline will be matched, ignoring spaces and cookies. If the value is
query-to-create, then an exact headline will be searched; if it is not
found, then the user will be queried to create it.

4 Headline searches always match the exact headline, ignoring
spaces and cookies. If the headline is not found and the value of the option
org-link-search-must-match-exact-headline is query-to-create,
then the user will be queried to create it.

Chapter 4: Hyperlinks 41

Org also finds external links in the normal text and activates them as links. If spaces
must be part of the link (for example in ‘bbdb:Richard Stallman’), or if you need to remove
ambiguities about the end of the link, enclose them in square brackets.

4.4 Handling links

Org provides methods to create a link in the correct syntax, to insert it into an Org file,
and to follow the link.

C-c l org-store-link

Store a link to the current location. This is a global command (you must create
the key binding yourself) which can be used in any buffer to create a link. The
link will be stored for later insertion into an Org buffer (see below). What kind
of link will be created depends on the current buffer:

Org mode buffers
For Org files, if there is a ‘<<target>>’ at the cursor, the link points to the
target. Otherwise it points to the current headline, which will also be the
description5.

If the headline has a CUSTOM_ID property, a link to this custom ID will be stored.
In addition or alternatively (depending on the value of org-id-link-to-org-
use-id), a globally unique ID property will be created and/or used to construct
a link6. So using this command in Org buffers will potentially create two links:
a human-readable from the custom ID, and one that is globally unique and
works even if the entry is moved from file to file. Later, when inserting the link,
you need to decide which one to use.

Email/News clients: VM, Rmail, Wanderlust, MH-E, Gnus
Pretty much all Emacs mail clients are supported. The link will point to the
current article, or, in some GNUS buffers, to the group. The description is
constructed from the author and the subject.

Web browsers: W3 and W3M
Here the link will be the current URL, with the page title as description.

Contacts: BBDB
Links created in a BBDB buffer will point to the current entry.

Chat: IRC
For IRC links, if you set the option org-irc-link-to-logs to t, a ‘file:/’
style link to the relevant point in the logs for the current conversation is created.
Otherwise an ‘irc:/’ style link to the user/channel/server under the point will
be stored.

Other files
For any other files, the link will point to the file, with a search string (see
Section 4.7 [Search options], page 45) pointing to the contents of the current line.
If there is an active region, the selected words will form the basis of the search

5 If the headline contains a timestamp, it will be removed from the link and result in a wrong link—you
should avoid putting timestamp in the headline.

6 The library org-id.el must first be loaded, either through org-customize by enabling org-id in
org-modules, or by adding (require 'org-id) in your .emacs.

Chapter 4: Hyperlinks 42

string. If the automatically created link is not working correctly or accurately
enough, you can write custom functions to select the search string and to do the
search for particular file types—see Section 4.8 [Custom searches], page 45. The
key binding C-c l is only a suggestion—see Section 1.2 [Installation], page 2.

Agenda view
When the cursor is in an agenda view, the created link points to the entry
referenced by the current line.

C-c C-l org-insert-link

Insert a link7. This prompts for a link to be inserted into the buffer. You can
just type a link, using text for an internal link, or one of the link type prefixes
mentioned in the examples above. The link will be inserted into the buffer8,
along with a descriptive text. If some text was selected when this command is
called, the selected text becomes the default description.

Inserting stored links
All links stored during the current session are part of the history for this prompt,
so you can access them with up and down (or M-p/n).

Completion support
Completion with TAB will help you to insert valid link prefixes like ‘http:’ or
‘ftp:’, including the prefixes defined through link abbreviations (see Section 4.6
[Link abbreviations], page 44). If you press RET after inserting only the prefix,
Org will offer specific completion support for some link types9 For example, if
you type file RET, file name completion (alternative access: C-u C-c C-l, see
below) will be offered, and after bbdb RET you can complete contact names.

C-u C-c C-l

When C-c C-l is called with a C-u prefix argument, a link to a file will be
inserted and you may use file name completion to select the name of the file.
The path to the file is inserted relative to the directory of the current Org file, if
the linked file is in the current directory or in a sub-directory of it, or if the path
is written relative to the current directory using ‘../’. Otherwise an absolute
path is used, if possible with ‘~/’ for your home directory. You can force an
absolute path with two C-u prefixes.

C-c C-l (with cursor on existing link)
When the cursor is on an existing link, C-c C-l allows you to edit the link and
description parts of the link.

C-c C-o org-open-at-point

Open link at point. This will launch a web browser for URLs (using
browse-url-at-point), run VM/MH-E/Wanderlust/Rmail/Gnus/BBDB for
the corresponding links, and execute the command in a shell link. When the

7 Note that you don’t have to use this command to insert a link. Links in Org are plain text, and you can
type or paste them straight into the buffer. By using this command, the links are automatically enclosed
in double brackets, and you will be asked for the optional descriptive text.

8 After insertion of a stored link, the link will be removed from the list of stored links. To keep it in the
list later use, use a triple C-u prefix argument to C-c C-l, or configure the option org-keep-stored-

link-after-insertion.
9 This works by calling a special function org-PREFIX-complete-link.

Chapter 4: Hyperlinks 43

cursor is on an internal link, this command runs the corresponding search.
When the cursor is on a TAG list in a headline, it creates the corresponding
TAGS view. If the cursor is on a timestamp, it compiles the agenda for that
date. Furthermore, it will visit text and remote files in ‘file:’ links with
Emacs and select a suitable application for local non-text files. Classification
of files is based on file extension only. See option org-file-apps. If you want
to override the default application and visit the file with Emacs, use a C-u

prefix. If you want to avoid opening in Emacs, use a C-u C-u prefix.
If the cursor is on a headline, but not on a link, offer all links in the headline
and entry text. If you want to setup the frame configuration for following
links, customize org-link-frame-setup.

RET When org-return-follows-link is set, RET will also follow the link at point.

mouse-2

mouse-1 On links, mouse-2 will open the link just as C-c C-o would. Under Emacs 22
and later, mouse-1 will also follow a link.

mouse-3 Like mouse-2, but force file links to be opened with Emacs, and internal links
to be displayed in another window10.

C-c C-x C-v org-toggle-inline-images

Toggle the inline display of linked images. Normally this will only inline images
that have no description part in the link, i.e., images that will also be inlined
during export. When called with a prefix argument, also display images that
do have a link description. You can ask for inline images to be displayed at
startup by configuring the variable org-startup-with-inline-images11.

C-c % org-mark-ring-push

Push the current position onto the mark ring, to be able to return easily. Com-
mands following an internal link do this automatically.

C-c & org-mark-ring-goto

Jump back to a recorded position. A position is recorded by the commands
following internal links, and by C-c %. Using this command several times in
direct succession moves through a ring of previously recorded positions.

C-c C-x C-n org-next-link

C-c C-x C-p org-previous-link

Move forward/backward to the next link in the buffer. At the limit of the
buffer, the search fails once, and then wraps around. The key bindings for this
are really too long; you might want to bind this also to C-n and C-p

(add-hook 'org-load-hook

(lambda ()

(define-key org-mode-map "\C-n" 'org-next-link)

(define-key org-mode-map "\C-p" 'org-previous-link)))

10 See the option org-display-internal-link-with-indirect-buffer
11 with corresponding #+STARTUP keywords inlineimages and noinlineimages

Chapter 4: Hyperlinks 44

4.5 Using links outside Org

You can insert and follow links that have Org syntax not only in Org, but in any Emacs
buffer. For this, you should create two global commands, like this (please select suitable
global keys yourself):

(global-set-key "\C-c L" 'org-insert-link-global)

(global-set-key "\C-c o" 'org-open-at-point-global)

4.6 Link abbreviations

Long URLs can be cumbersome to type, and often many similar links are needed in a
document. For this you can use link abbreviations. An abbreviated link looks like this

[[linkword:tag][description]]

where the tag is optional. The linkword must be a word, starting with a letter, followed by
letters, numbers, ‘-’, and ‘_’. Abbreviations are resolved according to the information in
the variable org-link-abbrev-alist that relates the linkwords to replacement text. Here
is an example:

(setq org-link-abbrev-alist

'(("bugzilla" . "http://10.1.2.9/bugzilla/show_bug.cgi?id=")

("url-to-ja" . "http://translate.google.fr/translate?sl=en&tl=ja&u=%h")

("google" . "http://www.google.com/search?q=")

("gmap" . "http://maps.google.com/maps?q=%s")

("omap" . "http://nominatim.openstreetmap.org/search?q=%s&polygon=1")

("ads" . "http://adsabs.harvard.edu/cgi-bin/nph-abs_connect?author=%s&db_key=AST")))

If the replacement text contains the string ‘%s’, it will be replaced with the tag. Using
‘%h’ instead of ‘%s’ will url-encode the tag (see the example above, where we need to encode
the URL parameter.) Using ‘%(my-function)’ will pass the tag to a custom function, and
replace it by the resulting string.

If the replacement text doesn’t contain any specifier, it will simply be appended to the
string in order to create the link.

Instead of a string, you may also specify a function that will be called with the tag as
the only argument to create the link.

With the above setting, you could link to a specific bug with [[bugzilla:129]],
search the web for ‘OrgMode’ with [[google:OrgMode]], show the map location of the
Free Software Foundation [[gmap:51 Franklin Street, Boston]] or of Carsten office
[[omap:Science Park 904, Amsterdam, The Netherlands]] and find out what the Org
author is doing besides Emacs hacking with [[ads:Dominik,C]].

If you need special abbreviations just for a single Org buffer, you can define them in the
file with

#+LINK: bugzilla http://10.1.2.9/bugzilla/show_bug.cgi?id=

#+LINK: google http://www.google.com/search?q=%s

In-buffer completion (see Section 15.1 [Completion], page 223) can be used after ‘[’ to
complete link abbreviations. You may also define a function org-PREFIX-complete-link

that implements special (e.g., completion) support for inserting such a link with C-c C-l.
Such a function should not accept any arguments, and return the full link with prefix.

Chapter 4: Hyperlinks 45

4.7 Search options in file links

File links can contain additional information to make Emacs jump to a particular location in
the file when following a link. This can be a line number or a search option after a double12

colon. For example, when the command C-c l creates a link (see Section 4.4 [Handling
links], page 41) to a file, it encodes the words in the current line as a search string that can
be used to find this line back later when following the link with C-c C-o.

Here is the syntax of the different ways to attach a search to a file link, together with
an explanation:

[[file:~/code/main.c::255]]

[[file:~/xx.org::My Target]]

[[file:~/xx.org::*My Target]]

[[file:~/xx.org::#my-custom-id]]

[[file:~/xx.org::/regexp/]]

255 Jump to line 255.

My Target Search for a link target ‘<<My Target>>’, or do a text search for ‘my target’,
similar to the search in internal links, see Section 4.2 [Internal links], page 38. In
HTML export (see Section 12.6 [HTML export], page 148), such a file link will
become an HTML reference to the corresponding named anchor in the linked
file.

*My Target

In an Org file, restrict search to headlines.

#my-custom-id

Link to a heading with a CUSTOM_ID property

/regexp/ Do a regular expression search for regexp. This uses the Emacs command
occur to list all matches in a separate window. If the target file is in Org
mode, org-occur is used to create a sparse tree with the matches.

As a degenerate case, a file link with an empty file name can be used to search the
current file. For example, [[file:::find me]] does a search for ‘find me’ in the current
file, just as ‘[[find me]]’ would.

4.8 Custom Searches

The default mechanism for creating search strings and for doing the actual search related
to a file link may not work correctly in all cases. For example, BibTEX database files have
many entries like ‘year="1993"’ which would not result in good search strings, because the
only unique identification for a BibTEX entry is the citation key.

If you come across such a problem, you can write custom functions to set the right
search string for a particular file type, and to do the search for the string in the file.
Using add-hook, these functions need to be added to the hook variables org-create-

file-search-functions and org-execute-file-search-functions. See the docstring
for these variables for more information. Org actually uses this mechanism for BibTEX
database files, and you can use the corresponding code as an implementation example. See
the file org-bibtex.el.

12 For backward compatibility, line numbers can also follow a single colon.

Chapter 5: TODO items 46

5 TODO items

Org mode does not maintain TODO lists as separate documents1. Instead, TODO items
are an integral part of the notes file, because TODO items usually come up while taking
notes! With Org mode, simply mark any entry in a tree as being a TODO item. In this way,
information is not duplicated, and the entire context from which the TODO item emerged
is always present.

Of course, this technique for managing TODO items scatters them throughout your
notes file. Org mode compensates for this by providing methods to give you an overview of
all the things that you have to do.

5.1 Basic TODO functionality

Any headline becomes a TODO item when it starts with the word ‘TODO’, for example:

*** TODO Write letter to Sam Fortune

The most important commands to work with TODO entries are:

C-c C-t org-todo

Rotate the TODO state of the current item among

,-> (unmarked) -> TODO -> DONE --.

'--------------------------------'

If TODO keywords have fast access keys (see Section 5.2.4 [Fast access to TODO
states], page 49), you will be prompted for a TODO keyword through the
fast selection interface; this is the default behavior when org-use-fast-todo-

selection is non-nil.

The same rotation can also be done “remotely” from the timeline and agenda
buffers with the t command key (see Section 10.5 [Agenda commands],
page 113).

C-u C-c C-t

When TODO keywords have no selection keys, select a specific keyword using
completion; otherwise force cycling through TODO states with no prompt.
When org-use-fast-todo-selection is set to prefix, use the fast selection
interface.

S-right / S-left

Select the following/preceding TODO state, similar to cycling. Useful mostly if
more than two TODO states are possible (see Section 5.2 [TODO extensions],
page 47). See also Section 15.10.2 [Conflicts], page 233, for a discussion of the
interaction with shift-selection-mode. See also the variable org-treat-S-

cursor-todo-selection-as-state-change.

C-c / t org-show-todo-tree

View TODO items in a sparse tree (see Section 2.6 [Sparse trees], page 11).
Folds the entire buffer, but shows all TODO items (with not-DONE state) and

1 Of course, you can make a document that contains only long lists of TODO items, but this is not
required.

Chapter 5: TODO items 47

the headings hierarchy above them. With a prefix argument (or by using C-c

/ T), search for a specific TODO. You will be prompted for the keyword, and
you can also give a list of keywords like KWD1|KWD2|... to list entries that
match any one of these keywords. With a numeric prefix argument N, show the
tree for the Nth keyword in the option org-todo-keywords. With two prefix
arguments, find all TODO states, both un-done and done.

C-c a t org-todo-list

Show the global TODO list. Collects the TODO items (with not-DONE
states) from all agenda files (see Chapter 10 [Agenda views], page 100) into
a single buffer. The new buffer will be in agenda-mode, which provides
commands to examine and manipulate the TODO entries from the new buffer
(see Section 10.5 [Agenda commands], page 113). See Section 10.3.2 [Global
TODO list], page 104, for more information.

S-M-RET org-insert-todo-heading

Insert a new TODO entry below the current one.

Changing a TODO state can also trigger tag changes. See the docstring of the option
org-todo-state-tags-triggers for details.

5.2 Extended use of TODO keywords

By default, marked TODO entries have one of only two states: TODO and DONE. Org
mode allows you to classify TODO items in more complex ways with TODO keywords
(stored in org-todo-keywords). With special setup, the TODO keyword system can work
differently in different files.

Note that tags are another way to classify headlines in general and TODO items in
particular (see Chapter 6 [Tags], page 59).

5.2.1 TODO keywords as workflow states

You can use TODO keywords to indicate different sequential states in the process of working
on an item, for example2:

(setq org-todo-keywords

'((sequence "TODO" "FEEDBACK" "VERIFY" "|" "DONE" "DELEGATED")))

The vertical bar separates the TODO keywords (states that need action) from the DONE
states (which need no further action). If you don’t provide the separator bar, the last state
is used as the DONE state. With this setup, the command C-c C-t will cycle an entry
from TODO to FEEDBACK, then to VERIFY, and finally to DONE and DELEGATED.
You may also use a numeric prefix argument to quickly select a specific state. For example
C-3 C-c C-t will change the state immediately to VERIFY. Or you can use S-left to
go backward through the sequence. If you define many keywords, you can use in-buffer
completion (see Section 15.1 [Completion], page 223) or even a special one-key selection
scheme (see Section 5.2.4 [Fast access to TODO states], page 49) to insert these words into
the buffer. Changing a TODO state can be logged with a timestamp, see Section 5.3.2
[Tracking TODO state changes], page 52, for more information.

2 Changing this variable only becomes effective after restarting Org mode in a buffer.

Chapter 5: TODO items 48

5.2.2 TODO keywords as types

The second possibility is to use TODO keywords to indicate different types of action items.
For example, you might want to indicate that items are for “work” or “home”. Or, when
you work with several people on a single project, you might want to assign action items
directly to persons, by using their names as TODO keywords. This would be set up like
this:

(setq org-todo-keywords '((type "Fred" "Sara" "Lucy" "|" "DONE")))

In this case, different keywords do not indicate a sequence, but rather different types.
So the normal work flow would be to assign a task to a person, and later to mark it DONE.
Org mode supports this style by adapting the workings of the command C-c C-t3. When
used several times in succession, it will still cycle through all names, in order to first select
the right type for a task. But when you return to the item after some time and execute
C-c C-t again, it will switch from any name directly to DONE. Use prefix arguments or
completion to quickly select a specific name. You can also review the items of a specific
TODO type in a sparse tree by using a numeric prefix to C-c / t. For example, to see all
things Lucy has to do, you would use C-3 C-c / t. To collect Lucy’s items from all agenda
files into a single buffer, you would use the numeric prefix argument as well when creating
the global TODO list: C-3 C-c a t.

5.2.3 Multiple keyword sets in one file

Sometimes you may want to use different sets of TODO keywords in parallel. For example,
you may want to have the basic TODO/DONE, but also a workflow for bug fixing, and a
separate state indicating that an item has been canceled (so it is not DONE, but also does
not require action). Your setup would then look like this:

(setq org-todo-keywords

'((sequence "TODO" "|" "DONE")

(sequence "REPORT" "BUG" "KNOWNCAUSE" "|" "FIXED")

(sequence "|" "CANCELED")))

The keywords should all be different, this helps Org mode to keep track of which sub-
sequence should be used for a given entry. In this setup, C-c C-t only operates within a
subsequence, so it switches from DONE to (nothing) to TODO, and from FIXED to (nothing)
to REPORT. Therefore you need a mechanism to initially select the correct sequence. Be-
sides the obvious ways like typing a keyword or using completion, you may also apply the
following commands:

C-u C-u C-c C-t

C-S-right

C-S-left These keys jump from one TODO subset to the next. In the above example,
C-u C-u C-c C-t or C-S-right would jump from TODO or DONE to REPORT, and
any of the words in the second row to CANCELED. Note that the C-S- key
binding conflict with shift-selection-mode (see Section 15.10.2 [Conflicts],
page 233).

3 This is also true for the t command in the timeline and agenda buffers.

Chapter 5: TODO items 49

S-right

S-left S-left and S-right and walk through all keywords from all sets, so for example
S-right would switch from DONE to REPORT in the example above. See also
Section 15.10.2 [Conflicts], page 233, for a discussion of the interaction with
shift-selection-mode.

5.2.4 Fast access to TODO states

If you would like to quickly change an entry to an arbitrary TODO state instead of cycling
through the states, you can set up keys for single-letter access to the states. This is done
by adding the selection character after each keyword, in parentheses4. For example:

(setq org-todo-keywords

'((sequence "TODO(t)" "|" "DONE(d)")

(sequence "REPORT(r)" "BUG(b)" "KNOWNCAUSE(k)" "|" "FIXED(f)")

(sequence "|" "CANCELED(c)")))

If you then press C-c C-t followed by the selection key, the entry will be switched to
this state. SPC can be used to remove any TODO keyword from an entry.5

5.2.5 Setting up keywords for individual files

It can be very useful to use different aspects of the TODO mechanism in different files.
For file-local settings, you need to add special lines to the file which set the keywords and
interpretation for that file only. For example, to set one of the two examples discussed
above, you need one of the following lines anywhere in the file:

#+TODO: TODO FEEDBACK VERIFY | DONE CANCELED

(you may also write #+SEQ_TODO to be explicit about the interpretation, but it means the
same as #+TODO), or

#+TYP_TODO: Fred Sara Lucy Mike | DONE

A setup for using several sets in parallel would be:

#+TODO: TODO | DONE

#+TODO: REPORT BUG KNOWNCAUSE | FIXED

#+TODO: | CANCELED

To make sure you are using the correct keyword, type ‘#+’ into the buffer and then use
M-TAB completion.

Remember that the keywords after the vertical bar (or the last keyword if no bar is
there) must always mean that the item is DONE (although you may use a different word).
After changing one of these lines, use C-c C-c with the cursor still in the line to make the
changes known to Org mode6.

4 All characters are allowed except @^!, which have a special meaning here.
5 Check also the option org-fast-tag-selection-include-todo, it allows you to change the TODO state

through the tags interface (see Section 6.2 [Setting tags], page 59), in case you like to mingle the two
concepts. Note that this means you need to come up with unique keys across both sets of keywords.

6 Org mode parses these lines only when Org mode is activated after visiting a file. C-c C-c with the
cursor in a line starting with ‘#+’ is simply restarting Org mode for the current buffer.

Chapter 5: TODO items 50

5.2.6 Faces for TODO keywords

Org mode highlights TODO keywords with special faces: org-todo for keywords indicating
that an item still has to be acted upon, and org-done for keywords indicating that an item
is finished. If you are using more than 2 different states, you might want to use special
faces for some of them. This can be done using the option org-todo-keyword-faces. For
example:

(setq org-todo-keyword-faces

'(("TODO" . org-warning) ("STARTED" . "yellow")

("CANCELED" . (:foreground "blue" :weight bold))))

While using a list with face properties as shown for CANCELED should work, this does
not always seem to be the case. If necessary, define a special face and use that. A string is
interpreted as a color. The option org-faces-easy-properties determines if that color is
interpreted as a foreground or a background color.

5.2.7 TODO dependencies

The structure of Org files (hierarchy and lists) makes it easy to define TODO dependencies.
Usually, a parent TODO task should not be marked DONE until all subtasks (defined as
children tasks) are marked as DONE. And sometimes there is a logical sequence to a number
of (sub)tasks, so that one task cannot be acted upon before all siblings above it are done.
If you customize the option org-enforce-todo-dependencies, Org will block entries from
changing state to DONE while they have children that are not DONE. Furthermore, if an
entry has a property ORDERED, each of its children will be blocked until all earlier siblings
are marked DONE. Here is an example:

* TODO Blocked until (two) is done

** DONE one

** TODO two

* Parent

:PROPERTIES:

:ORDERED: t

:END:

** TODO a

** TODO b, needs to wait for (a)

** TODO c, needs to wait for (a) and (b)

You can ensure an entry is never blocked by using the NOBLOCKING property:

* This entry is never blocked

:PROPERTIES:

:NOBLOCKING: t

:END:

C-c C-x o org-toggle-ordered-property

Toggle the ORDERED property of the current entry. A property is used for this
behavior because this should be local to the current entry, not inherited like
a tag. However, if you would like to track the value of this property with a
tag for better visibility, customize the option org-track-ordered-property-

with-tag.

Chapter 5: TODO items 51

C-u C-u C-u C-c C-t

Change TODO state, circumventing any state blocking.

If you set the option org-agenda-dim-blocked-tasks, TODO entries that cannot be
closed because of such dependencies will be shown in a dimmed font or even made invisible
in agenda views (see Chapter 10 [Agenda views], page 100).

You can also block changes of TODO states by looking at checkboxes (see Section 5.6
[Checkboxes], page 56). If you set the option org-enforce-todo-checkbox-dependencies,
an entry that has unchecked checkboxes will be blocked from switching to DONE.

If you need more complex dependency structures, for example dependencies between
entries in different trees or files, check out the contributed module org-depend.el.

Chapter 5: TODO items 52

5.3 Progress logging

Org mode can automatically record a timestamp and possibly a note when you mark a
TODO item as DONE, or even each time you change the state of a TODO item. This
system is highly configurable; settings can be on a per-keyword basis and can be localized
to a file or even a subtree. For information on how to clock working time for a task, see
Section 8.4 [Clocking work time], page 80.

5.3.1 Closing items

The most basic logging is to keep track of when a certain TODO item was finished. This is
achieved with1

(setq org-log-done 'time)

Then each time you turn an entry from a TODO (not-done) state into any of the DONE
states, a line ‘CLOSED: [timestamp]’ will be inserted just after the headline. If you turn the
entry back into a TODO item through further state cycling, that line will be removed again.
If you turn the entry back to a non-TODO state (by pressing C-c C-t SPC for example),
that line will also be removed, unless you set org-closed-keep-when-no-todo to non-nil.
If you want to record a note along with the timestamp, use2

(setq org-log-done 'note)

You will then be prompted for a note, and that note will be stored below the entry with a
‘Closing Note’ heading.

In the timeline (see Section 10.3.4 [Timeline], page 107) and in the agenda (see
Section 10.3.1 [Weekly/daily agenda], page 102), you can then use the l key to display the
TODO items with a ‘CLOSED’ timestamp on each day, giving you an overview of what has
been done.

5.3.2 Tracking TODO state changes

When TODO keywords are used as workflow states (see Section 5.2.1 [Workflow states],
page 47), you might want to keep track of when a state change occurred and maybe take
a note about this change. You can either record just a timestamp, or a time-stamped note
for a change. These records will be inserted after the headline as an itemized list, newest
first3. When taking a lot of notes, you might want to get the notes out of the way into a
drawer (see Section 2.8 [Drawers], page 15). Customize org-log-into-drawer to get this
behavior—the recommended drawer for this is called LOGBOOK4. You can also overrule the
setting of this variable for a subtree by setting a LOG_INTO_DRAWER property.

Since it is normally too much to record a note for every state, Org mode expects con-
figuration on a per-keyword basis for this. This is achieved by adding special markers ‘!’
(for a timestamp) or ‘@’ (for a note with timestamp) in parentheses after each keyword. For
example, with the setting

(setq org-todo-keywords

1 The corresponding in-buffer setting is: #+STARTUP: logdone
2 The corresponding in-buffer setting is: #+STARTUP: lognotedone.
3 See the option org-log-states-order-reversed
4 Note that the LOGBOOK drawer is unfolded when pressing SPC in the agenda to show an entry—use C-u

SPC to keep it folded here

Chapter 5: TODO items 53

'((sequence "TODO(t)" "WAIT(w@/!)" "|" "DONE(d!)" "CANCELED(c@)")))

To record a timestamp without a note for TODO keywords configured with ‘@’, just type
C-c C-c to enter a blank note when prompted.

You not only define global TODO keywords and fast access keys, but also request that a
time is recorded when the entry is set to DONE5, and that a note is recorded when switching
to WAIT or CANCELED. The setting for WAIT is even more special: the ‘!’ after the
slash means that in addition to the note taken when entering the state, a timestamp should
be recorded when leaving the WAIT state, if and only if the target state does not configure
logging for entering it. So it has no effect when switching from WAIT to DONE, because
DONE is configured to record a timestamp only. But when switching from WAIT back to
TODO, the ‘/!’ in the WAIT setting now triggers a timestamp even though TODO has no
logging configured.

You can use the exact same syntax for setting logging preferences local to a buffer:

#+TODO: TODO(t) WAIT(w@/!) | DONE(d!) CANCELED(c@)

In order to define logging settings that are local to a subtree or a single item, define a
LOGGING property in this entry. Any non-empty LOGGING property resets all logging
settings to nil. You may then turn on logging for this specific tree using STARTUP
keywords like lognotedone or logrepeat, as well as adding state specific settings like
TODO(!). For example

* TODO Log each state with only a time

:PROPERTIES:

:LOGGING: TODO(!) WAIT(!) DONE(!) CANCELED(!)

:END:

* TODO Only log when switching to WAIT, and when repeating

:PROPERTIES:

:LOGGING: WAIT(@) logrepeat

:END:

* TODO No logging at all

:PROPERTIES:

:LOGGING: nil

:END:

5.3.3 Tracking your habits

Org has the ability to track the consistency of a special category of TODOs, called “habits”.
A habit has the following properties:

1. You have enabled the habits module by customizing org-modules.

2. The habit is a TODO item, with a TODO keyword representing an open state.

3. The property STYLE is set to the value habit.

4. The TODO has a scheduled date, usually with a .+ style repeat interval. A ++ style
may be appropriate for habits with time constraints, e.g., must be done on weekends,
or a + style for an unusual habit that can have a backlog, e.g., weekly reports.

5 It is possible that Org mode will record two timestamps when you are using both org-log-done and
state change logging. However, it will never prompt for two notes—if you have configured both, the state
change recording note will take precedence and cancel the ‘Closing Note’.

Chapter 5: TODO items 54

5. The TODO may also have minimum and maximum ranges specified by using the syntax
‘.+2d/3d’, which says that you want to do the task at least every three days, but at
most every two days.

6. You must also have state logging for the DONE state enabled (see Section 5.3.2 [Tracking
TODO state changes], page 52), in order for historical data to be represented in the
consistency graph. If it is not enabled it is not an error, but the consistency graphs
will be largely meaningless.

To give you an idea of what the above rules look like in action, here’s an actual habit
with some history:

** TODO Shave

SCHEDULED: <2009-10-17 Sat .+2d/4d>

:PROPERTIES:

:STYLE: habit

:LAST_REPEAT: [2009-10-19 Mon 00:36]

:END:

- State "DONE" from "TODO" [2009-10-15 Thu]

- State "DONE" from "TODO" [2009-10-12 Mon]

- State "DONE" from "TODO" [2009-10-10 Sat]

- State "DONE" from "TODO" [2009-10-04 Sun]

- State "DONE" from "TODO" [2009-10-02 Fri]

- State "DONE" from "TODO" [2009-09-29 Tue]

- State "DONE" from "TODO" [2009-09-25 Fri]

- State "DONE" from "TODO" [2009-09-19 Sat]

- State "DONE" from "TODO" [2009-09-16 Wed]

- State "DONE" from "TODO" [2009-09-12 Sat]

What this habit says is: I want to shave at most every 2 days (given by the SCHEDULED
date and repeat interval) and at least every 4 days. If today is the 15th, then the habit first
appears in the agenda on Oct 17, after the minimum of 2 days has elapsed, and will appear
overdue on Oct 19, after four days have elapsed.

What’s really useful about habits is that they are displayed along with a consistency
graph, to show how consistent you’ve been at getting that task done in the past. This
graph shows every day that the task was done over the past three weeks, with colors for
each day. The colors used are:

Blue If the task wasn’t to be done yet on that day.

Green If the task could have been done on that day.

Yellow If the task was going to be overdue the next day.

Red If the task was overdue on that day.

In addition to coloring each day, the day is also marked with an asterisk if the task was
actually done that day, and an exclamation mark to show where the current day falls in the
graph.

There are several configuration variables that can be used to change the way habits are
displayed in the agenda.

Chapter 5: TODO items 55

org-habit-graph-column

The buffer column at which the consistency graph should be drawn. This will
overwrite any text in that column, so it is a good idea to keep your habits’ titles
brief and to the point.

org-habit-preceding-days

The amount of history, in days before today, to appear in consistency graphs.

org-habit-following-days

The number of days after today that will appear in consistency graphs.

org-habit-show-habits-only-for-today

If non-nil, only show habits in today’s agenda view. This is set to true by
default.

Lastly, pressing K in the agenda buffer will cause habits to temporarily be disabled and
they won’t appear at all. Press K again to bring them back. They are also subject to tag
filtering, if you have habits which should only be done in certain contexts, for example.

5.4 Priorities

If you use Org mode extensively, you may end up with enough TODO items that it starts
to make sense to prioritize them. Prioritizing can be done by placing a priority cookie into
the headline of a TODO item, like this

*** TODO [#A] Write letter to Sam Fortune

By default, Org mode supports three priorities: ‘A’, ‘B’, and ‘C’. ‘A’ is the highest priority.
An entry without a cookie is treated just like priority ‘B’. Priorities make a difference only
for sorting in the agenda (see Section 10.3.1 [Weekly/daily agenda], page 102); outside the
agenda, they have no inherent meaning to Org mode. The cookies can be highlighted with
special faces by customizing org-priority-faces.

Priorities can be attached to any outline node; they do not need to be TODO items.

C-c , Set the priority of the current headline (org-priority). The command
prompts for a priority character ‘A’, ‘B’ or ‘C’. When you press SPC instead,
the priority cookie is removed from the headline. The priorities can also be
changed “remotely” from the timeline and agenda buffer with the , command
(see Section 10.5 [Agenda commands], page 113).

S-up org-priority-up

S-down org-priority-down

Increase/decrease priority of current headline6. Note that these keys are also
used to modify timestamps (see Section 8.2 [Creating timestamps], page 74).
See also Section 15.10.2 [Conflicts], page 233, for a discussion of the interaction
with shift-selection-mode.

You can change the range of allowed priorities by setting the options org-highest-

priority, org-lowest-priority, and org-default-priority. For an individual buffer,
you may set these values (highest, lowest, default) like this (please make sure that the
highest priority is earlier in the alphabet than the lowest priority):

#+PRIORITIES: A C B

6 See also the option org-priority-start-cycle-with-default.

Chapter 5: TODO items 56

5.5 Breaking tasks down into subtasks

It is often advisable to break down large tasks into smaller, manageable subtasks. You
can do this by creating an outline tree below a TODO item, with detailed subtasks on the
tree7. To keep the overview over the fraction of subtasks that are already completed, insert
either ‘[/]’ or ‘[%]’ anywhere in the headline. These cookies will be updated each time the
TODO status of a child changes, or when pressing C-c C-c on the cookie. For example:

* Organize Party [33%]

** TODO Call people [1/2]

*** TODO Peter

*** DONE Sarah

** TODO Buy food

** DONE Talk to neighbor

If a heading has both checkboxes and TODO children below it, the meaning of the
statistics cookie become ambiguous. Set the property COOKIE_DATA to either ‘checkbox’ or
‘todo’ to resolve this issue.

If you would like to have the statistics cookie count any TODO entries in the subtree
(not just direct children), configure org-hierarchical-todo-statistics. To do this for
a single subtree, include the word ‘recursive’ into the value of the COOKIE_DATA property.

* Parent capturing statistics [2/20]

:PROPERTIES:

:COOKIE_DATA: todo recursive

:END:

If you would like a TODO entry to automatically change to DONE when all children
are done, you can use the following setup:

(defun org-summary-todo (n-done n-not-done)

"Switch entry to DONE when all subentries are done, to TODO otherwise."

(let (org-log-done org-log-states) ; turn off logging

(org-todo (if (= n-not-done 0) "DONE" "TODO"))))

(add-hook 'org-after-todo-statistics-hook 'org-summary-todo)

Another possibility is the use of checkboxes to identify (a hierarchy of) a large number
of subtasks (see Section 5.6 [Checkboxes], page 56).

5.6 Checkboxes

Every item in a plain list8 (see Section 2.7 [Plain lists], page 12) can be made into a checkbox
by starting it with the string ‘[]’. This feature is similar to TODO items (see Chapter 5
[TODO items], page 46), but is more lightweight. Checkboxes are not included in the global
TODO list, so they are often great to split a task into a number of simple steps. Or you can
use them in a shopping list. To toggle a checkbox, use C-c C-c, or use the mouse (thanks
to Piotr Zielinski’s org-mouse.el).

Here is an example of a checkbox list.

7 To keep subtasks out of the global TODO list, see the org-agenda-todo-list-sublevels.
8 With the exception of description lists. But you can allow it by modifying org-list-automatic-rules

accordingly.

Chapter 5: TODO items 57

* TODO Organize party [2/4]

- [-] call people [1/3]

- [] Peter

- [X] Sarah

- [] Sam

- [X] order food

- [] think about what music to play

- [X] talk to the neighbors

Checkboxes work hierarchically, so if a checkbox item has children that are checkboxes,
toggling one of the children checkboxes will make the parent checkbox reflect if none, some,
or all of the children are checked.

The ‘[2/4]’ and ‘[1/3]’ in the first and second line are cookies indicating how many
checkboxes present in this entry have been checked off, and the total number of checkboxes
present. This can give you an idea on how many checkboxes remain, even without opening a
folded entry. The cookies can be placed into a headline or into (the first line of) a plain list
item. Each cookie covers checkboxes of direct children structurally below the headline/item
on which the cookie appears9. You have to insert the cookie yourself by typing either ‘[/]’
or ‘[%]’. With ‘[/]’ you get an ‘n out of m’ result, as in the examples above. With ‘[%]’
you get information about the percentage of checkboxes checked (in the above example,
this would be ‘[50%]’ and ‘[33%]’, respectively). In a headline, a cookie can count either
checkboxes below the heading or TODO states of children, and it will display whatever was
changed last. Set the property COOKIE_DATA to either ‘checkbox’ or ‘todo’ to resolve this
issue.

If the current outline node has an ORDERED property, checkboxes must be checked off in
sequence, and an error will be thrown if you try to check off a box while there are unchecked
boxes above it.

The following commands work with checkboxes:

C-c C-c org-toggle-checkbox

Toggle checkbox status or (with prefix arg) checkbox presence at point. With
a single prefix argument, add an empty checkbox or remove the current one10.
With a double prefix argument, set it to ‘[-]’, which is considered to be an
intermediate state.

C-c C-x C-b org-toggle-checkbox

Toggle checkbox status or (with prefix arg) checkbox presence at point. With
double prefix argument, set it to ‘[-]’, which is considered to be an intermediate
state.

− If there is an active region, toggle the first checkbox in the region and set
all remaining boxes to the same status as the first. With a prefix arg, add
or remove the checkbox for all items in the region.

− If the cursor is in a headline, toggle checkboxes in the region between this
headline and the next (so not the entire subtree).

9 Set the option org-checkbox-hierarchical-statistics if you want such cookies to count all checkboxes
below the cookie, not just those belonging to direct children.

10 C-u C-c C-c on the first item of a list with no checkbox will add checkboxes to the rest of the list.

Chapter 5: TODO items 58

− If there is no active region, just toggle the checkbox at point.

M-S-RET org-insert-todo-heading

Insert a new item with a checkbox. This works only if the cursor is already in
a plain list item (see Section 2.7 [Plain lists], page 12).

C-c C-x o org-toggle-ordered-property

Toggle the ORDERED property of the entry, to toggle if checkboxes must be
checked off in sequence. A property is used for this behavior because this
should be local to the current entry, not inherited like a tag. However, if you
would like to track the value of this property with a tag for better visibility,
customize org-track-ordered-property-with-tag.

C-c # org-update-statistics-cookies

Update the statistics cookie in the current outline entry. When called with
a C-u prefix, update the entire file. Checkbox statistic cookies are updated
automatically if you toggle checkboxes with C-c C-c and make new ones with
M-S-RET. TODO statistics cookies update when changing TODO states. If you
delete boxes/entries or add/change them by hand, use this command to get
things back into sync.

Chapter 6: Tags 59

6 Tags

An excellent way to implement labels and contexts for cross-correlating information is to
assign tags to headlines. Org mode has extensive support for tags.

Every headline can contain a list of tags; they occur at the end of the headline. Tags are
normal words containing letters, numbers, ‘_’, and ‘@’. Tags must be preceded and followed
by a single colon, e.g., ‘:work:’. Several tags can be specified, as in ‘:work:urgent:’. Tags
will by default be in bold face with the same color as the headline. You may specify special
faces for specific tags using the option org-tag-faces, in much the same way as you can
for TODO keywords (see Section 5.2.6 [Faces for TODO keywords], page 50).

6.1 Tag inheritance

Tags make use of the hierarchical structure of outline trees. If a heading has a certain tag,
all subheadings will inherit the tag as well. For example, in the list

* Meeting with the French group :work:

** Summary by Frank :boss:notes:

*** TODO Prepare slides for him :action:

the final heading will have the tags ‘:work:’, ‘:boss:’, ‘:notes:’, and ‘:action:’ even
though the final heading is not explicitly marked with those tags. You can also set tags
that all entries in a file should inherit just as if these tags were defined in a hypothetical
level zero that surrounds the entire file. Use a line like this1:

#+FILETAGS: :Peter:Boss:Secret:

To limit tag inheritance to specific tags, use org-tags-exclude-from-inheritance. To
turn it off entirely, use org-use-tag-inheritance.

When a headline matches during a tags search while tag inheritance is turned on, all
the sublevels in the same tree will (for a simple match form) match as well2. The list of
matches may then become very long. If you only want to see the first tags match in a
subtree, configure org-tags-match-list-sublevels (not recommended).

Tag inheritance is relevant when the agenda search tries to match a tag, either in the
tags or tags-todo agenda types. In other agenda types, org-use-tag-inheritance has
no effect. Still, you may want to have your tags correctly set in the agenda, so that tag
filtering works fine, with inherited tags. Set org-agenda-use-tag-inheritance to control
this: the default value includes all agenda types, but setting this to nil can really speed
up agenda generation.

6.2 Setting tags

Tags can simply be typed into the buffer at the end of a headline. After a colon, M-TAB
offers completion on tags. There is also a special command for inserting tags:

C-c C-q org-set-tags-command

Enter new tags for the current headline. Org mode will either offer completion
or a special single-key interface for setting tags, see below. After pressing RET,

1 As with all these in-buffer settings, pressing C-c C-c activates any changes in the line.
2 This is only true if the search does not involve more complex tests including properties (see Section 7.3

[Property searches], page 66).

Chapter 6: Tags 60

the tags will be inserted and aligned to org-tags-column. When called with
a C-u prefix, all tags in the current buffer will be aligned to that column, just
to make things look nice. TAGS are automatically realigned after promotion,
demotion, and TODO state changes (see Section 5.1 [TODO basics], page 46).

C-c C-c org-set-tags-command

When the cursor is in a headline, this does the same as C-c C-q.

Org supports tag insertion based on a list of tags. By default this list is constructed
dynamically, containing all tags currently used in the buffer. You may also globally specify
a hard list of tags with the variable org-tag-alist. Finally you can set the default tags
for a given file with lines like

#+TAGS: @work @home @tennisclub

#+TAGS: laptop car pc sailboat

If you have globally defined your preferred set of tags using the variable org-tag-alist,
but would like to use a dynamic tag list in a specific file, add an empty TAGS option line
to that file:

#+TAGS:

If you have a preferred set of tags that you would like to use in every file, in addition to
those defined on a per-file basis by TAGS option lines, then you may specify a list of tags
with the variable org-tag-persistent-alist. You may turn this off on a per-file basis by
adding a STARTUP option line to that file:

#+STARTUP: noptag

By default Org mode uses the standard minibuffer completion facilities for entering tags.
However, it also implements another, quicker, tag selection method called fast tag selection.
This allows you to select and deselect tags with just a single key press. For this to work
well you should assign unique letters to most of your commonly used tags. You can do this
globally by configuring the variable org-tag-alist in your .emacs file. For example, you
may find the need to tag many items in different files with ‘:@home:’. In this case you can
set something like:

(setq org-tag-alist '(("@work" . ?w) ("@home" . ?h) ("laptop" . ?l)))

If the tag is only relevant to the file you are working on, then you can instead set the TAGS
option line as:

#+TAGS: @work(w) @home(h) @tennisclub(t) laptop(l) pc(p)

The tags interface will show the available tags in a splash window. If you want to start a
new line after a specific tag, insert ‘\n’ into the tag list

#+TAGS: @work(w) @home(h) @tennisclub(t) \n laptop(l) pc(p)

or write them in two lines:

#+TAGS: @work(w) @home(h) @tennisclub(t)

#+TAGS: laptop(l) pc(p)

You can also group together tags that are mutually exclusive by using braces, as in:

#+TAGS: { @work(w) @home(h) @tennisclub(t) } laptop(l) pc(p)

you indicate that at most one of ‘@work’, ‘@home’, and ‘@tennisclub’ should be selected.
Multiple such groups are allowed.

Chapter 6: Tags 61

Don’t forget to press C-c C-c with the cursor in one of these lines to activate any changes.

To set these mutually exclusive groups in the variable org-tag-alist, you must use the
dummy tags :startgroup and :endgroup instead of the braces. Similarly, you can use
:newline to indicate a line break. The previous example would be set globally by the
following configuration:

(setq org-tag-alist '((:startgroup . nil)

("@work" . ?w) ("@home" . ?h)

("@tennisclub" . ?t)

(:endgroup . nil)

("laptop" . ?l) ("pc" . ?p)))

If at least one tag has a selection key then pressing C-c C-c will automatically present
you with a special interface, listing inherited tags, the tags of the current headline, and a
list of all valid tags with corresponding keys3. In this interface, you can use the following
keys:

a-z... Pressing keys assigned to tags will add or remove them from the list of tags in
the current line. Selecting a tag in a group of mutually exclusive tags will turn
off any other tags from that group.

TAB Enter a tag in the minibuffer, even if the tag is not in the predefined list. You
will be able to complete on all tags present in the buffer. You can also add
several tags: just separate them with a comma.

SPC Clear all tags for this line.

RET Accept the modified set.

C-g Abort without installing changes.

q If q is not assigned to a tag, it aborts like C-g.

! Turn off groups of mutually exclusive tags. Use this to (as an exception) assign
several tags from such a group.

C-c Toggle auto-exit after the next change (see below). If you are using expert
mode, the first C-c will display the selection window.

This method lets you assign tags to a headline with very few keys. With the above setup,
you could clear the current tags and set ‘@home’, ‘laptop’ and ‘pc’ tags with just the
following keys: C-c C-c SPC h l p RET. Switching from ‘@home’ to ‘@work’ would be done
with C-c C-c w RET or alternatively with C-c C-c C-c w. Adding the non-predefined tag
‘Sarah’ could be done with C-c C-c TAB S a r a h RET RET.

If you find that most of the time you need only a single key press to modify your list
of tags, set org-fast-tag-selection-single-key. Then you no longer have to press
RET to exit fast tag selection—it will immediately exit after the first change. If you then
occasionally need more keys, press C-c to turn off auto-exit for the current tag selection
process (in effect: start selection with C-c C-c C-c instead of C-c C-c). If you set the
variable to the value expert, the special window is not even shown for single-key tag
selection, it comes up only when you press an extra C-c.

3 Keys will automatically be assigned to tags which have no configured keys.

Chapter 6: Tags 62

6.3 Tag hierarchy

Tags can be defined in hierarchies. A tag can be defined as a group tag for a set of other
tags. The group tag can be seen as the “broader term” for its set of tags. Defining multiple
group tags and nesting them creates a tag hierarchy.

One use-case is to create a taxonomy of terms (tags) that can be used to classify nodes
in a document or set of documents.

When you search for a group tag, it will return matches for all members in the group
and its subgroup. In an agenda view, filtering by a group tag will display or hide headlines
tagged with at least one of the members of the group or any of its subgroups. This makes
tag searches and filters even more flexible.

You can set group tags by using brackets and inserting a colon between the group tag
and its related tags—beware that all whitespaces are mandatory so that Org can parse this
line correctly:

#+TAGS: [GTD : Control Persp]

In this example, ‘GTD’ is the group tag and it is related to two other tags: ‘Control’,
‘Persp’. Defining ‘Control’ and ‘Persp’ as group tags creates an hierarchy of tags:

#+TAGS: [Control : Context Task]

#+TAGS: [Persp : Vision Goal AOF Project]

That can conceptually be seen as a hierarchy of tags:

- GTD

- Persp

- Vision

- Goal

- AOF

- Project

- Control

- Context

- Task

You can use the :startgrouptag, :grouptags and :endgrouptag keyword directly
when setting org-tag-alist directly:

(setq org-tag-alist '((:startgrouptag)

("GTD")

(:grouptags)

("Control")

("Persp")

(:endgrouptag)

(:startgrouptag)

("Control")

(:grouptags)

("Context")

("Task")

(:endgrouptag)))

The tags in a group can be mutually exclusive if using the same group syntax as is used
for grouping mutually exclusive tags together; using curly brackets.

Chapter 6: Tags 63

#+TAGS: { Context : @Home @Work @Call }

When setting org-tag-alist you can use :startgroup & :endgroup instead of
:startgrouptag & :endgrouptag to make the tags mutually exclusive.

Furthermore; The members of a group tag can also be regular expression, creating the
possibility of more dynamic and rule-based tag-structure. The regular expressions in the
group must be marked up within { }. Example use, to expand on the example given above:

#+TAGS: [Vision : {V.+}]

#+TAGS: [Goal : {G.+}]

#+TAGS: [AOF : {AOF.+}]

#+TAGS: [Project : {P.+}]

Searching for the tag ‘Project’ will now list all tags also including regular expression
matches for ‘P@.+’. Similar for tag-searches on ‘Vision’, ‘Goal’ and ‘AOF’. This can be
good for example if tags for a certain project is tagged with a common project-identifier,
i.e. ‘P@2014_OrgTags’.

If you want to ignore group tags temporarily, toggle group tags support with
org-toggle-tags-groups, bound to C-c C-x q. If you want to disable tag groups
completely, set org-group-tags to nil.

6.4 Tag searches

Once a system of tags has been set up, it can be used to collect related information into
special lists.

C-c / m or C-c \ org-match-sparse-tree

Create a sparse tree with all headlines matching a tags/property/TODO search.
With a C-u prefix argument, ignore headlines that are not a TODO line. See
Section 10.3.3 [Matching tags and properties], page 105.

C-c a m org-tags-view

Create a global list of tag matches from all agenda files. See Section 10.3.3
[Matching tags and properties], page 105.

C-c a M org-tags-view

Create a global list of tag matches from all agenda files, but check only TODO
items and force checking subitems (see the option org-tags-match-list-

sublevels).

These commands all prompt for a match string which allows basic Boolean logic
like ‘+boss+urgent-project1’, to find entries with tags ‘boss’ and ‘urgent’, but not
‘project1’, or ‘Kathy|Sally’ to find entries which are tagged, like ‘Kathy’ or ‘Sally’.
The full syntax of the search string is rich and allows also matching against TODO
keywords, entry levels and properties. For a complete description with many examples, see
Section 10.3.3 [Matching tags and properties], page 105.

Chapter 7: Properties and columns 64

7 Properties and columns

A property is a key-value pair associated with an entry. Properties can be set so they are
associated with a single entry, with every entry in a tree, or with every entry in an Org
mode file.

There are two main applications for properties in Org mode. First, properties are like
tags, but with a value. Imagine maintaining a file where you document bugs and plan
releases for a piece of software. Instead of using tags like :release_1:, :release_2:, you
can use a property, say :Release:, that in different subtrees has different values, such as
1.0 or 2.0. Second, you can use properties to implement (very basic) database capabilities
in an Org buffer. Imagine keeping track of your music CDs, where properties could be
things such as the album, artist, date of release, number of tracks, and so on.

Properties can be conveniently edited and viewed in column view (see Section 7.5 [Col-
umn view], page 67).

7.1 Property syntax

Properties are key-value pairs. When they are associated with a single entry or with a tree
they need to be inserted into a special drawer (see Section 2.8 [Drawers], page 15) with the
name PROPERTIES, which has to be located right below a headline, and its planning line
(see Section 8.3 [Deadlines and scheduling], page 77) when applicable. Each property is
specified on a single line, with the key (surrounded by colons) first, and the value after it.
Keys are case-insensitives. Here is an example:

* CD collection

** Classic

*** Goldberg Variations

:PROPERTIES:

:Title: Goldberg Variations

:Composer: J.S. Bach

:Artist: Glen Gould

:Publisher: Deutsche Grammophon

:NDisks: 1

:END:

Depending on the value of org-use-property-inheritance, a property set this way will
either be associated with a single entry, or the subtree defined by the entry, see Section 7.4
[Property inheritance], page 67.

You may define the allowed values for a particular property ‘:Xyz:’ by setting a property
‘:Xyz_ALL:’. This special property is inherited, so if you set it in a level 1 entry, it will
apply to the entire tree. When allowed values are defined, setting the corresponding property
becomes easier and is less prone to typing errors. For the example with the CD collection,
we can predefine publishers and the number of disks in a box like this:

* CD collection

:PROPERTIES:

:NDisks_ALL: 1 2 3 4

:Publisher_ALL: "Deutsche Grammophon" Philips EMI

:END:

Chapter 7: Properties and columns 65

If you want to set properties that can be inherited by any entry in a file, use a line like

#+PROPERTY: NDisks_ALL 1 2 3 4

Contrary to properties set from a special drawer, you have to refresh the buffer with C-c

C-c to activate this change.

If you want to add to the value of an existing property, append a + to the property name.
The following results in the property var having the value “foo=1 bar=2”.

#+PROPERTY: var foo=1

#+PROPERTY: var+ bar=2

It is also possible to add to the values of inherited properties. The following results in
the genres property having the value “Classic Baroque” under the Goldberg Variations

subtree.

* CD collection

** Classic

:PROPERTIES:

:GENRES: Classic

:END:

*** Goldberg Variations

:PROPERTIES:

:Title: Goldberg Variations

:Composer: J.S. Bach

:Artist: Glen Gould

:Publisher: Deutsche Grammophon

:NDisks: 1

:GENRES+: Baroque

:END:

Note that a property can only have one entry per Drawer.

Property values set with the global variable org-global-properties can be inherited
by all entries in all Org files.

The following commands help to work with properties:

M-TAB pcomplete

After an initial colon in a line, complete property keys. All keys used in the
current file will be offered as possible completions.

C-c C-x p org-set-property

Set a property. This prompts for a property name and a value. If necessary,
the property drawer is created as well.

C-u M-x org-insert-drawer RET

Insert a property drawer into the current entry. The drawer will be inserted
early in the entry, but after the lines with planning information like deadlines.

C-c C-c org-property-action

With the cursor in a property drawer, this executes property commands.

C-c C-c s org-set-property

Set a property in the current entry. Both the property and the value can be
inserted using completion.

Chapter 7: Properties and columns 66

S-right org-property-next-allowed-value

S-left org-property-previous-allowed-value

Switch property at point to the next/previous allowed value.

C-c C-c d org-delete-property

Remove a property from the current entry.

C-c C-c D org-delete-property-globally

Globally remove a property, from all entries in the current file.

C-c C-c c org-compute-property-at-point

Compute the property at point, using the operator and scope from the nearest
column format definition.

7.2 Special properties

Special properties provide an alternative access method to Org mode features, like the
TODO state or the priority of an entry, discussed in the previous chapters. This interface
exists so that you can include these states in a column view (see Section 7.5 [Column view],
page 67), or to use them in queries. The following property names are special and should
not be used as keys in the properties drawer:

ALLTAGS All tags, including inherited ones.
BLOCKED "t" if task is currently blocked by children or siblings.
CLOCKSUM The sum of CLOCK intervals in the subtree. org-clock-sum

must be run first to compute the values in the current buffer.
CLOCKSUM_T The sum of CLOCK intervals in the subtree for today.

org-clock-sum-today must be run first to compute the
values in the current buffer.

CLOSED When was this entry closed?
DEADLINE The deadline time string, without the angular brackets.
FILE The filename the entry is located in.
ITEM The headline of the entry, with stars.
PRIORITY The priority of the entry, a string with a single letter.
SCHEDULED The scheduling timestamp, without the angular brackets.
TAGS The tags defined directly in the headline.
TIMESTAMP The first keyword-less timestamp in the entry.
TIMESTAMP_IA The first inactive timestamp in the entry.
TODO The TODO keyword of the entry.

7.3 Property searches

To create sparse trees and special lists with selection based on properties, the same com-
mands are used as for tag searches (see Section 6.4 [Tag searches], page 63).

C-c / m or C-c \ org-match-sparse-tree

Create a sparse tree with all matching entries. With a C-u prefix argument,
ignore headlines that are not a TODO line.

C-c a m org-tags-view

Create a global list of tag/property matches from all agenda files. See
Section 10.3.3 [Matching tags and properties], page 105.

Chapter 7: Properties and columns 67

C-c a M org-tags-view

Create a global list of tag matches from all agenda files, but check only TODO
items and force checking of subitems (see the option org-tags-match-list-

sublevels).

The syntax for the search string is described in Section 10.3.3 [Matching tags and prop-
erties], page 105.

There is also a special command for creating sparse trees based on a single property:

C-c / p Create a sparse tree based on the value of a property. This first prompts for
the name of a property, and then for a value. A sparse tree is created with all
entries that define this property with the given value. If you enclose the value
in curly braces, it is interpreted as a regular expression and matched against
the property values.

7.4 Property Inheritance

The outline structure of Org mode documents lends itself to an inheritance model of prop-
erties: if the parent in a tree has a certain property, the children can inherit this property.
Org mode does not turn this on by default, because it can slow down property searches
significantly and is often not needed. However, if you find inheritance useful, you can turn
it on by setting the variable org-use-property-inheritance. It may be set to t to make
all properties inherited from the parent, to a list of properties that should be inherited, or
to a regular expression that matches inherited properties. If a property has the value nil,
this is interpreted as an explicit undefine of the property, so that inheritance search will
stop at this value and return nil.

Org mode has a few properties for which inheritance is hard-coded, at least for the
special applications for which they are used:

COLUMNS The :COLUMNS: property defines the format of column view (see Section 7.5
[Column view], page 67). It is inherited in the sense that the level where a
:COLUMNS: property is defined is used as the starting point for a column view
table, independently of the location in the subtree from where columns view is
turned on.

CATEGORY For agenda view, a category set through a :CATEGORY: property applies to the
entire subtree.

ARCHIVE For archiving, the :ARCHIVE: property may define the archive location for the
entire subtree (see Section 9.6.1 [Moving subtrees], page 98).

LOGGING The LOGGING property may define logging settings for an entry or a subtree
(see Section 5.3.2 [Tracking TODO state changes], page 52).

7.5 Column view

A great way to view and edit properties in an outline tree is column view. In column
view, each outline node is turned into a table row. Columns in this table provide access to
properties of the entries. Org mode implements columns by overlaying a tabular structure
over the headline of each item. While the headlines have been turned into a table row, you
can still change the visibility of the outline tree. For example, you get a compact table

Chapter 7: Properties and columns 68

by switching to CONTENTS view (S-TAB S-TAB, or simply c while column view is active),
but you can still open, read, and edit the entry below each headline. Or, you can switch to
column view after executing a sparse tree command and in this way get a table only for the
selected items. Column view also works in agenda buffers (see Chapter 10 [Agenda views],
page 100) where queries have collected selected items, possibly from a number of files.

7.5.1 Defining columns

Setting up a column view first requires defining the columns. This is done by defining a
column format line.

7.5.1.1 Scope of column definitions

To define a column format for an entire file, use a line like

#+COLUMNS: %25ITEM %TAGS %PRIORITY %TODO

To specify a format that only applies to a specific tree, add a :COLUMNS: property to the
top node of that tree, for example:

** Top node for columns view

:PROPERTIES:

:COLUMNS: %25ITEM %TAGS %PRIORITY %TODO

:END:

If a :COLUMNS: property is present in an entry, it defines columns for the entry itself,
and for the entire subtree below it. Since the column definition is part of the hierarchical
structure of the document, you can define columns on level 1 that are general enough for
all sublevels, and more specific columns further down, when you edit a deeper part of the
tree.

7.5.1.2 Column attributes

A column definition sets the attributes of a column. The general definition looks like this:

%[width]property[(title)][{summary-type}]

Except for the percent sign and the property name, all items are optional. The individual
parts have the following meaning:

width An integer specifying the width of the column in characters.
If omitted, the width will be determined automatically.

property The property that should be edited in this column.
Special properties representing meta data are allowed here
as well (see Section 7.2 [Special properties], page 66)

title The header text for the column. If omitted, the property
name is used.

{summary-type} The summary type. If specified, the column values for
parent nodes are computed from the children.
Supported summary types are:
{+} Sum numbers in this column.
{+;%.1f} Like ‘+’, but format result with ‘%.1f’.
{$} Currency, short for ‘+;%.2f’.
{:} Sum times, HH:MM, plain numbers are hours.
{X} Checkbox status, ‘[X]’ if all children are ‘[X]’.

Chapter 7: Properties and columns 69

{X/} Checkbox status, ‘[n/m]’.
{X%} Checkbox status, ‘[n%]’.
{min} Smallest number in column.
{max} Largest number.
{mean} Arithmetic mean of numbers.
{:min} Smallest time value in column.
{:max} Largest time value.
{:mean} Arithmetic mean of time values.
{@min} Minimum age (in days/hours/mins/seconds).
{@max} Maximum age (in days/hours/mins/seconds).
{@mean} Arithmetic mean of ages (in days/hours/mins/seconds).
{est+} Add ‘low-high’ estimates.

Be aware that you can only have one summary type for any property you include. Subse-
quent columns referencing the same property will all display the same summary information.

The est+ summary type requires further explanation. It is used for combining estimates,
expressed as ‘low-high’ ranges or plain numbers. For example, instead of estimating a
particular task will take 5 days, you might estimate it as 5–6 days if you’re fairly confident
you know how much work is required, or 1–10 days if you don’t really know what needs
to be done. Both ranges average at 5.5 days, but the first represents a more predictable
delivery.

When combining a set of such estimates, simply adding the lows and highs produces
an unrealistically wide result. Instead, est+ adds the statistical mean and variance of the
sub-tasks, generating a final estimate from the sum. For example, suppose you had ten
tasks, each of which was estimated at 0.5 to 2 days of work. Straight addition produces an
estimate of 5 to 20 days, representing what to expect if everything goes either extremely
well or extremely poorly. In contrast, est+ estimates the full job more realistically, at 10–15
days.

Numbers are right-aligned when a format specifier with an explicit width like %5d or
%5.1f is used.

Here is an example for a complete columns definition, along with allowed values.

:COLUMNS: %25ITEM %9Approved(Approved?){X} %Owner %11Status \1

%10Time_Estimate{:} %CLOCKSUM %CLOCKSUM_T

:Owner_ALL: Tammy Mark Karl Lisa Don

:Status_ALL: "In progress" "Not started yet" "Finished" ""

:Approved_ALL: "[]" "[X]"

The first column, ‘%25ITEM’, means the first 25 characters of the item itself, i.e., of the head-
line. You probably always should start the column definition with the ‘ITEM’ specifier. The
other specifiers create columns ‘Owner’ with a list of names as allowed values, for ‘Status’
with four different possible values, and for a checkbox field ‘Approved’. When no width is
given after the ‘%’ character, the column will be exactly as wide as it needs to be in order
to fully display all values. The ‘Approved’ column does have a modified title (‘Approved?’,
with a question mark). Summaries will be created for the ‘Time_Estimate’ column by

1 Please note that the COLUMNS definition must be on a single line—it is wrapped here only be-
cause of formatting constraints.

Chapter 7: Properties and columns 70

adding time duration expressions like HH:MM, and for the ‘Approved’ column, by provid-
ing an ‘[X]’ status if all children have been checked. The ‘CLOCKSUM’ and ‘CLOCKSUM_T’
columns are special, they lists the sums of CLOCK intervals in the subtree, either for all
clocks or just for today.

7.5.2 Using column view

Turning column view on and off
C-c C-x C-c org-columns

Turn on column view. If the cursor is before the first headline in the file, column
view is turned on for the entire file, using the #+COLUMNS definition. If the cursor
is somewhere inside the outline, this command searches the hierarchy, up from
point, for a :COLUMNS: property that defines a format. When one is found, the
column view table is established for the tree starting at the entry that contains
the :COLUMNS: property. If no such property is found, the format is taken from
the #+COLUMNS line or from the variable org-columns-default-format, and
column view is established for the current entry and its subtree.

r org-columns-redo

Recreate the column view, to include recent changes made in the buffer.

g org-columns-redo

Same as r.

q org-columns-quit

Exit column view.

Editing values
left right up down

Move through the column view from field to field.

S-left/right

Switch to the next/previous allowed value of the field. For this, you have to
have specified allowed values for a property.

1..9,0 Directly select the Nth allowed value, 0 selects the 10th value.

n org-columns-next-allowed-value

p org-columns-previous-allowed-value

Same as S-left/right

e org-columns-edit-value

Edit the property at point. For the special properties, this will invoke the same
interface that you normally use to change that property. For example, when
editing a TAGS property, the tag completion or fast selection interface will pop
up.

C-c C-c org-columns-set-tags-or-toggle

When there is a checkbox at point, toggle it.

v org-columns-show-value

View the full value of this property. This is useful if the width of the column is
smaller than that of the value.

Chapter 7: Properties and columns 71

a org-columns-edit-allowed

Edit the list of allowed values for this property. If the list is found in the
hierarchy, the modified value is stored there. If no list is found, the new value
is stored in the first entry that is part of the current column view.

Modifying the table structure
< org-columns-narrow

> org-columns-widen

Make the column narrower/wider by one character.

S-M-right org-columns-new

Insert a new column, to the left of the current column.

S-M-left org-columns-delete

Delete the current column.

7.5.3 Capturing column view

Since column view is just an overlay over a buffer, it cannot be exported or printed directly.
If you want to capture a column view, use a columnview dynamic block (see Section A.7
[Dynamic blocks], page 243). The frame of this block looks like this:

* The column view

#+BEGIN: columnview :hlines 1 :id "label"

#+END:

This dynamic block has the following parameters:

:id This is the most important parameter. Column view is a feature that is often
localized to a certain (sub)tree, and the capture block might be at a different
location in the file. To identify the tree whose view to capture, you can use 4
values:

local use the tree in which the capture block is located
global make a global view, including all headings in the file
"file:path-to-file"

run column view at the top of this file
"ID" call column view in the tree that has an :ID:

property with the value label. You can use
M-x org-id-copy RET to create a globally unique ID for
the current entry and copy it to the kill-ring.

:hlines When t, insert an hline after every line. When a number N, insert an hline
before each headline with level <= N.

:vlines When set to t, force column groups to get vertical lines.

:maxlevel

When set to a number, don’t capture entries below this level.

:skip-empty-rows

When set to t, skip rows where the only non-empty specifier of the column view
is ITEM.

Chapter 7: Properties and columns 72

The following commands insert or update the dynamic block:

C-c C-x i org-insert-columns-dblock

Insert a dynamic block capturing a column view. You will be prompted for the
scope or ID of the view.

C-c C-c or C-c C-x C-u org-dblock-update

Update dynamic block at point. The cursor needs to be in the #+BEGIN line of
the dynamic block.

C-u C-c C-x C-u org-update-all-dblocks

Update all dynamic blocks (see Section A.7 [Dynamic blocks], page 243). This
is useful if you have several clock table blocks, column-capturing blocks or other
dynamic blocks in a buffer.

You can add formulas to the column view table and you may add plotting instructions
in front of the table—these will survive an update of the block. If there is a #+TBLFM: after
the table, the table will actually be recalculated automatically after an update.

An alternative way to capture and process property values into a table is provided by
Eric Schulte’s org-collector.el which is a contributed package2. It provides a general
API to collect properties from entries in a certain scope, and arbitrary Lisp expressions to
process these values before inserting them into a table or a dynamic block.

7.6 The Property API

There is a full API for accessing and changing properties. This API can be used by Emacs
Lisp programs to work with properties and to implement features based on them. For more
information see Section A.11 [Using the property API], page 247.

2 Contributed packages are not part of Emacs, but are distributed with the main distribution of Org (visit
http://orgmode.org).

http://orgmode.org

Chapter 8: Dates and times 73

8 Dates and times

To assist project planning, TODO items can be labeled with a date and/or a time. The
specially formatted string carrying the date and time information is called a timestamp in
Org mode. This may be a little confusing because timestamp is often used to indicate when
something was created or last changed. However, in Org mode this term is used in a much
wider sense.

8.1 Timestamps, deadlines, and scheduling

A timestamp is a specification of a date (possibly with a time or a range of times) in a
special format, either ‘<2003-09-16 Tue>’1 or ‘<2003-09-16 Tue 09:39>’ or ‘<2003-09-16
Tue 12:00-12:30>’2. A timestamp can appear anywhere in the headline or body of an Org
tree entry. Its presence causes entries to be shown on specific dates in the agenda (see
Section 10.3.1 [Weekly/daily agenda], page 102). We distinguish:

Plain timestamp; Event; Appointment
A simple timestamp just assigns a date/time to an item. This is just like writing
down an appointment or event in a paper agenda. In the timeline and agenda
displays, the headline of an entry associated with a plain timestamp will be
shown exactly on that date.

* Meet Peter at the movies

<2006-11-01 Wed 19:15>

* Discussion on climate change

<2006-11-02 Thu 20:00-22:00>

Timestamp with repeater interval
A timestamp may contain a repeater interval, indicating that it applies not only
on the given date, but again and again after a certain interval of N days (d),
weeks (w), months (m), or years (y). The following will show up in the agenda
every Wednesday:

* Pick up Sam at school

<2007-05-16 Wed 12:30 +1w>

Diary-style sexp entries
For more complex date specifications, Org mode supports using the special sexp
diary entries implemented in the Emacs calendar/diary package3. For example
with optional time

1 In this simplest form, the day name is optional when you type the date yourself. However, any dates
inserted or modified by Org will add that day name, for reading convenience.

2 This is inspired by the standard ISO 8601 date/time format. To use an alternative format, see
Section 8.2.2 [Custom time format], page 77.

3 When working with the standard diary sexp functions, you need to be very careful with the order of
the arguments. That order depends evilly on the variable calendar-date-style (or, for older Emacs
versions, european-calendar-style). For example, to specify a date December 1, 2005, the call might
look like (diary-date 12 1 2005) or (diary-date 1 12 2005) or (diary-date 2005 12 1), depending on
the settings. This has been the source of much confusion. Org mode users can resort to special versions
of these functions like org-date or org-anniversary. These work just like the corresponding diary-

functions, but with stable ISO order of arguments (year, month, day) wherever applicable, independent
of the value of calendar-date-style.

Chapter 8: Dates and times 74

* 22:00-23:00 The nerd meeting on every 2nd Thursday of the month

<%%(diary-float t 4 2)>

Time/Date range
Two timestamps connected by ‘--’ denote a range. The headline will be shown
on the first and last day of the range, and on any dates that are displayed and
fall in the range. Here is an example:

** Meeting in Amsterdam

<2004-08-23 Mon>--<2004-08-26 Thu>

Inactive timestamp
Just like a plain timestamp, but with square brackets instead of angular ones.
These timestamps are inactive in the sense that they do not trigger an entry
to show up in the agenda.

* Gillian comes late for the fifth time

[2006-11-01 Wed]

8.2 Creating timestamps

For Org mode to recognize timestamps, they need to be in the specific format. All commands
listed below produce timestamps in the correct format.

C-c . org-time-stamp

Prompt for a date and insert a corresponding timestamp. When the cursor is
at an existing timestamp in the buffer, the command is used to modify this
timestamp instead of inserting a new one. When this command is used twice
in succession, a time range is inserted.

C-c ! org-time-stamp-inactive

Like C-c ., but insert an inactive timestamp that will not cause an agenda
entry.

C-u C-c .

C-u C-c ! Like C-c . and C-c !, but use the alternative format which contains date and
time. The default time can be rounded to multiples of 5 minutes, see the option
org-time-stamp-rounding-minutes.

C-c C-c Normalize timestamp, insert/fix day name if missing or wrong.

C-c < org-date-from-calendar

Insert a timestamp corresponding to the cursor date in the Calendar.

C-c > org-goto-calendar

Access the Emacs calendar for the current date. If there is a timestamp in the
current line, go to the corresponding date instead.

C-c C-o org-open-at-point

Access the agenda for the date given by the timestamp or -range at point (see
Section 10.3.1 [Weekly/daily agenda], page 102).

S-left org-timestamp-down-day

S-right org-timestamp-up-day

Change date at cursor by one day. These key bindings conflict with shift-
selection and related modes (see Section 15.10.2 [Conflicts], page 233).

Chapter 8: Dates and times 75

S-up org-timestamp-up

S-down org-timestamp-down-down

Change the item under the cursor in a timestamp. The cursor can be on a year,
month, day, hour or minute. When the timestamp contains a time range like
‘15:30-16:30’, modifying the first time will also shift the second, shifting the
time block with constant length. To change the length, modify the second time.
Note that if the cursor is in a headline and not at a timestamp, these same keys
modify the priority of an item. (see Section 5.4 [Priorities], page 55). The key
bindings also conflict with shift-selection and related modes (see Section 15.10.2
[Conflicts], page 233).

C-c C-y org-evaluate-time-range

Evaluate a time range by computing the difference between start and end.
With a prefix argument, insert result after the time range (in a table: into the
following column).

8.2.1 The date/time prompt

When Org mode prompts for a date/time, the default is shown in default date/time format,
and the prompt therefore seems to ask for a specific format. But it will in fact accept
date/time information in a variety of formats. Generally, the information should start at
the beginning of the string. Org mode will find whatever information is in there and derive
anything you have not specified from the default date and time. The default is usually
the current date and time, but when modifying an existing timestamp, or when entering
the second stamp of a range, it is taken from the stamp in the buffer. When filling in
information, Org mode assumes that most of the time you will want to enter a date in the
future: if you omit the month/year and the given day/month is before today, it will assume
that you mean a future date4. If the date has been automatically shifted into the future,
the time prompt will show this with ‘(=>F).’

For example, let’s assume that today is June 13, 2006. Here is how various inputs will
be interpreted, the items filled in by Org mode are in bold.

3-2-5 ⇒ 2003-02-05

2/5/3 ⇒ 2003-02-05

14 ⇒ 2006-06-14
12 ⇒ 2006-07-12
2/5 ⇒ 2007-02-05
Fri ⇒ nearest Friday after the default date

sep 15 ⇒ 2006-09-15
feb 15 ⇒ 2007-02-15
sep 12 9 ⇒ 2009-09-12

12:45 ⇒ 2006-06-13 12:45

22 sept 0:34 ⇒ 2006-09-22 00:34

w4 ⇒ ISO week for of the current year 2006
2012 w4 fri ⇒ Friday of ISO week 4 in 2012

2012-w04-5 ⇒ Same as above

4 See the variable org-read-date-prefer-future. You may set that variable to the symbol time to even
make a time before now shift the date to tomorrow.

Chapter 8: Dates and times 76

Furthermore you can specify a relative date by giving, as the first thing in the input: a
plus/minus sign, a number and a letter ([hdwmy]) to indicate change in hours, days, weeks,
months, or years. With a single plus or minus, the date is always relative to today. With a
double plus or minus, it is relative to the default date. If instead of a single letter, you use
the abbreviation of day name, the date will be the Nth such day, e.g.:

+0 ⇒ today

. ⇒ today

+4d ⇒ four days from today

+4 ⇒ same as above

+2w ⇒ two weeks from today

++5 ⇒ five days from default date

+2tue ⇒ second Tuesday from now

-wed ⇒ last Wednesday

The function understands English month and weekday abbreviations. If you want to use
unabbreviated names and/or other languages, configure the variables parse-time-months
and parse-time-weekdays.

Not all dates can be represented in a given Emacs implementation. By default Org mode
forces dates into the compatibility range 1970–2037 which works on all Emacs implemen-
tations. If you want to use dates outside of this range, read the docstring of the variable
org-read-date-force-compatible-dates.

You can specify a time range by giving start and end times or by giving a start time
and a duration (in HH:MM format). Use one or two dash(es) as the separator in the former
case and use ’+’ as the separator in the latter case, e.g.:

11am-1:15pm ⇒ 11:00-13:15

11am--1:15pm ⇒ same as above

11am+2:15 ⇒ same as above

Parallel to the minibuffer prompt, a calendar is popped up5. When you exit the date
prompt, either by clicking on a date in the calendar, or by pressing RET, the date selected in
the calendar will be combined with the information entered at the prompt. You can control
the calendar fully from the minibuffer:

RET Choose date at cursor in calendar.
mouse-1 Select date by clicking on it.
S-right/left One day forward/backward.
S-down/up One week forward/backward.
M-S-right/left One month forward/backward.
> / < Scroll calendar forward/backward by one month.
M-v / C-v Scroll calendar forward/backward by 3 months.
M-S-down/up Scroll calendar forward/backward by one year.

The actions of the date/time prompt may seem complex, but I assure you they will grow
on you, and you will start getting annoyed by pretty much any other way of entering a
date/time out there. To help you understand what is going on, the current interpretation
of your input will be displayed live in the minibuffer6.

5 If you don’t need/want the calendar, configure the variable org-popup-calendar-for-date-prompt.
6 If you find this distracting, turn the display off with org-read-date-display-live.

Chapter 8: Dates and times 77

8.2.2 Custom time format

Org mode uses the standard ISO notation for dates and times as it is defined in ISO 8601.
If you cannot get used to this and require another representation of date and time to keep
you happy, you can get it by customizing the options org-display-custom-times and
org-time-stamp-custom-formats.

C-c C-x C-t org-toggle-time-stamp-overlays

Toggle the display of custom formats for dates and times.

Org mode needs the default format for scanning, so the custom date/time format does not
replace the default format—instead it is put over the default format using text properties.
This has the following consequences:

• You cannot place the cursor onto a timestamp anymore, only before or after.

• The S-up/down keys can no longer be used to adjust each component of a timestamp.
If the cursor is at the beginning of the stamp, S-up/down will change the stamp by one
day, just like S-left/right. At the end of the stamp, the time will be changed by one
minute.

• If the timestamp contains a range of clock times or a repeater, these will not be overlaid,
but remain in the buffer as they were.

• When you delete a timestamp character-by-character, it will only disappear from the
buffer after all (invisible) characters belonging to the ISO timestamp have been re-
moved.

• If the custom timestamp format is longer than the default and you are using dates in
tables, table alignment will be messed up. If the custom format is shorter, things do
work as expected.

8.3 Deadlines and scheduling

A timestamp may be preceded by special keywords to facilitate planning:

DEADLINE
Meaning: the task (most likely a TODO item, though not necessarily) is sup-
posed to be finished on that date.

On the deadline date, the task will be listed in the agenda. In addition, the
agenda for today will carry a warning about the approaching or missed deadline,
starting org-deadline-warning-days before the due date, and continuing until
the entry is marked DONE. An example:

*** TODO write article about the Earth for the Guide

DEADLINE: <2004-02-29 Sun>

The editor in charge is [[bbdb:Ford Prefect]]

You can specify a different lead time for warnings for a specific deadline us-
ing the following syntax. Here is an example with a warning period of 5
days DEADLINE: <2004-02-29 Sun -5d>. This warning is deactivated if the
task gets scheduled and you set org-agenda-skip-deadline-prewarning-if-
scheduled to t.

SCHEDULED
Meaning: you are planning to start working on that task on the given date.

Chapter 8: Dates and times 78

The headline will be listed under the given date7. In addition, a reminder that
the scheduled date has passed will be present in the compilation for today, until
the entry is marked DONE, i.e., the task will automatically be forwarded until
completed.

*** TODO Call Trillian for a date on New Years Eve.

SCHEDULED: <2004-12-25 Sat>

If you want to delay the display of this task in the agenda, use SCHEDULED:

<2004-12-25 Sat -2d>: the task is still scheduled on the 25th but will appear
two days later. In case the task contains a repeater, the delay is considered to
affect all occurrences; if you want the delay to only affect the first scheduled
occurrence of the task, use --2d instead. See org-scheduled-delay-days

and org-agenda-skip-scheduled-delay-if-deadline for details on how to
control this globally or per agenda.

Important: Scheduling an item in Org mode should not be understood in the
same way that we understand scheduling a meeting. Setting a date for a meet-
ing is just a simple appointment, you should mark this entry with a simple
plain timestamp, to get this item shown on the date where it applies. This
is a frequent misunderstanding by Org users. In Org mode, scheduling means
setting a date when you want to start working on an action item.

You may use timestamps with repeaters in scheduling and deadline entries. Org mode
will issue early and late warnings based on the assumption that the timestamp repre-
sents the nearest instance of the repeater. However, the use of diary sexp entries like
<%%(diary-float t 42)> in scheduling and deadline timestamps is limited. Org mode
does not know enough about the internals of each sexp function to issue early and late
warnings. However, it will show the item on each day where the sexp entry matches.

8.3.1 Inserting deadlines or schedules

The following commands allow you to quickly insert8 a deadline or to schedule an item:

C-c C-d org-deadline

Insert ‘DEADLINE’ keyword along with a stamp. The insertion will happen in the
line directly following the headline. Any CLOSED timestamp will be removed.
When called with a prefix arg, an existing deadline will be removed from the
entry. Depending on the variable org-log-redeadline9, a note will be taken
when changing an existing deadline.

C-c C-s org-schedule

Insert ‘SCHEDULED’ keyword along with a stamp. The insertion will happen
in the line directly following the headline. Any CLOSED timestamp will be
removed. When called with a prefix argument, remove the scheduling date

7 It will still be listed on that date after it has been marked DONE. If you don’t like this, set the variable
org-agenda-skip-scheduled-if-done.

8 The ‘SCHEDULED’ and ‘DEADLINE’ dates are inserted on the line right below the headline. Don’t put any
text between this line and the headline.

9 with corresponding #+STARTUP keywords logredeadline, lognoteredeadline, and nologredeadline

Chapter 8: Dates and times 79

from the entry. Depending on the variable org-log-reschedule10, a note will
be taken when changing an existing scheduling time.

C-c / d org-check-deadlines

Create a sparse tree with all deadlines that are either past-due, or which will
become due within org-deadline-warning-days. With C-u prefix, show all
deadlines in the file. With a numeric prefix, check that many days. For example,
C-1 C-c / d shows all deadlines due tomorrow.

C-c / b org-check-before-date

Sparse tree for deadlines and scheduled items before a given date.

C-c / a org-check-after-date

Sparse tree for deadlines and scheduled items after a given date.

Note that org-schedule and org-deadline supports setting the date by indicating a
relative time: e.g., +1d will set the date to the next day after today, and –1w will set the
date to the previous week before any current timestamp.

8.3.2 Repeated tasks

Some tasks need to be repeated again and again. Org mode helps to organize such tasks
using a so-called repeater in a DEADLINE, SCHEDULED, or plain timestamp. In the
following example

** TODO Pay the rent

DEADLINE: <2005-10-01 Sat +1m>

the +1m is a repeater; the intended interpretation is that the task has a deadline on <2005-
10-01> and repeats itself every (one) month starting from that time. You can use yearly,
monthly, weekly, daily and hourly repeat cookies by using the y/w/m/d/h letters. If you
need both a repeater and a special warning period in a deadline entry, the repeater should
come first and the warning period last: DEADLINE: <2005-10-01 Sat +1m -3d>.

Deadlines and scheduled items produce entries in the agenda when they are over-due,
so it is important to be able to mark such an entry as completed once you have done so.
When you mark a DEADLINE or a SCHEDULE with the TODO keyword DONE, it will
no longer produce entries in the agenda. The problem with this is, however, that then also
the next instance of the repeated entry will not be active. Org mode deals with this in the
following way: When you try to mark such an entry DONE (using C-c C-t), it will shift
the base date of the repeating timestamp by the repeater interval, and immediately set
the entry state back to TODO11. In the example above, setting the state to DONE would
actually switch the date like this:

** TODO Pay the rent

DEADLINE: <2005-11-01 Tue +1m>

To mark a task with a repeater as DONE, use C-- 1 C-c C-t (i.e., org-todo with a numeric
prefix argument of -1.)

10 with corresponding #+STARTUP keywords logreschedule, lognotereschedule, and nologreschedule
11 In fact, the target state is taken from, in this sequence, the REPEAT_TO_STATE property or the variable

org-todo-repeat-to-state. If neither of these is specified, the target state defaults to the first state of
the TODO state sequence.

Chapter 8: Dates and times 80

A timestamp12 will be added under the deadline, to keep a record that you actually
acted on the previous instance of this deadline.

As a consequence of shifting the base date, this entry will no longer be visible in the
agenda when checking past dates, but all future instances will be visible.

With the ‘+1m’ cookie, the date shift will always be exactly one month. So if you have
not paid the rent for three months, marking this entry DONE will still keep it as an overdue
deadline. Depending on the task, this may not be the best way to handle it. For example,
if you forgot to call your father for 3 weeks, it does not make sense to call him 3 times in a
single day to make up for it. Finally, there are tasks like changing batteries which should
always repeat a certain time after the last time you did it. For these tasks, Org mode has
special repeaters ‘++’ and ‘.+’. For example:

** TODO Call Father

DEADLINE: <2008-02-10 Sun ++1w>

Marking this DONE will shift the date by at least one week,

but also by as many weeks as it takes to get this date into

the future. However, it stays on a Sunday, even if you called

and marked it done on Saturday.

** TODO Check the batteries in the smoke detectors

DEADLINE: <2005-11-01 Tue .+1m>

Marking this DONE will shift the date to one month after

today.

You may have both scheduling and deadline information for a specific task. If the
repeater is set for the scheduling information only, you probably want the repeater to
be ignored after the deadline. If so, set the variable org-agenda-skip-scheduled-if-

deadline-is-shown to repeated-after-deadline. If you want both scheduling and dead-
line information to repeat after the same interval, set the same repeater for both timestamps.

An alternative to using a repeater is to create a number of copies of a task subtree,
with dates shifted in each copy. The command C-c C-x c was created for this purpose, it
is described in Section 2.5 [Structure editing], page 9.

8.4 Clocking work time

Org mode allows you to clock the time you spend on specific tasks in a project. When you
start working on an item, you can start the clock. When you stop working on that task,
or when you mark the task done, the clock is stopped and the corresponding time interval
is recorded. It also computes the total time spent on each subtree13 of a project. And
it remembers a history or tasks recently clocked, so that you can jump quickly between a
number of tasks absorbing your time.

To save the clock history across Emacs sessions, use

(setq org-clock-persist 'history)

(org-clock-persistence-insinuate)

12 You can change this using the option org-log-repeat, or the #+STARTUP options logrepeat,
lognoterepeat, and nologrepeat. With lognoterepeat, you will also be prompted for a note.

13 Clocking only works if all headings are indented with less than 30 stars. This is a hardcoded limitation
of lmax in org-clock-sum.

Chapter 8: Dates and times 81

When you clock into a new task after resuming Emacs, the incomplete clock14 will be
found (see Section 8.4.3 [Resolving idle time], page 85) and you will be prompted about
what to do with it.

8.4.1 Clocking commands

C-c C-x C-i org-clock-in

Start the clock on the current item (clock-in). This inserts the CLOCK key-
word together with a timestamp. If this is not the first clocking of this item, the
multiple CLOCK lines will be wrapped into a :LOGBOOK: drawer (see also the
variable org-clock-into-drawer). You can also overrule the setting of this
variable for a subtree by setting a CLOCK_INTO_DRAWER or LOG_INTO_DRAWER

property. When called with a C-u prefix argument, select the task from a list of
recently clocked tasks. With two C-u C-u prefixes, clock into the task at point
and mark it as the default task; the default task will then always be available
with letter d when selecting a clocking task. With three C-u C-u C-u prefixes,
force continuous clocking by starting the clock when the last clock stopped.
While the clock is running, the current clocking time is shown in the mode
line, along with the title of the task. The clock time shown will be all time
ever clocked for this task and its children. If the task has an effort estimate
(see Section 8.5 [Effort estimates], page 86), the mode line displays the current
clocking time against it15 If the task is a repeating one (see Section 8.3.2 [Re-
peated tasks], page 79), only the time since the last reset of the task16 will be
shown. More control over what time is shown can be exercised with the CLOCK_
MODELINE_TOTAL property. It may have the values current to show only the
current clocking instance, today to show all time clocked on this tasks today
(see also the variable org-extend-today-until), all to include all time, or
auto which is the default17.
Clicking with mouse-1 onto the mode line entry will pop up a menu with clock-
ing options.

C-c C-x C-o org-clock-out

Stop the clock (clock-out). This inserts another timestamp at the same location
where the clock was last started. It also directly computes the resulting time
and inserts it after the time range as ‘=> HH:MM’. See the variable org-log-

note-clock-out for the possibility to record an additional note together with
the clock-out timestamp18.

C-c C-x C-x org-clock-in-last

Reclock the last clocked task. With one C-u prefix argument, select the task
from the clock history. With two C-u prefixes, force continuous clocking by
starting the clock when the last clock stopped.

14 To resume the clock under the assumption that you have worked on this task while outside Emacs, use
(setq org-clock-persist t).

15 To add an effort estimate “on the fly”, hook a function doing this to org-clock-in-prepare-hook.
16 as recorded by the LAST_REPEAT property
17 See also the variable org-clock-modeline-total.
18 The corresponding in-buffer setting is: #+STARTUP: lognoteclock-out

Chapter 8: Dates and times 82

C-c C-x C-e org-clock-modify-effort-estimate

Update the effort estimate for the current clock task.

C-c C-c or C-c C-y org-evaluate-time-range

Recompute the time interval after changing one of the timestamps. This is
only necessary if you edit the timestamps directly. If you change them with
S-cursor keys, the update is automatic.

C-S-up/down org-clock-timestamps-up/down

On CLOCK log lines, increase/decrease both timestamps so that the clock dura-
tion keeps the same.

S-M-up/down org-timestamp-up/down

On CLOCK log lines, increase/decrease the timestamp at point and the one of
the previous (or the next clock) timestamp by the same duration. For example,
if you hit S-M-up to increase a clocked-out timestamp by five minutes, then the
clocked-in timestamp of the next clock will be increased by five minutes.

C-c C-t org-todo

Changing the TODO state of an item to DONE automatically stops the clock
if it is running in this same item.

C-c C-x C-q org-clock-cancel

Cancel the current clock. This is useful if a clock was started by mistake, or if
you ended up working on something else.

C-c C-x C-j org-clock-goto

Jump to the headline of the currently clocked in task. With a C-u prefix arg,
select the target task from a list of recently clocked tasks.

C-c C-x C-d org-clock-display

Display time summaries for each subtree in the current buffer. This puts over-
lays at the end of each headline, showing the total time recorded under that
heading, including the time of any subheadings. You can use visibility cycling
to study the tree, but the overlays disappear when you change the buffer (see
variable org-remove-highlights-with-change) or press C-c C-c.

The l key may be used in the timeline (see Section 10.3.4 [Timeline], page 107) and in
the agenda (see Section 10.3.1 [Weekly/daily agenda], page 102) to show which tasks have
been worked on or closed during a day.

Important: note that both org-clock-out and org-clock-in-last can have a global
keybinding and will not modify the window disposition.

8.4.2 The clock table

Org mode can produce quite complex reports based on the time clocking information. Such
a report is called a clock table, because it is formatted as one or several Org tables.

C-c C-x C-r org-clock-report

Insert a dynamic block (see Section A.7 [Dynamic blocks], page 243) containing
a clock report as an Org mode table into the current file. When the cursor is
at an existing clock table, just update it. When called with a prefix argument,

Chapter 8: Dates and times 83

jump to the first clock report in the current document and update it. The clock
table always includes also trees with :ARCHIVE: tag.

C-c C-c or C-c C-x C-u org-dblock-update

Update dynamic block at point. The cursor needs to be in the #+BEGIN line of
the dynamic block.

C-u C-c C-x C-u

Update all dynamic blocks (see Section A.7 [Dynamic blocks], page 243). This
is useful if you have several clock table blocks in a buffer.

S-left

S-right org-clocktable-try-shift

Shift the current :block interval and update the table. The cursor needs to be
in the #+BEGIN: clocktable line for this command. If :block is today, it will
be shifted to today-1 etc.

Here is an example of the frame for a clock table as it is inserted into the buffer with
the C-c C-x C-r command:

#+BEGIN: clocktable :maxlevel 2 :emphasize nil :scope file

#+END: clocktable

The ‘BEGIN’ line specifies a number of options to define the scope, structure, and for-
matting of the report. Defaults for all these options can be configured in the variable
org-clocktable-defaults.

First there are options that determine which clock entries are to be selected:

:maxlevel Maximum level depth to which times are listed in the table.
Clocks at deeper levels will be summed into the upper level.

:scope The scope to consider. This can be any of the following:
nil the current buffer or narrowed region
file the full current buffer
subtree the subtree where the clocktable is located
treeN the surrounding level N tree, for example tree3
tree the surrounding level 1 tree
agenda all agenda files
("file"..) scan these files
file-with-archives current file and its archives
agenda-with-archives all agenda files, including archives

:block The time block to consider. This block is specified either
absolutely, or relative to the current time and may be any of
these formats:
2007-12-31 New year eve 2007
2007-12 December 2007
2007-W50 ISO-week 50 in 2007
2007-Q2 2nd quarter in 2007
2007 the year 2007
today, yesterday, today-N a relative day
thisweek, lastweek, thisweek-N a relative week
thismonth, lastmonth, thismonth-N a relative month

Chapter 8: Dates and times 84

thisyear, lastyear, thisyear-N a relative year
untilnow

Use S-left/right keys to shift the time interval.
:tstart A time string specifying when to start considering times.

Relative times like "<-2w>" can also be used. See
Section 10.3.3 [Matching tags and properties], page 105 for relative time syntax.

:tend A time string specifying when to stop considering times.
Relative times like "<now>" can also be used. See
Section 10.3.3 [Matching tags and properties], page 105 for relative time syntax.

:wstart The starting day of the week. The default is 1 for monday.
:mstart The starting day of the month. The default 1 is for the first

day of the month.
:step week or day, to split the table into chunks.

To use this, :block or :tstart, :tend are needed.
:stepskip0 Do not show steps that have zero time.
:fileskip0 Do not show table sections from files which did not contribute.
:tags A tags match to select entries that should contribute. See

Section 10.3.3 [Matching tags and properties], page 105 for the match syntax.

Then there are options which determine the formatting of the table. These options are
interpreted by the function org-clocktable-write-default, but you can specify your own
function using the :formatter parameter.

:emphasize When t, emphasize level one and level two items.
:lang Language19 to use for descriptive cells like "Task".
:link Link the item headlines in the table to their origins.
:narrow An integer to limit the width of the headline column in

the org table. If you write it like ‘50!’, then the
headline will also be shortened in export.

:indent Indent each headline field according to its level.
:tcolumns Number of columns to be used for times. If this is smaller

than :maxlevel, lower levels will be lumped into one column.
:level Should a level number column be included?
:sort A cons cell like containing the column to sort and a sorting type.

E.g., :sort (1 . ?a) sorts the first column alphabetically.
:compact Abbreviation for :level nil :indent t :narrow 40! :tcolumns 1

All are overwritten except if there is an explicit :narrow
:timestamp A timestamp for the entry, when available. Look for SCHEDULED,

DEADLINE, TIMESTAMP and TIMESTAMP IA, in this order.
:properties List of properties that should be shown in the table. Each

property will get its own column.
:inherit-props When this flag is t, the values for :properties will be inherited.
:formula Content of a #+TBLFM line to be added and evaluated.

As a special case, ‘:formula %’ adds a column with % time.
If you do not specify a formula here, any existing formula
below the clock table will survive updates and be evaluated.

:formatter A function to format clock data and insert it into the buffer.

19 Language terms can be set through the variable org-clock-clocktable-language-setup.

Chapter 8: Dates and times 85

To get a clock summary of the current level 1 tree, for the current day, you could write

#+BEGIN: clocktable :maxlevel 2 :block today :scope tree1 :link t

#+END: clocktable

and to use a specific time range you could write20

#+BEGIN: clocktable :tstart "<2006-08-10 Thu 10:00>"

:tend "<2006-08-10 Thu 12:00>"

#+END: clocktable

A range starting a week ago and ending right now could be written as

#+BEGIN: clocktable :tstart "<-1w>" :tend "<now>"

#+END: clocktable

A summary of the current subtree with % times would be

#+BEGIN: clocktable :scope subtree :link t :formula %

#+END: clocktable

A horizontally compact representation of everything clocked during last week would be

#+BEGIN: clocktable :scope agenda :block lastweek :compact t

#+END: clocktable

8.4.3 Resolving idle time and continuous clocking

Resolving idle time

If you clock in on a work item, and then walk away from your computer—perhaps to take
a phone call—you often need to “resolve” the time you were away by either subtracting it
from the current clock, or applying it to another one.

By customizing the variable org-clock-idle-time to some integer, such as 10 or 15,
Emacs can alert you when you get back to your computer after being idle for that many
minutes21, and ask what you want to do with the idle time. There will be a question waiting
for you when you get back, indicating how much idle time has passed (constantly updated
with the current amount), as well as a set of choices to correct the discrepancy:

k To keep some or all of the minutes and stay clocked in, press k. Org will ask how
many of the minutes to keep. Press RET to keep them all, effectively changing
nothing, or enter a number to keep that many minutes.

K If you use the shift key and press K, it will keep however many minutes you
request and then immediately clock out of that task. If you keep all of the
minutes, this is the same as just clocking out of the current task.

s To keep none of the minutes, use s to subtract all the away time from the clock,
and then check back in from the moment you returned.

20 Note that all parameters must be specified in a single line—the line is broken here only to fit it into the
manual.

21 On computers using Mac OS X, idleness is based on actual user idleness, not just Emacs’ idle time. For
X11, you can install a utility program x11idle.c, available in the contrib/scripts directory of the
Org git distribution, or install the xprintidle package and set it to the variable org-clock-x11idle-

program-name if you are running Debian, to get the same general treatment of idleness. On other systems,
idle time refers to Emacs idle time only.

Chapter 8: Dates and times 86

S To keep none of the minutes and just clock out at the start of the away time,
use the shift key and press S. Remember that using shift will always leave you
clocked out, no matter which option you choose.

C To cancel the clock altogether, use C. Note that if instead of canceling you
subtract the away time, and the resulting clock amount is less than a minute,
the clock will still be canceled rather than clutter up the log with an empty
entry.

What if you subtracted those away minutes from the current clock, and now want to
apply them to a new clock? Simply clock in to any task immediately after the subtraction.
Org will notice that you have subtracted time “on the books”, so to speak, and will ask if
you want to apply those minutes to the next task you clock in on.

There is one other instance when this clock resolution magic occurs. Say you were
clocked in and hacking away, and suddenly your cat chased a mouse who scared a hamster
that crashed into your UPS’s power button! You suddenly lose all your buffers, but thanks
to auto-save you still have your recent Org mode changes, including your last clock in.

If you restart Emacs and clock into any task, Org will notice that you have a dangling
clock which was never clocked out from your last session. Using that clock’s starting time
as the beginning of the unaccounted-for period, Org will ask how you want to resolve that
time. The logic and behavior is identical to dealing with away time due to idleness; it is
just happening due to a recovery event rather than a set amount of idle time.

You can also check all the files visited by your Org agenda for dangling clocks at any
time using M-x org-resolve-clocks RET (or C-c C-x C-z).

Continuous clocking

You may want to start clocking from the time when you clocked out the previous task. To
enable this systematically, set org-clock-continuously to t. Each time you clock in, Org
retrieves the clock-out time of the last clocked entry for this session, and start the new clock
from there.

If you only want this from time to time, use three universal prefix arguments with
org-clock-in and two C-u C-u with org-clock-in-last.

8.5 Effort estimates

If you want to plan your work in a very detailed way, or if you need to produce offers with
quotations of the estimated work effort, you may want to assign effort estimates to entries.
If you are also clocking your work, you may later want to compare the planned effort with
the actual working time, a great way to improve planning estimates. Effort estimates are
stored in a special property EFFORT. You can set the effort for an entry with the following
commands:

C-c C-x e org-set-effort

Set the effort estimate for the current entry. With a numeric prefix argument,
set it to the Nth allowed value (see below). This command is also accessible
from the agenda with the e key.

C-c C-x C-e org-clock-modify-effort-estimate

Modify the effort estimate of the item currently being clocked.

Chapter 8: Dates and times 87

Clearly the best way to work with effort estimates is through column view (see Section 7.5
[Column view], page 67). You should start by setting up discrete values for effort estimates,
and a COLUMNS format that displays these values together with clock sums (if you want to
clock your time). For a specific buffer you can use

#+PROPERTY: Effort_ALL 0 0:10 0:30 1:00 2:00 3:00 4:00 5:00 6:00 7:00

#+COLUMNS: %40ITEM(Task) %17Effort(Estimated Effort){:} %CLOCKSUM

or, even better, you can set up these values globally by customizing the variables
org-global-properties and org-columns-default-format. In particular if you want to
use this setup also in the agenda, a global setup may be advised.

The way to assign estimates to individual items is then to switch to column mode, and
to use S-right and S-left to change the value. The values you enter will immediately be
summed up in the hierarchy. In the column next to it, any clocked time will be displayed.

If you switch to column view in the daily/weekly agenda, the effort column will sum-
marize the estimated work effort for each day22, and you can use this to find space in your
schedule. To get an overview of the entire part of the day that is committed, you can set
the option org-agenda-columns-add-appointments-to-effort-sum. The appointments
on a day that take place over a specified time interval will then also be added to the load
estimate of the day.

Effort estimates can be used in secondary agenda filtering that is triggered with the
/ key in the agenda (see Section 10.5 [Agenda commands], page 113). If you have these
estimates defined consistently, two or three key presses will narrow down the list to stuff
that fits into an available time slot.

8.6 Taking notes with a timer

Org provides provides two types of timers. There is a relative timer that counts up, which
can be useful when taking notes during, for example, a meeting or a video viewing. There
is also a countdown timer.

The relative and countdown are started with separate commands.

C-c C-x 0 org-timer-start

Start or reset the relative timer. By default, the timer is set to 0. When
called with a C-u prefix, prompt the user for a starting offset. If there is a
timer string at point, this is taken as the default, providing a convenient way
to restart taking notes after a break in the process. When called with a double
prefix argument C-u C-u, change all timer strings in the active region by a
certain amount. This can be used to fix timer strings if the timer was not
started at exactly the right moment.

C-c C-x ; org-timer-set-timer

Start a countdown timer. The user is prompted for a duration. org-timer-

default-timer sets the default countdown value. Giving a prefix numeric
argument overrides this default value. This command is available as ; in agenda
buffers.

22 Please note the pitfalls of summing hierarchical data in a flat list (see Section 10.8 [Agenda column view],
page 126).

Chapter 8: Dates and times 88

Once started, relative and countdown timers are controlled with the same commands.

C-c C-x . org-timer

Insert the value of the current relative or countdown timer into the buffer. If no
timer is running, the relative timer will be started. When called with a prefix
argument, the relative timer is restarted.

C-c C-x - org-timer-item

Insert a description list item with the value of the current relative or countdown
timer. With a prefix argument, first reset the relative timer to 0.

M-RET org-insert-heading

Once the timer list is started, you can also use M-RET to insert new timer items.

C-c C-x \ org-timer-pause-or-continue

Pause the timer, or continue it if it is already paused.

C-c C-x _ org-timer-stop

Stop the timer. After this, you can only start a new timer, not continue the old
one. This command also removes the timer from the mode line.

Chapter 9: Capture - Refile - Archive 89

9 Capture - Refile - Archive

An important part of any organization system is the ability to quickly capture new ideas
and tasks, and to associate reference material with them. Org does this using a process
called capture. It also can store files related to a task (attachments) in a special directory.
Once in the system, tasks and projects need to be moved around. Moving completed project
trees to an archive file keeps the system compact and fast.

9.1 Capture

Capture lets you quickly store notes with little interruption of your work flow. Org’s method
for capturing new items is heavily inspired by John Wiegley excellent remember.el pack-
age. Up to version 6.36, Org used a special setup for remember.el, then replaced it with
org-remember.el. As of version 8.0, org-remember.el has been completely replaced by
org-capture.el.

If your configuration depends on org-remember.el, you need to update it and use the
setup described below. To convert your org-remember-templates, run the command

M-x org-capture-import-remember-templates RET

and then customize the new variable with M-x customize-variable org-capture-

templates, check the result, and save the customization.

9.1.1 Setting up capture

The following customization sets a default target file for notes, and defines a global key1

for capturing new material.

(setq org-default-notes-file (concat org-directory "/notes.org"))

(define-key global-map "\C-cc" 'org-capture)

9.1.2 Using capture

C-c c org-capture

Call the command org-capture. Note that this keybinding is global and not
active by default: you need to install it. If you have templates defined see
Section 9.1.3 [Capture templates], page 90, it will offer these templates for
selection or use a new Org outline node as the default template. It will insert
the template into the target file and switch to an indirect buffer narrowed to
this new node. You may then insert the information you want.

C-c C-c org-capture-finalize

Once you have finished entering information into the capture buffer, C-c C-c

will return you to the window configuration before the capture process, so that
you can resume your work without further distraction. When called with a
prefix arg, finalize and then jump to the captured item.

C-c C-w org-capture-refile

Finalize the capture process by refiling (see Section 9.5 [Refile and copy],
page 96) the note to a different place. Please realize that this is a normal

1 Please select your own key, C-c c is only a suggestion.

Chapter 9: Capture - Refile - Archive 90

refiling command that will be executed—so the cursor position at the moment
you run this command is important. If you have inserted a tree with a parent
and children, first move the cursor back to the parent. Any prefix argument
given to this command will be passed on to the org-refile command.

C-c C-k org-capture-kill

Abort the capture process and return to the previous state.

You can also call org-capture in a special way from the agenda, using the k c key
combination. With this access, any timestamps inserted by the selected capture template
will default to the cursor date in the agenda, rather than to the current date.

To find the locations of the last stored capture, use org-capture with prefix commands:

C-u C-c c

Visit the target location of a capture template. You get to select the template
in the usual way.

C-u C-u C-c c

Visit the last stored capture item in its buffer.

You can also jump to the bookmark org-capture-last-stored, which will automati-
cally be created unless you set org-capture-bookmark to nil.

To insert the capture at point in an Org buffer, call org-capture with a C-0 prefix
argument.

9.1.3 Capture templates

You can use templates for different types of capture items, and for different target locations.
The easiest way to create such templates is through the customize interface.

C-c c C Customize the variable org-capture-templates.

Before we give the formal description of template definitions, let’s look at an example.
Say you would like to use one template to create general TODO entries, and you want to
put these entries under the heading ‘Tasks’ in your file ~/org/gtd.org. Also, a date tree
in the file journal.org should capture journal entries. A possible configuration would look
like:

(setq org-capture-templates

'(("t" "Todo" entry (file+headline "~/org/gtd.org" "Tasks")

"* TODO %?\n %i\n %a")

("j" "Journal" entry (file+datetree "~/org/journal.org")

"* %?\nEntered on %U\n %i\n %a")))

If you then press C-c c t, Org will prepare the template for you like this:

* TODO

[[file:link to where you initiated capture]]

During expansion of the template, %a has been replaced by a link to the location from
where you called the capture command. This can be extremely useful for deriving tasks
from emails, for example. You fill in the task definition, press C-c C-c and Org returns you
to the same place where you started the capture process.

To define special keys to capture to a particular template without going through the
interactive template selection, you can create your key binding like this:

Chapter 9: Capture - Refile - Archive 91

(define-key global-map "\C-cx"

(lambda () (interactive) (org-capture nil "x")))

9.1.3.1 Template elements

Now lets look at the elements of a template definition. Each entry in org-capture-

templates is a list with the following items:

keys The keys that will select the template, as a string, characters only, for example
"a" for a template to be selected with a single key, or "bt" for selection with
two keys. When using several keys, keys using the same prefix key must be
sequential in the list and preceded by a 2-element entry explaining the prefix
key, for example

("b" "Templates for marking stuff to buy")

If you do not define a template for the C key, this key will be used to open the
customize buffer for this complex variable.

description
A short string describing the template, which will be shown during selection.

type The type of entry, a symbol. Valid values are:

entry An Org mode node, with a headline. Will be filed as the child of
the target entry or as a top-level entry. The target file should be
an Org mode file.

item A plain list item, placed in the first plain list at the target location.
Again the target file should be an Org file.

checkitem

A checkbox item. This only differs from the plain list item by the
default template.

table-line

a new line in the first table at the target location. Where exactly
the line will be inserted depends on the properties :prepend and
:table-line-pos (see below).

plain Text to be inserted as it is.

target Specification of where the captured item should be placed. In Org mode files,
targets usually define a node. Entries will become children of this node. Other
types will be added to the table or list in the body of this node. Most target
specifications contain a file name. If that file name is the empty string, it
defaults to org-default-notes-file. A file can also be given as a variable,
function, or Emacs Lisp form.

Valid values are:

(file "path/to/file")

Text will be placed at the beginning or end of that file.

(id "id of existing org entry")

Filing as child of this entry, or in the body of the entry.

Chapter 9: Capture - Refile - Archive 92

(file+headline "path/to/file" "node headline")

Fast configuration if the target heading is unique in the file.

(file+olp "path/to/file" "Level 1 heading" "Level 2" ...)

For non-unique headings, the full path is safer.

(file+regexp "path/to/file" "regexp to find location")

Use a regular expression to position the cursor.

(file+datetree "path/to/file")

Will create a heading in a date tree for today’s date2.

(file+datetree+prompt "path/to/file")

Will create a heading in a date tree, but will prompt for the date.

(file+function "path/to/file" function-finding-location)

A function to find the right location in the file.

(clock) File to the entry that is currently being clocked.

(function function-finding-location)

Most general way, write your own function to find both file and
location.

template The template for creating the capture item. If you leave this empty, an ap-
propriate default template will be used. Otherwise this is a string with escape
codes, which will be replaced depending on time and context of the capture
call. The string with escapes may be loaded from a template file, using the
special syntax (file "path/to/template"). See below for more details.

properties The rest of the entry is a property list of additional options. Recognized prop-
erties are:

:prepend Normally new captured information will be appended at the target
location (last child, last table line, last list item...). Setting this
property will change that.

:immediate-finish

When set, do not offer to edit the information, just file it away im-
mediately. This makes sense if the template only needs information
that can be added automatically.

:empty-lines

Set this to the number of lines to insert before and after the new
item. Default 0, only common other value is 1.

:clock-in

Start the clock in this item.

:clock-keep

Keep the clock running when filing the captured entry.

2 Datetree headlines for years accept tags, so if you use both * 2013 :noexport: and * 2013 in your file,
the capture will refile the note to the first one matched.

Chapter 9: Capture - Refile - Archive 93

:clock-resume

If starting the capture interrupted a clock, restart that clock when
finished with the capture. Note that :clock-keep has precedence
over :clock-resume. When setting both to t, the current clock
will run and the previous one will not be resumed.

:unnarrowed

Do not narrow the target buffer, simply show the full buffer. De-
fault is to narrow it so that you only see the new material.

:table-line-pos

Specification of the location in the table where the new line should
be inserted. It can be a string, a variable holding a string or a
function returning a string. The string should look like "II-3"

meaning that the new line should become the third line before the
second horizontal separator line.

:kill-buffer

If the target file was not yet visited when capture was invoked, kill
the buffer again after capture is completed.

9.1.3.2 Template expansion

In the template itself, special %-escapes3 allow dynamic insertion of content. The templates
are expanded in the order given here:

%[file] Insert the contents of the file given by file.
%(sexp) Evaluate Elisp sexp and replace with the result.

For convenience, %:keyword (see below) placeholders
within the expression will be expanded prior to this.
The sexp must return a string.

%<...> The result of format-time-string on the ... format specification.
%t Timestamp, date only.
%T Timestamp, with date and time.
%u, %U Like the above, but inactive timestamps.
%i Initial content, the region when capture is called while the

region is active.
The entire text will be indented like %i itself.

%a Annotation, normally the link created with org-store-link.
%A Like %a, but prompt for the description part.
%l Like %a, but only insert the literal link.
%c Current kill ring head.
%x Content of the X clipboard.
%k Title of the currently clocked task.
%K Link to the currently clocked task.
%n User name (taken from user-full-name).
%f File visited by current buffer when org-capture was called.
%F Full path of the file or directory visited by current buffer.
%:keyword Specific information for certain link types, see below.
%^g Prompt for tags, with completion on tags in target file.
%^G Prompt for tags, with completion all tags in all agenda files.
%^t Like %t, but prompt for date. Similarly %^T, %^u, %^U.

You may define a prompt like %^{Birthday}t.
%^C Interactive selection of which kill or clip to use.

3 If you need one of these sequences literally, escape the % with a backslash.

Chapter 9: Capture - Refile - Archive 94

%^L Like %^C, but insert as link.
%^{prop}p Prompt the user for a value for property prop.
%^{prompt} prompt the user for a string and replace this sequence with it.

You may specify a default value and a completion table with
%^{prompt|default|completion2|completion3...}.
The arrow keys access a prompt-specific history.

%\\n Insert the text entered at the nth %^{prompt}, where n is
a number, starting from 1.

%? After completing the template, position cursor here.

For specific link types, the following keywords will be defined4:

Link type | Available keywords

---------------------------------+--

bbdb | %:name %:company

irc | %:server %:port %:nick

vm, vm-imap, wl, mh, mew, rmail | %:type %:subject %:message-id

| %:from %:fromname %:fromaddress

| %:to %:toname %:toaddress

| %:date (message date header field)
| %:date-timestamp (date as active timestamp)
| %:date-timestamp-inactive (date as inactive timestamp)

| %:fromto (either "to NAME" or "from NAME")5

gnus | %:group, for messages also all email fields
w3, w3m | %:url

info | %:file %:node

calendar | %:date

To place the cursor after template expansion use:

%? After completing the template, position cursor here.

9.1.3.3 Templates in contexts

To control whether a capture template should be accessible from a specific context, you
can customize org-capture-templates-contexts. Let’s say for example that you have a
capture template "p" for storing Gnus emails containing patches. Then you would configure
this option like this:

(setq org-capture-templates-contexts

'(("p" (in-mode . "message-mode"))))

You can also tell that the command key "p" should refer to another template. In that
case, add this command key like this:

(setq org-capture-templates-contexts

'(("p" "q" (in-mode . "message-mode"))))

See the docstring of the variable for more information.

9.2 Attachments

It is often useful to associate reference material with an outline node/task. Small chunks of
plain text can simply be stored in the subtree of a project. Hyperlinks (see Chapter 4 [Hy-
perlinks], page 38) can establish associations with files that live elsewhere on your computer
or in the cloud, like emails or source code files belonging to a project. Another method is

4 If you define your own link types (see Section A.3 [Adding hyperlink types], page 236), any property you
store with org-store-link-props can be accessed in capture templates in a similar way.

5 This will always be the other, not the user. See the variable org-from-is-user-regexp.

Chapter 9: Capture - Refile - Archive 95

attachments, which are files located in a directory belonging to an outline node. Org uses
directories named by the unique ID of each entry. These directories are located in the data
directory which lives in the same directory where your Org file lives6. If you initialize this
directory with git init, Org will automatically commit changes when it sees them. The
attachment system has been contributed to Org by John Wiegley.

In cases where it seems better to do so, you can also attach a directory of your choice
to an entry. You can also make children inherit the attachment directory from a parent, so
that an entire subtree uses the same attached directory.

The following commands deal with attachments:

C-c C-a org-attach

The dispatcher for commands related to the attachment system. After these
keys, a list of commands is displayed and you must press an additional key to
select a command:

a org-attach-attach

Select a file and move it into the task’s attachment directory. The
file will be copied, moved, or linked, depending on org-attach-

method. Note that hard links are not supported on all systems.

c/m/l Attach a file using the copy/move/link method. Note that hard
links are not supported on all systems.

n org-attach-new

Create a new attachment as an Emacs buffer.

z org-attach-sync

Synchronize the current task with its attachment directory, in case
you added attachments yourself.

o org-attach-open

Open current task’s attachment. If there is more than one, prompt
for a file name first. Opening will follow the rules set by org-file-

apps. For more details, see the information on following hyperlinks
(see Section 4.4 [Handling links], page 41).

O org-attach-open-in-emacs

Also open the attachment, but force opening the file in Emacs.

f org-attach-reveal

Open the current task’s attachment directory.

F org-attach-reveal-in-emacs

Also open the directory, but force using dired in Emacs.

d org-attach-delete-one

Select and delete a single attachment.

D org-attach-delete-all

Delete all of a task’s attachments. A safer way is to open the
directory in dired and delete from there.

6 If you move entries or Org files from one directory to another, you may want to configure org-attach-

directory to contain an absolute path.

Chapter 9: Capture - Refile - Archive 96

s org-attach-set-directory

Set a specific directory as the entry’s attachment directory. This
works by putting the directory path into the ATTACH_DIR property.

i org-attach-set-inherit

Set the ATTACH_DIR_INHERIT property, so that children will use the
same directory for attachments as the parent does.

9.3 RSS feeds

Org can add and change entries based on information found in RSS feeds and Atom feeds.
You could use this to make a task out of each new podcast in a podcast feed. Or you could
use a phone-based note-creating service on the web to import tasks into Org. To access
feeds, configure the variable org-feed-alist. The docstring of this variable has detailed
information. Here is just an example:

(setq org-feed-alist

'(("Slashdot"

"http://rss.slashdot.org/Slashdot/slashdot"

"~/txt/org/feeds.org" "Slashdot Entries")))

will configure that new items from the feed provided by rss.slashdot.org will result in
new entries in the file ~/org/feeds.org under the heading ‘Slashdot Entries’, whenever
the following command is used:

C-c C-x g org-feed-update-all

C-c C-x g Collect items from the feeds configured in org-feed-alist and act upon them.

C-c C-x G org-feed-goto-inbox

Prompt for a feed name and go to the inbox configured for this feed.

Under the same headline, Org will create a drawer ‘FEEDSTATUS’ in which it will store
information about the status of items in the feed, to avoid adding the same item several
times.

For more information, including how to read atom feeds, see org-feed.el and the
docstring of org-feed-alist.

9.4 Protocols for external access

You can set up Org for handling protocol calls from outside applications that are passed to
Emacs through the emacsserver. For example, you can configure bookmarks in your web
browser to send a link to the current page to Org and create a note from it using capture
(see Section 9.1 [Capture], page 89). Or you could create a bookmark that will tell Emacs
to open the local source file of a remote website you are looking at with the browser. See
http://orgmode.org/worg/org-contrib/org-protocol.php for detailed documentation
and setup instructions.

9.5 Refile and copy

When reviewing the captured data, you may want to refile or to copy some of the entries
into a different list, for example into a project. Cutting, finding the right location, and then

http://orgmode.org/worg/org-contrib/org-protocol.php

Chapter 9: Capture - Refile - Archive 97

pasting the note is cumbersome. To simplify this process, you can use the following special
command:

C-c M-w org-copy

Copying works like refiling, except that the original note is not deleted.

C-c C-w org-refile

Refile the entry or region at point. This command offers possible locations for
refiling the entry and lets you select one with completion. The item (or all
items in the region) is filed below the target heading as a subitem. Depending
on org-reverse-note-order, it will be either the first or last subitem.
By default, all level 1 headlines in the current buffer are considered to be targets,
but you can have more complex definitions across a number of files. See the vari-
able org-refile-targets for details. If you would like to select a location via a
file-path-like completion along the outline path, see the variables org-refile-
use-outline-path and org-outline-path-complete-in-steps. If you would
like to be able to create new nodes as new parents for refiling on the fly, check
the variable org-refile-allow-creating-parent-nodes. When the variable
org-log-refile7 is set, a timestamp or a note will be recorded when an entry
has been refiled.

C-u C-c C-w

Use the refile interface to jump to a heading.

C-u C-u C-c C-w org-refile-goto-last-stored

Jump to the location where org-refile last moved a tree to.

C-2 C-c C-w

Refile as the child of the item currently being clocked.

C-3 C-c C-w

Refile and keep the entry in place. Also see org-refile-keep to make this the
default behavior, and beware that this may result in duplicated ID properties.

C-0 C-c C-w or C-u C-u C-u C-c C-w org-refile-cache-clear

Clear the target cache. Caching of refile targets can be turned on by setting
org-refile-use-cache. To make the command see new possible targets, you
have to clear the cache with this command.

9.6 Archiving

When a project represented by a (sub)tree is finished, you may want to move the tree out
of the way and to stop it from contributing to the agenda. Archiving is important to keep
your working files compact and global searches like the construction of agenda views fast.

C-c C-x C-a org-archive-subtree-default

Archive the current entry using the command specified in the variable
org-archive-default-command.

7 with corresponding #+STARTUP keywords logrefile, lognoterefile, and nologrefile

Chapter 9: Capture - Refile - Archive 98

9.6.1 Moving a tree to the archive file

The most common archiving action is to move a project tree to another file, the archive file.

C-c C-x C-s or short C-c $ org-archive-subtree

Archive the subtree starting at the cursor position to the location given by
org-archive-location.

C-u C-c C-x C-s

Check if any direct children of the current headline could be moved to the
archive. To do this, each subtree is checked for open TODO entries. If none
are found, the command offers to move it to the archive location. If the cursor
is not on a headline when this command is invoked, the level 1 trees will be
checked.

C-u C-u C-c C-x C-s

As above, but check subtree for timestamps instead of TODO entries. The
command will offer to archive the subtree if it does contain a timestamp, and
that timestamp is in the past.

The default archive location is a file in the same directory as the current file, with the
name derived by appending _archive to the current file name. You can also choose what
heading to file archived items under, with the possibility to add them to a datetree in a
file. For information and examples on how to specify the file and the heading, see the
documentation string of the variable org-archive-location.

There is also an in-buffer option for setting this variable, for example:

#+ARCHIVE: %s_done::

If you would like to have a special ARCHIVE location for a single entry or a (sub)tree, give
the entry an :ARCHIVE: property with the location as the value (see Chapter 7 [Properties
and columns], page 64).

When a subtree is moved, it receives a number of special properties that record context
information like the file from where the entry came, its outline path the archiving time
etc. Configure the variable org-archive-save-context-info to adjust the amount of
information added.

9.6.2 Internal archiving

If you want to just switch off (for agenda views) certain subtrees without moving them to
a different file, you can use the ARCHIVE tag.

A headline that is marked with the ARCHIVE tag (see Chapter 6 [Tags], page 59) stays
at its location in the outline tree, but behaves in the following way:

− It does not open when you attempt to do so with a visibility cycling command (see
Section 2.3 [Visibility cycling], page 6). You can force cycling archived subtrees with C-

TAB, or by setting the option org-cycle-open-archived-trees. Also normal outline
commands like show-all will open archived subtrees.

− During sparse tree construction (see Section 2.6 [Sparse trees], page 11), matches in
archived subtrees are not exposed, unless you configure the option org-sparse-tree-

open-archived-trees.

Chapter 9: Capture - Refile - Archive 99

− During agenda view construction (see Chapter 10 [Agenda views], page 100), the con-
tent of archived trees is ignored unless you configure the option org-agenda-skip-

archived-trees, in which case these trees will always be included. In the agenda you
can press v a to get archives temporarily included.

− Archived trees are not exported (see Chapter 12 [Exporting], page 139), only the head-
line is. Configure the details using the variable org-export-with-archived-trees.

− Archived trees are excluded from column view unless the variable org-columns-skip-
archived-trees is configured to nil.

The following commands help manage the ARCHIVE tag:

C-c C-x a org-toggle-archive-tag

Toggle the ARCHIVE tag for the current headline. When the tag is set, the
headline changes to a shadowed face, and the subtree below it is hidden.

C-u C-c C-x a

Check if any direct children of the current headline should be archived. To do
this, each subtree is checked for open TODO entries. If none are found, the
command offers to set the ARCHIVE tag for the child. If the cursor is not on
a headline when this command is invoked, the level 1 trees will be checked.

C-TAB org-force-cycle-archived

Cycle a tree even if it is tagged with ARCHIVE.

C-c C-x A org-archive-to-archive-sibling

Move the current entry to the Archive Sibling. This is a sibling of the entry
with the heading ‘Archive’ and the tag ‘ARCHIVE’. The entry becomes a child
of that sibling and in this way retains a lot of its original context, including
inherited tags and approximate position in the outline.

Chapter 10: Agenda views 100

10 Agenda views

Due to the way Org works, TODO items, time-stamped items, and tagged headlines can be
scattered throughout a file or even a number of files. To get an overview of open action items,
or of events that are important for a particular date, this information must be collected,
sorted and displayed in an organized way.

Org can select items based on various criteria and display them in a separate buffer.
Seven different view types are provided:

• an agenda that is like a calendar and shows information for specific dates,

• a TODO list that covers all unfinished action items,

• a match view, showings headlines based on the tags, properties, and TODO state
associated with them,

• a timeline view that shows all events in a single Org file, in time-sorted view,

• a text search view that shows all entries from multiple files that contain specified key-
words,

• a stuck projects view showing projects that currently don’t move along, and

• custom views that are special searches and combinations of different views.

The extracted information is displayed in a special agenda buffer. This buffer is read-only,
but provides commands to visit the corresponding locations in the original Org files, and
even to edit these files remotely.

Two variables control how the agenda buffer is displayed and whether the window con-
figuration is restored when the agenda exits: org-agenda-window-setup and org-agenda-

restore-windows-after-quit.

10.1 Agenda files

The information to be shown is normally collected from all agenda files, the files listed in the
variable org-agenda-files1. If a directory is part of this list, all files with the extension
.org in this directory will be part of the list.

Thus, even if you only work with a single Org file, that file should be put into the list2.
You can customize org-agenda-files, but the easiest way to maintain it is through the
following commands

C-c [org-agenda-file-to-front

Add current file to the list of agenda files. The file is added to the front of
the list. If it was already in the list, it is moved to the front. With a prefix
argument, file is added/moved to the end.

C-c] org-remove-file

Remove current file from the list of agenda files.

1 If the value of that variable is not a list, but a single file name, then the list of agenda files will be
maintained in that external file.

2 When using the dispatcher, pressing < before selecting a command will actually limit the command to
the current file, and ignore org-agenda-files until the next dispatcher command.

Chapter 10: Agenda views 101

C-' org-cycle-agenda-files

C-, Cycle through agenda file list, visiting one file after the other.

M-x org-iswitchb RET

Command to use an iswitchb-like interface to switch to and between Org
buffers.

The Org menu contains the current list of files and can be used to visit any of them.

If you would like to focus the agenda temporarily on a file not in this list, or on just one
file in the list, or even on only a subtree in a file, then this can be done in different ways.
For a single agenda command, you may press < once or several times in the dispatcher (see
Section 10.2 [Agenda dispatcher], page 101). To restrict the agenda scope for an extended
period, use the following commands:

C-c C-x < org-agenda-set-restriction-lock

Permanently restrict the agenda to the current subtree. When with a prefix
argument, or with the cursor before the first headline in a file, the agenda scope
is set to the entire file. This restriction remains in effect until removed with C-c

C-x >, or by typing either < or > in the agenda dispatcher. If there is a window
displaying an agenda view, the new restriction takes effect immediately.

C-c C-x > org-agenda-remove-restriction-lock

Remove the permanent restriction created by C-c C-x <.

When working with speedbar.el, you can use the following commands in the Speedbar
frame:

< in the speedbar frame org-speedbar-set-agenda-restriction

Permanently restrict the agenda to the item—either an Org file or a subtree in
such a file—at the cursor in the Speedbar frame. If there is a window displaying
an agenda view, the new restriction takes effect immediately.

> in the speedbar frame org-agenda-remove-restriction-lock

Lift the restriction.

10.2 The agenda dispatcher

The views are created through a dispatcher, which should be bound to a global key—
for example C-c a (see Section 1.3 [Activation], page 3). In the following we will assume
that C-c a is indeed how the dispatcher is accessed and list keyboard access to commands
accordingly. After pressing C-c a, an additional letter is required to execute a command.
The dispatcher offers the following default commands:

a Create the calendar-like agenda (see Section 10.3.1 [Weekly/daily agenda],
page 102).

t / T Create a list of all TODO items (see Section 10.3.2 [Global TODO list],
page 104).

m / M Create a list of headlines matching a TAGS expression (see Section 10.3.3
[Matching tags and properties], page 105).

L Create the timeline view for the current buffer (see Section 10.3.4 [Timeline],
page 107).

Chapter 10: Agenda views 102

s Create a list of entries selected by a boolean expression of keywords and/or
regular expressions that must or must not occur in the entry.

/ Search for a regular expression in all agenda files and additionally in the files
listed in org-agenda-text-search-extra-files. This uses the Emacs com-
mand multi-occur. A prefix argument can be used to specify the number of
context lines for each match, default is 1.

/ ! Create a list of stuck projects (see Section 10.3.6 [Stuck projects], page 108).

< Restrict an agenda command to the current buffer3. After pressing <, you still
need to press the character selecting the command.

< < If there is an active region, restrict the following agenda command to the region.
Otherwise, restrict it to the current subtree4. After pressing < <, you still need
to press the character selecting the command.

* Toggle sticky agenda views. By default, Org maintains only a single agenda
buffer and rebuilds it each time you change the view, to make sure everything is
always up to date. If you often switch between agenda views and the build time
bothers you, you can turn on sticky agenda buffers or make this the default by
customizing the variable org-agenda-sticky. With sticky agendas, the agenda
dispatcher will not recreate agenda views from scratch, it will only switch to
the selected one, and you need to update the agenda by hand with r or g when
needed. You can toggle sticky agenda view any time with org-toggle-sticky-

agenda.

You can also define custom commands that will be accessible through the dispatcher, just
like the default commands. This includes the possibility to create extended agenda buffers
that contain several blocks together, for example the weekly agenda, the global TODO list
and a number of special tags matches. See Section 10.6 [Custom agenda views], page 121.

10.3 The built-in agenda views

In this section we describe the built-in views.

10.3.1 The weekly/daily agenda

The purpose of the weekly/daily agenda is to act like a page of a paper agenda, showing
all the tasks for the current week or day.

C-c a a org-agenda-list

Compile an agenda for the current week from a list of Org files. The agenda
shows the entries for each day. With a numeric prefix5 (like C-u 2 1 C-c a a)
you may set the number of days to be displayed.

The default number of days displayed in the agenda is set by the variable org-agenda-
span (or the obsolete org-agenda-ndays). This variable can be set to any number of

3 For backward compatibility, you can also press 1 to restrict to the current buffer.
4 For backward compatibility, you can also press 0 to restrict to the current region/subtree.
5 For backward compatibility, the universal prefix C-u causes all TODO entries to be listed before the

agenda. This feature is deprecated, use the dedicated TODO list, or a block agenda instead (see
Section 10.6.2 [Block agenda], page 123).

Chapter 10: Agenda views 103

days you want to see by default in the agenda, or to a span name, such as day, week,
month or year. For weekly agendas, the default is to start on the previous monday (see
org-agenda-start-on-weekday). You can also set the start date using a date shift: (setq
org-agenda-start-day "+10d") will start the agenda ten days from today in the future.

Remote editing from the agenda buffer means, for example, that you can change the
dates of deadlines and appointments from the agenda buffer. The commands available in
the Agenda buffer are listed in Section 10.5 [Agenda commands], page 113.

Calendar/Diary integration

Emacs contains the calendar and diary by Edward M. Reingold. The calendar displays
a three-month calendar with holidays from different countries and cultures. The diary
allows you to keep track of anniversaries, lunar phases, sunrise/set, recurrent appointments
(weekly, monthly) and more. In this way, it is quite complementary to Org. It can be very
useful to combine output from Org with the diary.

In order to include entries from the Emacs diary into Org mode’s agenda, you only need
to customize the variable

(setq org-agenda-include-diary t)

After that, everything will happen automatically. All diary entries including holidays,
anniversaries, etc., will be included in the agenda buffer created by Org mode. SPC, TAB,
and RET can be used from the agenda buffer to jump to the diary file in order to edit existing
diary entries. The i command to insert new entries for the current date works in the agenda
buffer, as well as the commands S, M, and C to display Sunrise/Sunset times, show lunar
phases and to convert to other calendars, respectively. c can be used to switch back and
forth between calendar and agenda.

If you are using the diary only for sexp entries and holidays, it is faster to not use the
above setting, but instead to copy or even move the entries into an Org file. Org mode
evaluates diary-style sexp entries, and does it faster because there is no overhead for first
creating the diary display. Note that the sexp entries must start at the left margin, no
whitespace is allowed before them. For example, the following segment of an Org file will
be processed and entries will be made in the agenda:

* Holidays

:PROPERTIES:

:CATEGORY: Holiday

:END:

%%(org-calendar-holiday) ; special function for holiday names

* Birthdays

:PROPERTIES:

:CATEGORY: Ann

:END:

%%(org-anniversary 1956 5 14)6 Arthur Dent is %d years old

%%(org-anniversary 1869 10 2) Mahatma Gandhi would be %d years old

6 org-anniversary is just like diary-anniversary, but the argument order is always according to ISO and there-
fore independent of the value of calendar-date-style.

Chapter 10: Agenda views 104

Anniversaries from BBDB

If you are using the Big Brothers Database to store your contacts, you will very likely prefer
to store anniversaries in BBDB rather than in a separate Org or diary file. Org supports
this and will show BBDB anniversaries as part of the agenda. All you need to do is to add
the following to one of your agenda files:

* Anniversaries

:PROPERTIES:

:CATEGORY: Anniv

:END:

%%(org-bbdb-anniversaries)

You can then go ahead and define anniversaries for a BBDB record. Basically, you need
to press C-o anniversary RET with the cursor in a BBDB record and then add the date
in the format YYYY-MM-DD or MM-DD, followed by a space and the class of the anniversary
(‘birthday’ or ‘wedding’, or a format string). If you omit the class, it will default to
‘birthday’. Here are a few examples, the header for the file org-bbdb.el contains more
detailed information.

1973-06-22

06-22

1955-08-02 wedding

2008-04-14 %s released version 6.01 of org mode, %d years ago

After a change to BBDB, or for the first agenda display during an Emacs session,
the agenda display will suffer a short delay as Org updates its hash with anniversaries.
However, from then on things will be very fast—much faster in fact than a long list of
‘%%(diary-anniversary)’ entries in an Org or Diary file.

Appointment reminders

Org can interact with Emacs appointments notification facility. To add the appointments
of your agenda files, use the command org-agenda-to-appt. This command lets you filter
through the list of your appointments and add only those belonging to a specific category
or matching a regular expression. It also reads a APPT_WARNTIME property which will then
override the value of appt-message-warning-time for this appointment. See the docstring
for details.

10.3.2 The global TODO list

The global TODO list contains all unfinished TODO items formatted and collected into a
single place.

C-c a t org-todo-list

Show the global TODO list. This collects the TODO items from all agenda files
(see Chapter 10 [Agenda views], page 100) into a single buffer. By default, this
lists items with a state the is not a DONE state. The buffer is in agenda-mode,
so there are commands to examine and manipulate the TODO entries directly
from that buffer (see Section 10.5 [Agenda commands], page 113).

C-c a T org-todo-list

Like the above, but allows selection of a specific TODO keyword. You can also
do this by specifying a prefix argument to C-c a t. You are prompted for a

Chapter 10: Agenda views 105

keyword, and you may also specify several keywords by separating them with
‘|’ as the boolean OR operator. With a numeric prefix, the Nth keyword in
org-todo-keywords is selected. The r key in the agenda buffer regenerates it,
and you can give a prefix argument to this command to change the selected
TODO keyword, for example 3 r. If you often need a search for a specific
keyword, define a custom command for it (see Section 10.2 [Agenda dispatcher],
page 101).
Matching specific TODO keywords can also be done as part of a tags search
(see Section 6.4 [Tag searches], page 63).

Remote editing of TODO items means that you can change the state of a TODO en-
try with a single key press. The commands available in the TODO list are described in
Section 10.5 [Agenda commands], page 113.

Normally the global TODO list simply shows all headlines with TODO keywords. This
list can become very long. There are two ways to keep it more compact:

− Some people view a TODO item that has been scheduled for execution or have a
deadline (see Section 8.1 [Timestamps], page 73) as no longer open. Configure the vari-
ables org-agenda-todo-ignore-scheduled, org-agenda-todo-ignore-deadlines,
org-agenda-todo-ignore-timestamp and/or org-agenda-todo-ignore-with-date

to exclude such items from the global TODO list.

− TODO items may have sublevels to break up the task into subtasks. In such cases it
may be enough to list only the highest level TODO headline and omit the sublevels
from the global list. Configure the variable org-agenda-todo-list-sublevels to get
this behavior.

10.3.3 Matching tags and properties

If headlines in the agenda files are marked with tags (see Chapter 6 [Tags], page 59), or
have properties (see Chapter 7 [Properties and columns], page 64), you can select headlines
based on this metadata and collect them into an agenda buffer. The match syntax described
here also applies when creating sparse trees with C-c / m.

C-c a m org-tags-view

Produce a list of all headlines that match a given set of tags. The com-
mand prompts for a selection criterion, which is a boolean logic expression
with tags, like ‘+work+urgent-withboss’ or ‘work|home’ (see Chapter 6 [Tags],
page 59). If you often need a specific search, define a custom command for it
(see Section 10.2 [Agenda dispatcher], page 101).

C-c a M org-tags-view

Like C-c a m, but only select headlines that are also TODO items in a
not-DONE state and force checking subitems (see variable org-tags-match-

list-sublevels). To exclude scheduled/deadline items, see the variable
org-agenda-tags-todo-honor-ignore-options. Matching specific TODO
keywords together with a tags match is also possible, see Section 6.4 [Tag
searches], page 63.

The commands available in the tags list are described in Section 10.5 [Agenda com-
mands], page 113.

Chapter 10: Agenda views 106

Match syntax

A search string can use Boolean operators ‘&’ for AND and ‘|’ for OR. ‘&’ binds more strongly
than ‘|’. Parentheses are not implemented. Each element in the search is either a tag, a
regular expression matching tags, or an expression like PROPERTY OPERATOR VALUE with a
comparison operator, accessing a property value. Each element may be preceded by ‘-’, to
select against it, and ‘+’ is syntactic sugar for positive selection. The AND operator ‘&’ is
optional when ‘+’ or ‘-’ is present. Here are some examples, using only tags.

‘work’ Select headlines tagged ‘:work:’.

‘work&boss’
Select headlines tagged ‘:work:’ and ‘:boss:’.

‘+work-boss’
Select headlines tagged ‘:work:’, but discard those also tagged ‘:boss:’.

‘work|laptop’
Selects lines tagged ‘:work:’ or ‘:laptop:’.

‘work|laptop+night’
Like before, but require the ‘:laptop:’ lines to be tagged also ‘:night:’.

Instead of a tag, you may also specify a regular expression enclosed in curly braces. For
example, ‘work+{^boss.*}’ matches headlines that contain the tag ‘:work:’ and any tag
starting with ‘boss’.

Group tags (see Section 6.3 [Tag hierarchy], page 62) are expanded as regular expressions.
E.g., if ‘:work:’ is a group tag for the group ‘:work:lab:conf:’, then searching for ‘work’
will search for ‘{\(?:work\|lab\|conf\)}’ and searching for ‘-work’ will search for all
headlines but those with one of the tags in the group (i.e., ‘-{\(?:work\|lab\|conf\)}’).

You may also test for properties (see Chapter 7 [Properties and columns], page 64)
at the same time as matching tags. The properties may be real properties, or special
properties that represent other metadata (see Section 7.2 [Special properties], page 66).
For example, the “property” TODO represents the TODO keyword of the entry and the
“property” PRIORITY represents the PRIORITY keyword of the entry.

In addition to the Section 7.2 [Special properties], page 66, one other “property” can also
be used. LEVEL represents the level of an entry. So a search ‘+LEVEL=3+boss-TODO="DONE"’
lists all level three headlines that have the tag ‘boss’ and are not marked with the TODO
keyword DONE. In buffers with org-odd-levels-only set, ‘LEVEL’ does not count the
number of stars, but ‘LEVEL=2’ will correspond to 3 stars etc.

Here are more examples:

‘work+TODO="WAITING"’
Select ‘:work:’-tagged TODO lines with the specific TODO keyword ‘WAITING’.

‘work+TODO="WAITING"|home+TODO="WAITING"’
Waiting tasks both at work and at home.

When matching properties, a number of different operators can be used to test the value
of a property. Here is a complex example:

Chapter 10: Agenda views 107

+work-boss+PRIORITY="A"+Coffee="unlimited"+Effort<2 \

+With={Sarah\|Denny}+SCHEDULED>="<2008-10-11>"

The type of comparison will depend on how the comparison value is written:

− If the comparison value is a plain number, a numerical comparison is done, and the
allowed operators are ‘<’, ‘=’, ‘>’, ‘<=’, ‘>=’, and ‘<>’.

− If the comparison value is enclosed in double-quotes, a string comparison is done, and
the same operators are allowed.

− If the comparison value is enclosed in double-quotes and angular brackets (like
‘DEADLINE<="<2008-12-24 18:30>"’), both values are assumed to be date/time
specifications in the standard Org way, and the comparison will be done accordingly.
Special values that will be recognized are "<now>" for now (including time), and
"<today>", and "<tomorrow>" for these days at 00:00 hours, i.e., without a time
specification. Also strings like "<+5d>" or "<-2m>" with units d, w, m, and y for day,
week, month, and year, respectively, can be used.

− If the comparison value is enclosed in curly braces, a regexp match is performed, with
‘=’ meaning that the regexp matches the property value, and ‘<>’ meaning that it does
not match.

So the search string in the example finds entries tagged ‘:work:’ but not ‘:boss:’, which
also have a priority value ‘A’, a ‘:Coffee:’ property with the value ‘unlimited’, an ‘Effort’
property that is numerically smaller than 2, a ‘:With:’ property that is matched by the
regular expression ‘Sarah\|Denny’, and that are scheduled on or after October 11, 2008.

You can configure Org mode to use property inheritance during a search, but beware that
this can slow down searches considerably. See Section 7.4 [Property inheritance], page 67,
for details.

For backward compatibility, and also for typing speed, there is also a different way to test
TODO states in a search. For this, terminate the tags/property part of the search string
(which may include several terms connected with ‘|’) with a ‘/’ and then specify a Boolean
expression just for TODO keywords. The syntax is then similar to that for tags, but should
be applied with care: for example, a positive selection on several TODO keywords cannot
meaningfully be combined with boolean AND. However, negative selection combined with
AND can be meaningful. To make sure that only lines are checked that actually have any
TODO keyword (resulting in a speed-up), use C-c a M, or equivalently start the TODO part
after the slash with ‘!’. Using C-c a M or ‘/!’ will not match TODO keywords in a DONE
state. Examples:

‘work/WAITING’
Same as ‘work+TODO="WAITING"’

‘work/!-WAITING-NEXT’
Select ‘:work:’-tagged TODO lines that are neither ‘WAITING’ nor ‘NEXT’

‘work/!+WAITING|+NEXT’
Select ‘:work:’-tagged TODO lines that are either ‘WAITING’ or ‘NEXT’.

10.3.4 Timeline for a single file

The timeline summarizes all time-stamped items from a single Org mode file in a time-sorted
view. The main purpose of this command is to give an overview over events in a project.

Chapter 10: Agenda views 108

C-c a L org-timeline

Show a time-sorted view of the Org file, with all time-stamped items. When
called with a C-u prefix, all unfinished TODO entries (scheduled or not) are
also listed under the current date.

The commands available in the timeline buffer are listed in Section 10.5 [Agenda commands],
page 113.

10.3.5 Search view

This agenda view is a general text search facility for Org mode entries. It is particularly
useful to find notes.

C-c a s org-search-view

This is a special search that lets you select entries by matching a substring or
specific words using a boolean logic.

For example, the search string ‘computer equipment’ will find entries that contain
‘computer equipment’ as a substring. If the two words are separated by more space or
a line break, the search will still match. Search view can also search for specific key-
words in the entry, using Boolean logic. The search string ‘+computer +wifi -ethernet

-{8\.11[bg]}’ will search for note entries that contain the keywords computer and wifi,
but not the keyword ethernet, and which are also not matched by the regular expression
8\.11[bg], meaning to exclude both 8.11b and 8.11g. The first ‘+’ is necessary to turn on
word search, other ‘+’ characters are optional. For more details, see the docstring of the
command org-search-view.

Note that in addition to the agenda files, this command will also search the files listed
in org-agenda-text-search-extra-files.

10.3.6 Stuck projects

If you are following a system like David Allen’s GTD to organize your work, one of the
“duties” you have is a regular review to make sure that all projects move along. A stuck
project is a project that has no defined next actions, so it will never show up in the TODO
lists Org mode produces. During the review, you need to identify such projects and define
next actions for them.

C-c a # org-agenda-list-stuck-projects

List projects that are stuck.

C-c a ! Customize the variable org-stuck-projects to define what a stuck project is
and how to find it.

You almost certainly will have to configure this view before it will work for you. The
built-in default assumes that all your projects are level-2 headlines, and that a project is
not stuck if it has at least one entry marked with a TODO keyword TODO or NEXT or
NEXTACTION.

Let’s assume that you, in your own way of using Org mode, identify projects with a tag
PROJECT, and that you use a TODO keyword MAYBE to indicate a project that should
not be considered yet. Let’s further assume that the TODO keyword DONE marks finished
projects, and that NEXT and TODO indicate next actions. The tag @SHOP indicates

Chapter 10: Agenda views 109

shopping and is a next action even without the NEXT tag. Finally, if the project contains
the special word IGNORE anywhere, it should not be listed either. In this case you would
start by identifying eligible projects with a tags/todo match7 ‘+PROJECT/-MAYBE-DONE’, and
then check for TODO, NEXT, @SHOP, and IGNORE in the subtree to identify projects
that are not stuck. The correct customization for this is

(setq org-stuck-projects

'("+PROJECT/-MAYBE-DONE" ("NEXT" "TODO") ("@SHOP")

"\\<IGNORE\\>"))

Note that if a project is identified as non-stuck, the subtree of this entry will still be
searched for stuck projects.

10.4 Presentation and sorting

Before displaying items in an agenda view, Org mode visually prepares the items and sorts
them. Each item occupies a single line. The line starts with a prefix that contains the cate-
gory (see Section 10.4.1 [Categories], page 109) of the item and other important information.
You can customize in which column tags will be displayed through org-agenda-tags-

column. You can also customize the prefix using the option org-agenda-prefix-format.
This prefix is followed by a cleaned-up version of the outline headline associated with the
item.

10.4.1 Categories

The category is a broad label assigned to each agenda item. By default, the category is
simply derived from the file name, but you can also specify it with a special line in the
buffer, like this:

#+CATEGORY: Thesis

If you would like to have a special CATEGORY for a single entry or a (sub)tree, give the
entry a :CATEGORY: property with the special category you want to apply as the value.

The display in the agenda buffer looks best if the category is not longer than 10 characters.

You can set up icons for category by customizing the org-agenda-category-icon-alist

variable.

10.4.2 Time-of-day specifications

Org mode checks each agenda item for a time-of-day specification. The time can be
part of the timestamp that triggered inclusion into the agenda, for example as in
‘<2005-05-10 Tue 19:00>’. Time ranges can be specified with two timestamps, like
‘<2005-05-10 Tue 20:30>--<2005-05-10 Tue 22:15>’.

In the headline of the entry itself, a time(range) may also appear as plain text (like
‘12:45’ or a ‘8:30-1pm’). If the agenda integrates the Emacs diary (see Section 10.3.1
[Weekly/daily agenda], page 102), time specifications in diary entries are recognized as
well.

For agenda display, Org mode extracts the time and displays it in a standard 24 hour
format as part of the prefix. The example times in the previous paragraphs would end up
in the agenda like this:

7 See Section 6.4 [Tag searches], page 63.

Chapter 10: Agenda views 110

8:30-13:00 Arthur Dent lies in front of the bulldozer

12:45...... Ford Prefect arrives and takes Arthur to the pub

19:00...... The Vogon reads his poem

20:30-22:15 Marvin escorts the Hitchhikers to the bridge

If the agenda is in single-day mode, or for the display of today, the timed entries are
embedded in a time grid, like

8:00...... ------------------

8:30-13:00 Arthur Dent lies in front of the bulldozer

10:00...... ------------------

12:00...... ------------------

12:45...... Ford Prefect arrives and takes Arthur to the pub

14:00...... ------------------

16:00...... ------------------

18:00...... ------------------

19:00...... The Vogon reads his poem

20:00...... ------------------

20:30-22:15 Marvin escorts the Hitchhikers to the bridge

The time grid can be turned on and off with the variable org-agenda-use-time-grid,
and can be configured with org-agenda-time-grid.

10.4.3 Sorting agenda items

Before being inserted into a view, the items are sorted. How this is done depends on the
type of view.

• For the daily/weekly agenda, the items for each day are sorted. The default order is
to first collect all items containing an explicit time-of-day specification. These entries
will be shown at the beginning of the list, as a schedule for the day. After that, items
remain grouped in categories, in the sequence given by org-agenda-files. Within
each category, items are sorted by priority (see Section 5.4 [Priorities], page 55), which
is composed of the base priority (2000 for priority ‘A’, 1000 for ‘B’, and 0 for ‘C’), plus
additional increments for overdue scheduled or deadline items.

• For the TODO list, items remain in the order of categories, but within each category,
sorting takes place according to priority (see Section 5.4 [Priorities], page 55). The
priority used for sorting derives from the priority cookie, with additions depending on
how close an item is to its due or scheduled date.

• For tags matches, items are not sorted at all, but just appear in the sequence in which
they are found in the agenda files.

Sorting can be customized using the variable org-agenda-sorting-strategy, and may
also include criteria based on the estimated effort of an entry (see Section 8.5 [Effort esti-
mates], page 86).

10.4.4 Filtering/limiting agenda items

Agenda built-in or customized commands are statically defined. Agenda filters and limits
provide two ways of dynamically narrowing down the list of agenda entries: filters and
limits. Filters only act on the display of the items, while limits take effect before the list

Chapter 10: Agenda views 111

of agenda entries is built. Filters are more often used interactively, while limits are mostly
useful when defined as local variables within custom agenda commands.

Filtering in the agenda

/ org-agenda-filter-by-tag

Filter the agenda view with respect to a tag and/or effort estimates. The
difference between this and a custom agenda command is that filtering is very
fast, so that you can switch quickly between different filters without having to
recreate the agenda.8

You will be prompted for a tag selection letter; SPC will mean any tag at all.
Pressing TAB at that prompt will offer use completion to select a tag (including
any tags that do not have a selection character). The command then hides all
entries that do not contain or inherit this tag. When called with prefix arg,
remove the entries that do have the tag. A second / at the prompt will turn
off the filter and unhide any hidden entries. If the first key you press is either +
or -, the previous filter will be narrowed by requiring or forbidding the selected
additional tag. Instead of pressing + or - after /, you can also immediately use
the \ command.

Org also supports automatic, context-aware tag filtering. If the variable
org-agenda-auto-exclude-function is set to a user-defined function,
that function can decide which tags should be excluded from the agenda
automatically. Once this is set, the / command then accepts RET as a
sub-option key and runs the auto exclusion logic. For example, let’s say
you use a Net tag to identify tasks which need network access, an Errand

tag for errands in town, and a Call tag for making phone calls. You could
auto-exclude these tags based on the availability of the Internet, and outside
of business hours, with something like this:

(defun org-my-auto-exclude-function (tag)

(and (cond

((string= tag "Net")

(/= 0 (call-process "/sbin/ping" nil nil nil

"-c1" "-q" "-t1" "mail.gnu.org")))

((or (string= tag "Errand") (string= tag "Call"))

(let ((hour (nth 2 (decode-time))))

(or (< hour 8) (> hour 21)))))

(concat "-" tag)))

(setq org-agenda-auto-exclude-function 'org-my-auto-exclude-function)

\ org-agenda-filter-by-tag-refine

Narrow the current agenda filter by an additional condition. When called with
prefix arg, remove the entries that do have the tag, or that do match the effort
criterion. You can achieve the same effect by pressing + or - as the first key
after the / command.

8 Custom commands can preset a filter by binding the variable org-agenda-tag-filter-preset as an
option. This filter will then be applied to the view and persist as a basic filter through refreshes and
more secondary filtering. The filter is a global property of the entire agenda view—in a block agenda,
you should only set this in the global options section, not in the section of an individual block.

Chapter 10: Agenda views 112

[] { }

in search view
add new search words ([and]) or new regular expressions ({ and })
to the query string. The opening bracket/brace will add a positive
search term prefixed by ‘+’, indicating that this search term must
occur/match in the entry. The closing bracket/brace will add a
negative search term which must not occur/match in the entry for
it to be selected.

< org-agenda-filter-by-category

Filter the current agenda view with respect to the category of the item at
point. Pressing < another time will remove this filter. You can add a filter
preset through the option org-agenda-category-filter-preset (see below.)

^ org-agenda-filter-by-top-headline

Filter the current agenda view and only display the siblings and the parent
headline of the one at point.

= org-agenda-filter-by-regexp

Filter the agenda view by a regular expression: only show agenda entries match-
ing the regular expression the user entered. When called with a prefix argument,
it will filter out entries matching the regexp. With two universal prefix argu-
ments, it will remove all the regexp filters, which can be accumulated. You can
add a filter preset through the option org-agenda-category-filter-preset

(see below.)

_ org-agenda-filter-by-effort

Filter the agenda view with respect to effort estimates. You first need to set
up allowed efforts globally, for example

(setq org-global-properties

'(("Effort_ALL". "0 0:10 0:30 1:00 2:00 3:00 4:00")))

You can then filter for an effort by first typing an operator, one of <, >, and
=, and then the one-digit index of an effort estimate in your array of allowed
values, where 0 means the 10th value. The filter will then restrict to entries
with effort smaller-or-equal, equal, or larger-or-equal than the selected value.
For application of the operator, entries without a defined effort will be treated
according to the value of org-sort-agenda-noeffort-is-high.

| org-agenda-filter-remove-all

Remove all filters in the current agenda view.

Setting limits for the agenda

Here is a list of options that you can set, either globally, or locally in your custom agenda
views (see Section 10.6 [Custom agenda views], page 121).

org-agenda-max-entries

Limit the number of entries.

org-agenda-max-effort

Limit the duration of accumulated efforts (as minutes).

Chapter 10: Agenda views 113

org-agenda-max-todos

Limit the number of entries with TODO keywords.

org-agenda-max-tags

Limit the number of tagged entries.

When set to a positive integer, each option will exclude entries from other categories:
for example, (setq org-agenda-max-effort 100) will limit the agenda to 100 minutes of
effort and exclude any entry that has no effort property. If you want to include entries with
no effort property, use a negative value for org-agenda-max-effort.

One useful setup is to use org-agenda-max-entries locally in a custom command.
For example, this custom command will display the next five entries with a NEXT TODO
keyword.

(setq org-agenda-custom-commands

'(("n" todo "NEXT"

((org-agenda-max-entries 5)))))

Once you mark one of these five entry as DONE, rebuilding the agenda will again the next
five entries again, including the first entry that was excluded so far.

You can also dynamically set temporary limits, which will be lost when rebuilding the
agenda:

~ org-agenda-limit-interactively

This prompts for the type of limit to apply and its value.

10.5 Commands in the agenda buffer

Entries in the agenda buffer are linked back to the Org file or diary file where they originate.
You are not allowed to edit the agenda buffer itself, but commands are provided to show and
jump to the original entry location, and to edit the Org files “remotely” from the agenda
buffer. In this way, all information is stored only once, removing the risk that your agenda
and note files may diverge.

Some commands can be executed with mouse clicks on agenda lines. For the other
commands, the cursor needs to be in the desired line.

Motion

n org-agenda-next-line

Next line (same as down and C-n).

p org-agenda-previous-line

Previous line (same as up and C-p).

N org-agenda-next-item

Next item: same as next line, but only consider items.

P org-agenda-previous-item

Previous item: same as previous line, but only consider items.

View/Go to Org file
SPC or mouse-3 org-agenda-show-and-scroll-up

Display the original location of the item in another window. With prefix arg,
make sure that the entire entry is made visible in the outline, not only the
heading.

Chapter 10: Agenda views 114

L org-agenda-recenter

Display original location and recenter that window.

TAB or mouse-2 org-agenda-goto

Go to the original location of the item in another window.

RET org-agenda-switch-to

Go to the original location of the item and delete other windows.

F org-agenda-follow-mode

Toggle Follow mode. In Follow mode, as you move the cursor through the
agenda buffer, the other window always shows the corresponding location in
the Org file. The initial setting for this mode in new agenda buffers can be set
with the variable org-agenda-start-with-follow-mode.

C-c C-x b org-agenda-tree-to-indirect-buffer

Display the entire subtree of the current item in an indirect buffer. With a
numeric prefix argument N, go up to level N and then take that tree. If N
is negative, go up that many levels. With a C-u prefix, do not remove the
previously used indirect buffer.

C-c C-o org-agenda-open-link

Follow a link in the entry. This will offer a selection of any links in the text
belonging to the referenced Org node. If there is only one link, it will be followed
without a selection prompt.

Change display
A Interactively select another agenda view and append it to the current view.

o Delete other windows.

v d or short d org-agenda-day-view

v w or short w org-agenda-week-view

v t org-agenda-fortnight-view

v m org-agenda-month-view

v y org-agenda-year-view

v SPC org-agenda-reset-view

Switch to day/week/month/year view. When switching to day or week view,
this setting becomes the default for subsequent agenda refreshes. Since month
and year views are slow to create, they do not become the default. A numeric
prefix argument may be used to jump directly to a specific day of the year, ISO
week, month, or year, respectively. For example, 32 d jumps to February 1st, 9
w to ISO week number 9. When setting day, week, or month view, a year may
be encoded in the prefix argument as well. For example, 200712 w will jump
to week 12 in 2007. If such a year specification has only one or two digits, it
will be mapped to the interval 1938–2037. v SPC will reset to what is set in
org-agenda-span.

f org-agenda-later

Go forward in time to display the following org-agenda-current-span days.
For example, if the display covers a week, switch to the following week. With
prefix arg, go forward that many times org-agenda-current-span days.

Chapter 10: Agenda views 115

b org-agenda-earlier

Go backward in time to display earlier dates.

. org-agenda-goto-today

Go to today.

j org-agenda-goto-date

Prompt for a date and go there.

J org-agenda-clock-goto

Go to the currently clocked-in task in the agenda buffer.

D org-agenda-toggle-diary

Toggle the inclusion of diary entries. See Section 10.3.1 [Weekly/daily agenda],
page 102.

v l or short l org-agenda-log-mode

Toggle Logbook mode. In Logbook mode, entries that were marked DONE
while logging was on (variable org-log-done) are shown in the agenda, as
are entries that have been clocked on that day. You can configure the entry
types that should be included in log mode using the variable org-agenda-log-
mode-items. When called with a C-u prefix, show all possible logbook entries,
including state changes. When called with two prefix arguments C-u C-u, show
only logging information, nothing else. v L is equivalent to C-u v l.

v [or short [org-agenda-manipulate-query-add

Include inactive timestamps into the current view. Only for weekly/daily
agenda and timeline views.

v a org-agenda-archives-mode

v A org-agenda-archives-mode 'files

Toggle Archives mode. In Archives mode, trees that are marked ARCHIVED are
also scanned when producing the agenda. When you use the capital A, even all
archive files are included. To exit archives mode, press v a again.

v R or short R org-agenda-clockreport-mode

Toggle Clockreport mode. In Clockreport mode, the daily/weekly agenda will
always show a table with the clocked times for the time span and file scope cov-
ered by the current agenda view. The initial setting for this mode in new agenda
buffers can be set with the variable org-agenda-start-with-clockreport-

mode. By using a prefix argument when toggling this mode (i.e., C-u R), the
clock table will not show contributions from entries that are hidden by agenda
filtering9. See also the variable org-clock-report-include-clocking-task.

v c Show overlapping clock entries, clocking gaps, and other clocking problems in
the current agenda range. You can then visit clocking lines and fix them manu-
ally. See the variable org-agenda-clock-consistency-checks for information
on how to customize the definition of what constituted a clocking problem. To
return to normal agenda display, press l to exit Logbook mode.

9 Only tags filtering will be respected here, effort filtering is ignored.

Chapter 10: Agenda views 116

v E or short E org-agenda-entry-text-mode

Toggle entry text mode. In entry text mode, a number of lines from the Org
outline node referenced by an agenda line will be displayed below the line.
The maximum number of lines is given by the variable org-agenda-entry-

text-maxlines. Calling this command with a numeric prefix argument will
temporarily modify that number to the prefix value.

G org-agenda-toggle-time-grid

Toggle the time grid on and off. See also the variables org-agenda-use-time-
grid and org-agenda-time-grid.

r org-agenda-redo

Recreate the agenda buffer, for example to reflect the changes after modification
of the timestamps of items with S-left and S-right. When the buffer is the
global TODO list, a prefix argument is interpreted to create a selective list for
a specific TODO keyword.

g org-agenda-redo

Same as r.

C-x C-s or short s org-save-all-org-buffers

Save all Org buffers in the current Emacs session, and also the locations of IDs.

C-c C-x C-c org-agenda-columns

Invoke column view (see Section 7.5 [Column view], page 67) in the agenda
buffer. The column view format is taken from the entry at point, or (if there
is no entry at point), from the first entry in the agenda view. So whatever the
format for that entry would be in the original buffer (taken from a property,
from a #+COLUMNS line, or from the default variable org-columns-default-

format), will be used in the agenda.

C-c C-x > org-agenda-remove-restriction-lock

Remove the restriction lock on the agenda, if it is currently restricted to a file
or subtree (see Section 10.1 [Agenda files], page 100).

Secondary filtering and query editing
For a detailed description of these commands, see see Section 10.4.4 [Filter-
ing/limiting agenda items], page 110.

/ org-agenda-filter-by-tag

Filter the agenda view with respect to a tag and/or effort estimates.

\ org-agenda-filter-by-tag-refine

Narrow the current agenda filter by an additional condition.

< org-agenda-filter-by-category

Filter the current agenda view with respect to the category of the item at point.
Pressing < another time will remove this filter.

^ org-agenda-filter-by-top-headline

Filter the current agenda view and only display the siblings and the parent
headline of the one at point.

Chapter 10: Agenda views 117

= org-agenda-filter-by-regexp

Filter the agenda view by a regular expression: only show agenda entries match-
ing the regular expression the user entered. When called with a prefix argument,
it will filter out entries matching the regexp. With two universal prefix argu-
ments, it will remove all the regexp filters, which can be accumulated. You can
add a filter preset through the option org-agenda-category-filter-preset

(see below.)

| org-agenda-filter-remove-all

Remove all filters in the current agenda view.

Remote editing
0--9 Digit argument.

C-_ org-agenda-undo

Undo a change due to a remote editing command. The change is undone both
in the agenda buffer and in the remote buffer.

t org-agenda-todo

Change the TODO state of the item, both in the agenda and in the original
org file.

C-S-right org-agenda-todo-nextset

C-S-left org-agenda-todo-previousset

Switch to the next/previous set of TODO keywords.

C-k org-agenda-kill

Delete the current agenda item along with the entire subtree belonging to it in
the original Org file. If the text to be deleted remotely is longer than one line,
the kill needs to be confirmed by the user. See variable org-agenda-confirm-
kill.

C-c C-w org-agenda-refile

Refile the entry at point.

C-c C-x C-a or short a org-agenda-archive-default-with-confirmation

Archive the subtree corresponding to the entry at point using the default archiv-
ing command set in org-archive-default-command. When using the a key,
confirmation will be required.

C-c C-x a org-agenda-toggle-archive-tag

Toggle the ARCHIVE tag for the current headline.

C-c C-x A org-agenda-archive-to-archive-sibling

Move the subtree corresponding to the current entry to its archive sibling.

C-c C-x C-s or short $ org-agenda-archive

Archive the subtree corresponding to the current headline. This means the
entry will be moved to the configured archive location, most likely a different
file.

T org-agenda-show-tags

Show all tags associated with the current item. This is useful if you have
turned off org-agenda-show-inherited-tags, but still want to see all tags of
a headline occasionally.

Chapter 10: Agenda views 118

: org-agenda-set-tags

Set tags for the current headline. If there is an active region in the agenda,
change a tag for all headings in the region.

, Set the priority for the current item (org-agenda-priority). Org mode
prompts for the priority character. If you reply with SPC, the priority cookie is
removed from the entry.

P org-agenda-show-priority

Display weighted priority of current item.

+ or S-up org-agenda-priority-up

Increase the priority of the current item. The priority is changed in the original
buffer, but the agenda is not resorted. Use the r key for this.

- or S-down org-agenda-priority-down

Decrease the priority of the current item.

z or C-c C-z org-agenda-add-note

Add a note to the entry. This note will be recorded, and then filed to the
same location where state change notes are put. Depending on org-log-into-

drawer, this may be inside a drawer.

C-c C-a org-attach

Dispatcher for all command related to attachments.

C-c C-s org-agenda-schedule

Schedule this item. With prefix arg remove the scheduling timestamp

C-c C-d org-agenda-deadline

Set a deadline for this item. With prefix arg remove the deadline.

S-right org-agenda-do-date-later

Change the timestamp associated with the current line by one day into the
future. If the date is in the past, the first call to this command will move it to
today.
With a numeric prefix argument, change it by that many days. For example,
3 6 5 S-right will change it by a year. With a C-u prefix, change the time by
one hour. If you immediately repeat the command, it will continue to change
hours even without the prefix arg. With a double C-u C-u prefix, do the same
for changing minutes.
The stamp is changed in the original Org file, but the change is not directly
reflected in the agenda buffer. Use r or g to update the buffer.

S-left org-agenda-do-date-earlier

Change the timestamp associated with the current line by one day into the
past.

> org-agenda-date-prompt

Change the timestamp associated with the current line. The key > has been
chosen, because it is the same as S-. on my keyboard.

I org-agenda-clock-in

Start the clock on the current item. If a clock is running already, it is stopped
first.

Chapter 10: Agenda views 119

O org-agenda-clock-out

Stop the previously started clock.

X org-agenda-clock-cancel

Cancel the currently running clock.

J org-agenda-clock-goto

Jump to the running clock in another window.

k org-agenda-capture

Like org-capture, but use the date at point as the default date for the cap-
ture template. See org-capture-use-agenda-date to make this the default
behavior of org-capture.

Dragging agenda lines forward/backward
M-<up> org-agenda-drag-line-backward

Drag the line at point backward one line10. With a numeric prefix argument,
drag backward by that many lines.

M-<down> org-agenda-drag-line-forward

Drag the line at point forward one line. With a numeric prefix argument, drag
forward by that many lines.

Bulk remote editing selected entries
m org-agenda-bulk-mark

Mark the entry at point for bulk action. With numeric prefix argument, mark
that many successive entries.

* org-agenda-bulk-mark-all

Mark all visible agenda entries for bulk action.

u org-agenda-bulk-unmark

Unmark entry at point for bulk action.

U org-agenda-bulk-remove-all-marks

Unmark all marked entries for bulk action.

M-m org-agenda-bulk-toggle

Toggle mark of the entry at point for bulk action.

M-* org-agenda-bulk-toggle-all

Toggle marks of all visible entries for bulk action.

% org-agenda-bulk-mark-regexp

Mark entries matching a regular expression for bulk action.

B org-agenda-bulk-action

Bulk action: act on all marked entries in the agenda. This will prompt for
another key to select the action to be applied. The prefix arg to B will be passed
through to the s and d commands, to bulk-remove these special timestamps.
By default, marks are removed after the bulk. If you want them to persist, set
org-agenda-persistent-marks to t or hit p at the prompt.

10 Moving agenda lines does not persist after an agenda refresh and does not modify the contributing .org

files

Chapter 10: Agenda views 120

* Toggle persistent marks.

$ Archive all selected entries.

A Archive entries by moving them to their respective archive siblings.

t Change TODO state. This prompts for a single TODO keyword
and changes the state of all selected entries, bypassing blocking and
suppressing logging notes (but not timestamps).

+ Add a tag to all selected entries.

- Remove a tag from all selected entries.

s Schedule all items to a new date. To shift existing schedule dates
by a fixed number of days, use something starting with double plus
at the prompt, for example ‘++8d’ or ‘++2w’.

d Set deadline to a specific date.

r Prompt for a single refile target and move all entries. The entries
will no longer be in the agenda; refresh (g) to bring them back.

S Reschedule randomly into the coming N days. N will be prompted
for. With prefix arg (C-u B S), scatter only across weekdays.

f Apply a function11 to marked entries. For example, the function
below sets the CATEGORY property of the entries to web.

(defun set-category ()

(interactive "P")

(let* ((marker (or (org-get-at-bol 'org-hd-marker)

(org-agenda-error)))

(buffer (marker-buffer marker)))

(with-current-buffer buffer

(save-excursion

(save-restriction

(widen)

(goto-char marker)

(org-back-to-heading t)

(org-set-property "CATEGORY" "web"))))))

Calendar commands
c org-agenda-goto-calendar

Open the Emacs calendar and move to the date at the agenda cursor.

c org-calendar-goto-agenda

When in the calendar, compute and show the Org mode agenda for the date at
the cursor.

i org-agenda-diary-entry

Insert a new entry into the diary, using the date at the cursor and (for block
entries) the date at the mark. This will add to the Emacs diary file12, in a way

11 You can also create persistent custom functions through org-agenda-bulk-custom-functions.
12 This file is parsed for the agenda when org-agenda-include-diary is set.

Chapter 10: Agenda views 121

similar to the i command in the calendar. The diary file will pop up in another
window, where you can add the entry.

If you configure org-agenda-diary-file to point to an Org mode file, Org
will create entries (in Org mode syntax) in that file instead. Most entries will
be stored in a date-based outline tree that will later make it easy to archive
appointments from previous months/years. The tree will be built under an
entry with a DATE_TREE property, or else with years as top-level entries. Emacs
will prompt you for the entry text—if you specify it, the entry will be created
in org-agenda-diary-file without further interaction. If you directly press
RET at the prompt without typing text, the target file will be shown in another
window for you to finish the entry there. See also the k r command.

M org-agenda-phases-of-moon

Show the phases of the moon for the three months around current date.

S org-agenda-sunrise-sunset

Show sunrise and sunset times. The geographical location must be set with
calendar variables, see the documentation for the Emacs calendar.

C org-agenda-convert-date

Convert the date at cursor into many other cultural and historic calendars.

H org-agenda-holidays

Show holidays for three months around the cursor date.

M-x org-icalendar-combine-agenda-files RET

Export a single iCalendar file containing entries from all agenda files. This is a
globally available command, and also available in the agenda menu.

Exporting to a file
C-x C-w org-agenda-write

Write the agenda view to a file. Depending on the extension of the selected
file name, the view will be exported as HTML (.html or .htm), Postscript
(.ps), PDF (.pdf), Org (.org) and plain text (any other extension). When
exporting to Org, only the body of original headlines are exported, not subtrees
or inherited tags. When called with a C-u prefix argument, immediately open
the newly created file. Use the variable org-agenda-exporter-settings to
set options for ps-print and for htmlize to be used during export.

Quit and Exit
q org-agenda-quit

Quit agenda, remove the agenda buffer.

x org-agenda-exit

Exit agenda, remove the agenda buffer and all buffers loaded by Emacs for the
compilation of the agenda. Buffers created by the user to visit Org files will not
be removed.

10.6 Custom agenda views

Custom agenda commands serve two purposes: to store and quickly access frequently used
TODO and tags searches, and to create special composite agenda buffers. Custom agenda

Chapter 10: Agenda views 122

commands will be accessible through the dispatcher (see Section 10.2 [Agenda dispatcher],
page 101), just like the default commands.

10.6.1 Storing searches

The first application of custom searches is the definition of keyboard shortcuts for frequently
used searches, either creating an agenda buffer, or a sparse tree (the latter covering of course
only the current buffer).

Custom commands are configured in the variable org-agenda-custom-commands. You
can customize this variable, for example by pressing C-c a C. You can also directly set it
with Emacs Lisp in .emacs. The following example contains all valid agenda views:

(setq org-agenda-custom-commands

'(("x" agenda)

("y" agenda*)

("w" todo "WAITING")

("W" todo-tree "WAITING")

("u" tags "+boss-urgent")

("v" tags-todo "+boss-urgent")

("U" tags-tree "+boss-urgent")

("f" occur-tree "\\<FIXME\\>")

("h" . "HOME+Name tags searches") ; description for "h" prefix

("hl" tags "+home+Lisa")

("hp" tags "+home+Peter")

("hk" tags "+home+Kim")))

The initial string in each entry defines the keys you have to press after the dispatcher
command C-c a in order to access the command. Usually this will be just a single character,
but if you have many similar commands, you can also define two-letter combinations where
the first character is the same in several combinations and serves as a prefix key13. The
second parameter is the search type, followed by the string or regular expression to be used
for the matching. The example above will therefore define:

C-c a x as a global search for agenda entries planned14 this week/day.

C-c a y as a global search for agenda entries planned this week/day, but only those with
an hour specification like [h]h:mm—think of them as appointments.

C-c a w as a global search for TODO entries with ‘WAITING’ as the TODO keyword

C-c a W as the same search, but only in the current buffer and displaying the results as
a sparse tree

C-c a u as a global tags search for headlines marked ‘:boss:’ but not ‘:urgent:’

C-c a v as the same search as C-c a u, but limiting the search to headlines that are also
TODO items

13 You can provide a description for a prefix key by inserting a cons cell with the prefix and the description.
14 Planned means here that these entries have some planning information attached to them, like a time-

stamp, a scheduled or a deadline string. See org-agenda-entry-types on how to set what planning
information will be taken into account.

Chapter 10: Agenda views 123

C-c a U as the same search as C-c a u, but only in the current buffer and displaying the
result as a sparse tree

C-c a f to create a sparse tree (again: current buffer only) with all entries containing
the word ‘FIXME’

C-c a h as a prefix command for a HOME tags search where you have to press an
additional key (l, p or k) to select a name (Lisa, Peter, or Kim) as additional
tag to match.

Note that the *-tree agenda views need to be called from an Org buffer as they operate
on the current buffer only.

10.6.2 Block agenda

Another possibility is the construction of agenda views that comprise the results of several
commands, each of which creates a block in the agenda buffer. The available commands
include agenda for the daily or weekly agenda (as created with C-c a a), alltodo for the
global TODO list (as constructed with C-c a t), and the matching commands discussed
above: todo, tags, and tags-todo. Here are two examples:

(setq org-agenda-custom-commands

'(("h" "Agenda and Home-related tasks"

((agenda "")

(tags-todo "home")

(tags "garden")))

("o" "Agenda and Office-related tasks"

((agenda "")

(tags-todo "work")

(tags "office")))))

This will define C-c a h to create a multi-block view for stuff you need to attend to at home.
The resulting agenda buffer will contain your agenda for the current week, all TODO items
that carry the tag ‘home’, and also all lines tagged with ‘garden’. Finally the command C-c

a o provides a similar view for office tasks.

10.6.3 Setting options for custom commands

Org mode contains a number of variables regulating agenda construction and display. The
global variables define the behavior for all agenda commands, including the custom com-
mands. However, if you want to change some settings just for a single custom view, you
can do so. Setting options requires inserting a list of variable names and values at the right
spot in org-agenda-custom-commands. For example:

(setq org-agenda-custom-commands

'(("w" todo "WAITING"

((org-agenda-sorting-strategy '(priority-down))

(org-agenda-prefix-format " Mixed: ")))

("U" tags-tree "+boss-urgent"

((org-show-context-detail 'minimal)))

("N" search ""

((org-agenda-files '("~org/notes.org"))

(org-agenda-text-search-extra-files nil)))))

Chapter 10: Agenda views 124

Now the C-c a w command will sort the collected entries only by priority, and the prefix for-
mat is modified to just say ‘ Mixed: ’ instead of giving the category of the entry. The sparse
tags tree of C-c a U will now turn out ultra-compact, because neither the headline hierarchy
above the match, nor the headline following the match will be shown. The command C-c

a N will do a text search limited to only a single file.

For command sets creating a block agenda, org-agenda-custom-commands has two sep-
arate spots for setting options. You can add options that should be valid for just a single
command in the set, and options that should be valid for all commands in the set. The
former are just added to the command entry; the latter must come after the list of com-
mand entries. Going back to the block agenda example (see Section 10.6.2 [Block agenda],
page 123), let’s change the sorting strategy for the C-c a h commands to priority-down,
but let’s sort the results for GARDEN tags query in the opposite order, priority-up. This
would look like this:

(setq org-agenda-custom-commands

'(("h" "Agenda and Home-related tasks"

((agenda)

(tags-todo "home")

(tags "garden"

((org-agenda-sorting-strategy '(priority-up)))))

((org-agenda-sorting-strategy '(priority-down))))

("o" "Agenda and Office-related tasks"

((agenda)

(tags-todo "work")

(tags "office")))))

As you see, the values and parentheses setting is a little complex. When in doubt, use
the customize interface to set this variable—it fully supports its structure. Just one caveat:
when setting options in this interface, the values are just Lisp expressions. So if the value
is a string, you need to add the double-quotes around the value yourself.

To control whether an agenda command should be accessible from a specific context, you
can customize org-agenda-custom-commands-contexts. Let’s say for example that you
have an agenda command "o" displaying a view that you only need when reading emails.
Then you would configure this option like this:

(setq org-agenda-custom-commands-contexts

'(("o" (in-mode . "message-mode"))))

You can also tell that the command key "o" should refer to another command key "r".
In that case, add this command key like this:

(setq org-agenda-custom-commands-contexts

'(("o" "r" (in-mode . "message-mode"))))

See the docstring of the variable for more information.

10.7 Exporting agenda views

If you are away from your computer, it can be very useful to have a printed version of some
agenda views to carry around. Org mode can export custom agenda views as plain text,

Chapter 10: Agenda views 125

HTML15, Postscript, PDF16, and iCalendar files. If you want to do this only occasionally,
use the command

C-x C-w org-agenda-write

Write the agenda view to a file. Depending on the extension of the selected file
name, the view will be exported as HTML (extension .html or .htm), Postscript
(extension .ps), iCalendar (extension .ics), or plain text (any other extension).
Use the variable org-agenda-exporter-settings to set options for ps-print
and for htmlize to be used during export, for example

(setq org-agenda-exporter-settings

'((ps-number-of-columns 2)

(ps-landscape-mode t)

(org-agenda-add-entry-text-maxlines 5)

(htmlize-output-type 'css)))

If you need to export certain agenda views frequently, you can associate any custom
agenda command with a list of output file names17. Here is an example that first defines
custom commands for the agenda and the global TODO list, together with a number of
files to which to export them. Then we define two block agenda commands and specify file
names for them as well. File names can be relative to the current working directory, or
absolute.

(setq org-agenda-custom-commands

'(("X" agenda "" nil ("agenda.html" "agenda.ps"))

("Y" alltodo "" nil ("todo.html" "todo.txt" "todo.ps"))

("h" "Agenda and Home-related tasks"

((agenda "")

(tags-todo "home")

(tags "garden"))

nil

("~/views/home.html"))

("o" "Agenda and Office-related tasks"

((agenda)

(tags-todo "work")

(tags "office"))

nil

("~/views/office.ps" "~/calendars/office.ics"))))

The extension of the file name determines the type of export. If it is .html, Org mode
will use the htmlize.el package to convert the buffer to HTML and save it to this file
name. If the extension is .ps, ps-print-buffer-with-faces is used to produce Postscript
output. If the extension is .ics, iCalendar export is run export over all files that were used
to construct the agenda, and limit the export to entries listed in the agenda. Any other
extension produces a plain ASCII file.

15 You need to install Hrvoje Niksic’s htmlize.el.
16 To create PDF output, the ghostscript ps2pdf utility must be installed on the system. Selecting a PDF

file will also create the postscript file.
17 If you want to store standard views like the weekly agenda or the global TODO list as well, you need to

define custom commands for them in order to be able to specify file names.

Chapter 10: Agenda views 126

The export files are not created when you use one of those commands interactively
because this might use too much overhead. Instead, there is a special command to produce
all specified files in one step:

C-c a e org-store-agenda-views

Export all agenda views that have export file names associated with them.

You can use the options section of the custom agenda commands to also set options for
the export commands. For example:

(setq org-agenda-custom-commands

'(("X" agenda ""

((ps-number-of-columns 2)

(ps-landscape-mode t)

(org-agenda-prefix-format " [] ")

(org-agenda-with-colors nil)

(org-agenda-remove-tags t))

("theagenda.ps"))))

This command sets two options for the Postscript exporter, to make it print in two columns
in landscape format—the resulting page can be cut in two and then used in a paper agenda.
The remaining settings modify the agenda prefix to omit category and scheduling infor-
mation, and instead include a checkbox to check off items. We also remove the tags to
make the lines compact, and we don’t want to use colors for the black-and-white printer.
Settings specified in org-agenda-exporter-settings will also apply, but the settings in
org-agenda-custom-commands take precedence.

From the command line you may also use

emacs -eval (org-batch-store-agenda-views) -kill

or, if you need to modify some parameters18

emacs -eval '(org-batch-store-agenda-views \

org-agenda-span (quote month) \

org-agenda-start-day "2007-11-01" \

org-agenda-include-diary nil \

org-agenda-files (quote ("~/org/project.org")))' \

-kill

which will create the agenda views restricted to the file ~/org/project.org, without diary
entries and with a 30-day extent.

You can also extract agenda information in a way that allows further processing by
other programs. See Section A.10 [Extracting agenda information], page 246, for more
information.

10.8 Using column view in the agenda

Column view (see Section 7.5 [Column view], page 67) is normally used to view and edit
properties embedded in the hierarchical structure of an Org file. It can be quite useful to
use column view also from the agenda, where entries are collected by certain criteria.

18 Quoting depends on the system you use, please check the FAQ for examples.

Chapter 10: Agenda views 127

C-c C-x C-c org-agenda-columns

Turn on column view in the agenda.

To understand how to use this properly, it is important to realize that the entries in the
agenda are no longer in their proper outline environment. This causes the following issues:

1. Org needs to make a decision which COLUMNS format to use. Since the entries in the
agenda are collected from different files, and different files may have different COLUMNS
formats, this is a non-trivial problem. Org first checks if the variable org-agenda-

overriding-columns-format is currently set, and if so, takes the format from there.
Otherwise it takes the format associated with the first item in the agenda, or, if that
item does not have a specific format (defined in a property, or in its file), it uses
org-columns-default-format.

2. If any of the columns has a summary type defined (see Section 7.5.1.2 [Column at-
tributes], page 68), turning on column view in the agenda will visit all relevant agenda
files and make sure that the computations of this property are up to date. This is
also true for the special CLOCKSUM property. Org will then sum the values displayed in
the agenda. In the daily/weekly agenda, the sums will cover a single day; in all other
views they cover the entire block. It is vital to realize that the agenda may show the
same entry twice (for example as scheduled and as a deadline), and it may show two
entries from the same hierarchy (for example a parent and its child). In these cases,
the summation in the agenda will lead to incorrect results because some values will
count double.

3. When the column view in the agenda shows the CLOCKSUM, that is always the entire
clocked time for this item. So even in the daily/weekly agenda, the clocksum listed in
column view may originate from times outside the current view. This has the advantage
that you can compare these values with a column listing the planned total effort for
a task—one of the major applications for column view in the agenda. If you want
information about clocked time in the displayed period use clock table mode (press R
in the agenda).

4. When the column view in the agenda shows the CLOCKSUM_T, that is always today’s
clocked time for this item. So even in the weekly agenda, the clocksum listed in column
view only originates from today. This lets you compare the time you spent on a task
for today, with the time already spent (via CLOCKSUM) and with the planned total effort
for it.

Chapter 11: Markup for rich export 128

11 Markup for rich export

When exporting Org mode documents, the exporter tries to reflect the structure of the
document as accurately as possible in the back-end. Since export targets like HTML and
LATEX allow much richer formatting, Org mode has rules on how to prepare text for rich
export. This section summarizes the markup rules used in an Org mode buffer.

11.1 Structural markup elements

Document title

The title of the exported document is taken from the special line

#+TITLE: This is the title of the document

If you are exporting only a subtree, its heading will become the title of the document.
If the subtree has a property EXPORT_TITLE, that will take precedence.

Headings and sections

The outline structure of the document as described in Chapter 2 [Document structure],
page 6, forms the basis for defining sections of the exported document. However, since the
outline structure is also used for (for example) lists of tasks, only the first three outline
levels will be used as headings. Deeper levels will become itemized lists. You can change
the location of this switch globally by setting the variable org-export-headline-levels,
or on a per-file basis with a line

#+OPTIONS: H:4

Table of contents

The table of contents is normally inserted directly before the first headline of the file.
The depth of the table is by default the same as the number of headline levels, but you
can choose a smaller number, or turn off the table of contents entirely, by configuring the
variable org-export-with-toc, or on a per-file basis with a line like

#+OPTIONS: toc:2 only inlcude two levels in TOC
#+OPTIONS: toc:nil no default TOC at all

If you would like to move the table of contents to a different location, you should turn off
the default table using org-export-with-toc or #+OPTIONS and insert #+TOC: headlines

N at the desired location(s).

#+OPTIONS: toc:nil no default TOC
...

#+TOC: headlines 2 insert TOC here, with two headline levels

Moreover, if you append ‘local’ parameter, the table contains only entries for the chil-
dren of the current section1. In this case, any depth parameter becomes relative to the
current level.

1 For LATEX export, this feature requires the titletoc package. Note that titletoc must be loaded before
hyperref. Thus, you may have to customize org-latex-default-packages-alist.

Chapter 11: Markup for rich export 129

* Section

#+TOC: headlines 1 local insert local TOC, with direct children only

The same TOC keyword can also generate a list of all tables (resp. all listings) with a
caption in the document.

#+TOC: listings build a list of listings
#+TOC: tables build a list of tables

The headline’s title usually determines its corresponding entry in a table of contents.
However, it is possible to specify an alternative title by setting ALT_TITLE property accord-
ingly. It will then be used when building the table.

Lists

Plain lists as described in Section 2.7 [Plain lists], page 12, are translated to the back-end’s
syntax for such lists. Most back-ends support unordered, ordered, and description lists.

Paragraphs, line breaks, and quoting

Paragraphs are separated by at least one empty line. If you need to enforce a line break
within a paragraph, use ‘\\’ at the end of a line.

To keep the line breaks in a region, but otherwise use normal formatting, you can use
this construct, which can also be used to format poetry.

#+BEGIN_VERSE

Great clouds overhead

Tiny black birds rise and fall

Snow covers Emacs

-- AlexSchroeder

#+END_VERSE

When quoting a passage from another document, it is customary to format this as
a paragraph that is indented on both the left and the right margin. You can include
quotations in Org mode documents like this:

#+BEGIN_QUOTE

Everything should be made as simple as possible,

but not any simpler -- Albert Einstein

#+END_QUOTE

If you would like to center some text, do it like this:

#+BEGIN_CENTER

Everything should be made as simple as possible, \\

but not any simpler

#+END_CENTER

Footnote markup

Footnotes defined in the way described in Section 2.10 [Footnotes], page 16, will be exported
by all back-ends. Org allows multiple references to the same note, and multiple footnotes
side by side.

Chapter 11: Markup for rich export 130

Emphasis and monospace

You can make words *bold*, /italic/, underlined , =verbatim= and ~code~, and, if you
must, ‘+strike-through+’. Text in the code and verbatim string is not processed for Org
mode specific syntax, it is exported verbatim.

To turn off fontification for marked up text, you can set org-fontify-emphasized-

text to nil. To narrow down the list of available markup syntax, you can customize
org-emphasis-alist. To fine tune what characters are allowed before and after the markup
characters, you can tweak org-emphasis-regexp-components. Beware that changing one
of the above variables will no take effect until you reload Org, for which you may need to
restart Emacs.

Horizontal rules

A line consisting of only dashes, and at least 5 of them, will be exported as a horizontal
line.

Comment lines

Lines starting with zero or more whitespace characters followed by one ‘#’ and a whitespace
are treated as comments and, as such, are not exported.

Likewise, regions surrounded by ‘#+BEGIN_COMMENT’ ... ‘#+END_COMMENT’ are not ex-
ported.

Finally, a ‘COMMENT’ keyword at the beginning of an entry, but after any other keyword
or priority cookie, comments out the entire subtree. In this case, the subtree is not exported
and no code block within it is executed either2. The command below helps changing the
comment status of a headline.

C-c ; Toggle the ‘COMMENT’ keyword at the beginning of an entry.

11.2 Images and Tables

Both the native Org mode tables (see Chapter 3 [Tables], page 19) and tables formatted
with the table.el package will be exported properly. For Org mode tables, the lines before
the first horizontal separator line will become table header lines. You can use the following
lines somewhere before the table to assign a caption and a label for cross references, and
in the text you can refer to the object with [[tab:basic-data]] (see Section 4.2 [Internal
links], page 38):

#+CAPTION: This is the caption for the next table (or link)

#+NAME: tab:basic-data

| ... | ...|

|-----|----|

Optionally, the caption can take the form:

#+CAPTION[Caption for list of tables]: Caption for table.

Some back-ends allow you to directly include images into the exported document.
Org does this, if a link to an image files does not have a description part, for example

2 For a less drastic behavior, consider using a select tag (see Section 12.3 [Export settings], page 140)
instead.

Chapter 11: Markup for rich export 131

[[./img/a.jpg]]. If you wish to define a caption for the image and maybe a label for
internal cross references, make sure that the link is on a line by itself and precede it with
#+CAPTION and #+NAME as follows:

#+CAPTION: This is the caption for the next figure link (or table)

#+NAME: fig:SED-HR4049

[[./img/a.jpg]]

Such images can be displayed within the buffer. See Section 4.4 [Handling links], page 41.

Even though images and tables are prominent examples of captioned structures, the same
caption mechanism can apply to many others (e.g., LATEX equations, source code blocks).
Depending on the export back-end, those may or may not be handled.

11.3 Literal examples

You can include literal examples that should not be subjected to markup. Such examples
will be typeset in monospace, so this is well suited for source code and similar examples.

#+BEGIN_EXAMPLE

Some example from a text file.

#+END_EXAMPLE

Note that such blocks may be indented in order to align nicely with indented text and
in particular with plain list structure (see Section 2.7 [Plain lists], page 12). For simplicity
when using small examples, you can also start the example lines with a colon followed by a
space. There may also be additional whitespace before the colon:

Here is an example

: Some example from a text file.

If the example is source code from a programming language, or any other text that can
be marked up by font-lock in Emacs, you can ask for the example to look like the fontified
Emacs buffer3. This is done with the ‘src’ block, where you also need to specify the name
of the major mode that should be used to fontify the example4, see Section 15.2 [Easy
templates], page 223 for shortcuts to easily insert code blocks.

#+BEGIN_SRC emacs-lisp

(defun org-xor (a b)

"Exclusive or."

(if a (not b) b))

#+END_SRC

Both in example and in src snippets, you can add a -n switch to the end of the BEGIN
line, to get the lines of the example numbered. If you use a +n switch, the numbering from
the previous numbered snippet will be continued in the current one. In literal examples,
Org will interpret strings like ‘(ref:name)’ as labels, and use them as targets for special
hyperlinks like [[(name)]] (i.e., the reference name enclosed in single parenthesis). In

3 This works automatically for the HTML back-end (it requires version 1.34 of the htmlize.el package,
which is distributed with Org). Fontified code chunks in LATEX can be achieved using either the listings
or the minted package. If you use minted or listing, you must load the packages manually, for example
by adding the desired package to org-latex-packages-alist. Refer to org-latex-listings for details.

4 Code in ‘src’ blocks may also be evaluated either interactively or on export. See see Chapter 14 [Working
with source code], page 194 for more information on evaluating code blocks.

https://www.ctan.org/tex-archive/macros/latex/contrib/listings/?lang=en
https://github.com/gpoore/minted

Chapter 11: Markup for rich export 132

HTML, hovering the mouse over such a link will remote-highlight the corresponding code
line, which is kind of cool.

You can also add a -r switch which removes the labels from the source code5. With
the -n switch, links to these references will be labeled by the line numbers from the code
listing, otherwise links will use the labels with no parentheses. Here is an example:

#+BEGIN_SRC emacs-lisp -n -r

(save-excursion (ref:sc)

(goto-char (point-min))) (ref:jump)

#+END_SRC

In line [[(sc)]] we remember the current position. [[(jump)][Line (jump)]]

jumps to point-min.

Finally, you can use -i to preserve the indentation of a specific code block (see
Section 14.2 [Editing source code], page 195).

If the syntax for the label format conflicts with the language syntax, use a -l switch
to change the format, for example ‘#+BEGIN_SRC pascal -n -r -l "((%s))"’. See also the
variable org-coderef-label-format.

HTML export also allows examples to be published as text areas (see Section 12.6.10
[Text areas in HTML export], page 152).

Because the #+BEGIN_... and #+END_... patterns need to be added so often, shortcuts
are provided using the Easy templates facility (see Section 15.2 [Easy templates], page 223).

C-c ' Edit the source code example at point in its native mode. This works by
switching to a temporary buffer with the source code. You need to exit by
pressing C-c ' again6. The edited version will then replace the old version
in the Org buffer. Fixed-width regions (where each line starts with a colon
followed by a space) will be edited using artist-mode7 to allow creating ASCII
drawings easily. Using this command in an empty line will create a new fixed-
width region.

C-c l Calling org-store-link while editing a source code example in a temporary
buffer created with C-c ' will prompt for a label. Make sure that it is unique in
the current buffer, and insert it with the proper formatting like ‘(ref:label)’
at the end of the current line. Then the label is stored as a link ‘(label)’, for
retrieval with C-c C-l.

11.4 Include files

During export, you can include the content of another file. For example, to include your
.emacs file, you could use:

#+INCLUDE: "~/.emacs" src emacs-lisp

5 Adding -k to -n -r will keep the labels in the source code while using line numbers for the links, which
might be useful to explain those in an Org mode example code.

6 Upon exit, lines starting with ‘*’, ‘,*’, ‘#+’ and ‘,#+’ will get a comma prepended, to keep them from
being interpreted by Org as outline nodes or special syntax. These commas will be stripped for editing
with C-c ', and also for export.

7 You may select a different-mode with the variable org-edit-fixed-width-region-mode.

Chapter 11: Markup for rich export 133

The first parameter names the the file to include. The optional second and third parameter
specify the markup (i.e., ‘example’ or ‘src’), and, if the markup is ‘src’, the language for
formatting the contents.

If markup is requested, the included content will be placed within an appropriate block8.
No changes to the included content are made and it is the responsibility of the user to ensure
that the result is valid Org syntax. For markup ‘example’ and ‘src’, which is requesting a
literal example, the content will be code-escaped before inclusion.

If no markup is requested, the text will be assumed to be in Org mode format and will
be processed normally. However, footnote labels (see Section 2.10 [Footnotes], page 16)
in the file will be made local to that file. Contents of the included file will belong to the
same structure (headline, item) containing the INCLUDE keyword. In particular, headlines
within the file will become children of the current section. That behavior can be changed
by providing an additional keyword parameter, :minlevel. In that case, all headlines in
the included file will be shifted so the one with the lowest level reaches that specified level.
For example, to make a file become a sibling of the current top-level headline, use

#+INCLUDE: "~/my-book/chapter2.org" :minlevel 1

You can also include a portion of a file by specifying a lines range using the :lines

keyword parameter. The line at the upper end of the range will not be included. The start
and/or the end of the range may be omitted to use the obvious defaults.

#+INCLUDE: "~/.emacs" :lines "5-10" Include lines 5 to 10, 10 excluded
#+INCLUDE: "~/.emacs" :lines "-10" Include lines 1 to 10, 10 excluded
#+INCLUDE: "~/.emacs" :lines "10-" Include lines from 10 to EOF

Finally, you may use a file-link to extract an object as matched by org-link-search9

(see Section 4.7 [Search options], page 45). If the :only-contents property is non-nil,
only the contents of the requested element will be included, omitting properties drawer and
planning-line if present. The :lines keyword operates locally with respect to the requested
element. Some examples:

#+INCLUDE: "./paper.org::#theory" :only-contents t

Include the body of the heading with the custom id theory

#+INCLUDE: "./paper.org::mytable" Include named element.
#+INCLUDE: "./paper.org::*conclusion" :lines 1-20

Include the first 20 lines of the headline named conclusion.

C-c ' Visit the include file at point.

11.5 Index entries

You can specify entries that will be used for generating an index during publishing. This
is done by lines starting with #+INDEX. An entry the contains an exclamation mark will
create a sub item. See Section 13.1.8 [Generating an index], page 191 for more information.

* Curriculum Vitae

#+INDEX: CV

8 While you can request paragraphs (‘verse’, ‘quote’, ‘center’), but this places severe restrictions on the
type of content that is permissible

9 Note that org-link-search-must-match-exact-headline is locally bound to non-nil. Therefore,
org-link-search only matches headlines and named elements.

Chapter 11: Markup for rich export 134

#+INDEX: Application!CV

11.6 Macro replacement

You can define text snippets with

#+MACRO: name replacement text $1, $2 are arguments

which can be referenced {{{name(arg1, arg2)}}}10.

These references, called macros, can be inserted anywhere Org markup is recognized:
paragraphs, headlines, verse blocks, tables cells and lists. They can also be used in keywords
accepting Org syntax, e.g., #+CAPTION, #+TITLE, #+AUTHOR, #+DATE and some others, export
back-end specific, ones.

In addition to user-defined macros, a set of predefined macros can be used:

{{{title}}}

{{{author}}}

{{{email}}}

These macros are replaced with the information available at the time of export.

{{{date}}}

{{{date(FORMAT)}}}

{{{time(FORMAT)}}}

{{{modification-time(FORMAT)}}}

These macros refer to the #+DATE keyword, the current date, and the modi-
fication time of the file being exported, respectively. FORMAT should be a
format string understood by format-time-string. Note that FORMAT is an
optional argument to the {{{date}}} macro, and that it will only be used if
#+DATE is a single timestamp.

{{{input-file}}}

This macro refers to the filename of the exported file, if any.

{{{property(PROPERTY-NAME)}}}

{{{property(PROPERTY-NAME,SEARCH-OPTION)}}}

This macro returns the value of property PROPERTY-NAME in current entry.
If SEARCH-OPTION (see Section 4.7 [Search options], page 45) refers to a
remote entry, it will be used instead.

The surrounding brackets can be made invisible by setting org-hide-macro-markers

non-nil.

Macro expansion takes place during the very beginning of the export process.

11.7 Embedded LATEX

Plain ASCII is normally sufficient for almost all note taking. Exceptions include scientific
notes, which often require mathematical symbols and the occasional formula. LATEX

11 is

10 Since commas separate arguments, commas within arguments have to be escaped with a backslash
character. Conversely, backslash characters before a comma, and only them, need to be escaped with
another backslash character.

11 LATEX is a macro system based on Donald E. Knuth’s TEX system. Many of the features described here
as “LATEX” are really from TEX, but for simplicity I am blurring this distinction.

Chapter 11: Markup for rich export 135

widely used to typeset scientific documents. Org mode supports embedding LATEX code
into its files, because many academics are used to writing and reading LATEX source code,
and because it can be readily processed to produce pretty output for a number of export
back-ends.

11.7.1 Special symbols

You can use LATEX-like syntax to insert special symbols like ‘\alpha’ to indicate the Greek
letter, or ‘\to’ to indicate an arrow. Completion for these symbols is available, just type
‘\’ and maybe a few letters, and press M-TAB to see possible completions. Unlike LATEX
code, Org mode allows these symbols to be present without surrounding math delimiters,
for example:

Angles are written as Greek letters \alpha, \beta and \gamma.

During export, these symbols will be transformed into the native format of the exporter
back-end. Strings like \alpha will be exported as α in the HTML output, and as
\(\alpha\) in the LATEX output. Similarly, \nbsp will become in HTML and ~ in
LATEX. If you need such a symbol inside a word, terminate it like this: ‘\Aacute{}stor’.

A large number of entities is provided, with names taken from both HTML and LATEX;
see the variable org-entities for the complete list. ‘\-’ is treated as a shy hyphen, and
‘--’, ‘---’, and ‘...’ are all converted into special commands creating hyphens of different
lengths or a compact set of dots.

If you would like to see entities displayed as UTF-8 characters, use the following com-
mand12:

C-c C-x \ Toggle display of entities as UTF-8 characters. This does not change the buffer
content which remains plain ASCII, but it overlays the UTF-8 character for
display purposes only.

11.7.2 Subscripts and superscripts

Just like in LATEX, ‘^’ and ‘_’ are used to indicate super- and subscripts. Again, these can
be used without embedding them in math-mode delimiters. To increase the readability of
ASCII text, it is not necessary (but OK) to surround multi-character sub- and superscripts
with curly braces. For example

The mass of the sun is M_sun = 1.989 x 10^30 kg. The radius of

the sun is R_{sun} = 6.96 x 10^8 m.

If you write a text where the underscore is often used in a different context, Org’s
convention to always interpret these as subscripts can get in your way. Configure the
variable org-use-sub-superscripts to change this convention. For example, when setting
this variable to {}, ‘a_b’ will not be interpreted as a subscript, but ‘a_{b}’ will.

C-c C-x \ In addition to showing entities as UTF-8 characters, this command will also
format sub- and superscripts in a WYSIWYM way.

12 You can turn this on by default by setting the variable org-pretty-entities, or on a per-file base with
the #+STARTUP option entitiespretty.

Chapter 11: Markup for rich export 136

11.7.3 LATEX fragments

Going beyond symbols and sub- and superscripts, a full formula language is needed. Org
mode can contain LATEX math fragments, and it supports ways to process these for several
export back-ends. When exporting to LATEX, the code is left as it is. When exporting
to HTML, Org can use either MathJax (see Section 12.6.9 [Math formatting in HTML
export], page 152) or transcode the math into images (see see Section 11.7.4 [Previewing
LATEX fragments], page 136).

LATEX fragments don’t need any special marking at all. The following snippets will be
identified as LATEX source code:

• Environments of any kind13. The only requirement is that the \begin statement ap-
pears on a new line, at the beginning of the line or after whitespaces only.

• Text within the usual LATEX math delimiters. To avoid conflicts with currency spec-
ifications, single ‘$’ characters are only recognized as math delimiters if the enclosed
text contains at most two line breaks, is directly attached to the ‘$’ characters with no
whitespace in between, and if the closing ‘$’ is followed by whitespace or punctuation
(parentheses and quotes are considered to be punctuation in this context). For the
other delimiters, there is no such restriction, so when in doubt, use ‘\(...\)’ as inline
math delimiters.

For example:

\begin{equation}

x=\sqrt{b}

\end{equation}

If $a^2=b$ and \(b=2 \), then the solution must be

either $$ a=+\sqrt{2} $$ or \[a=-\sqrt{2} \].

LATEX processing can be configured with the variable org-export-with-latex. The
default setting is t which means MathJax for HTML, and no processing for ASCII and
LATEX back-ends. You can also set this variable on a per-file basis using one of these lines:

#+OPTIONS: tex:t Do the right thing automatically (MathJax)
#+OPTIONS: tex:nil Do not process LATEX fragments at all
#+OPTIONS: tex:verbatim Verbatim export, for jsMath or so

11.7.4 Previewing LATEX fragments

If you have a working LATEX installation and either dvipng or convert installed14, LATEX
fragments can be processed to produce images of the typeset expressions to be used for
inclusion while exporting to HTML (see see Section 11.7.3 [LATEX fragments], page 136), or
for inline previewing within Org mode.

You can customize the variables org-format-latex-options and org-format-latex-

header to influence some aspects of the preview. In particular, the :scale (and for HTML

13 When MathJax is used, only the environments recognized by MathJax will be processed. When dvipng

program or imagemagick suite is used to create images, any LATEX environment will be handled.
14 These are respectively available at http: / /sourceforge .net / projects /dvipng / and from the

imagemagick suite. Choose the converter by setting the variable org-latex-create-formula-image-

program accordingly.

http://www.mathjax.org
http://sourceforge.net/projects/dvipng/

Chapter 11: Markup for rich export 137

export, :html-scale) property of the former can be used to adjust the size of the preview
images.

C-c C-x C-l

Produce a preview image of the LATEX fragment at point and overlay it over
the source code. If there is no fragment at point, process all fragments in the
current entry (between two headlines). When called with a prefix argument,
process the entire subtree. When called with two prefix arguments, or when
the cursor is before the first headline, process the entire buffer.

C-c C-c Remove the overlay preview images.

You can turn on the previewing of all LATEX fragments in a file with

#+STARTUP: latexpreview

To disable it, simply use

#+STARTUP: nolatexpreview

11.7.5 Using CDLATEX to enter math

CDLATEX mode is a minor mode that is normally used in combination with a major LATEX
mode like AUCTEX in order to speed-up insertion of environments and math templates.
Inside Org mode, you can make use of some of the features of CDLATEX mode. You need to
install cdlatex.el and texmathp.el (the latter comes also with AUCTEX) from http://

www.astro.uva.nl/~dominik/Tools/cdlatex. Don’t use CDLATEX mode itself under Org
mode, but use the light version org-cdlatex-mode that comes as part of Org mode. Turn
it on for the current buffer with M-x org-cdlatex-mode RET, or for all Org files with

(add-hook 'org-mode-hook 'turn-on-org-cdlatex)

When this mode is enabled, the following features are present (for more details see the
documentation of CDLATEX mode):

• Environment templates can be inserted with C-c {.

• The TAB key will do template expansion if the cursor is inside a LATEX fragment15. For
example, TAB will expand fr to \frac{}{} and position the cursor correctly inside the
first brace. Another TAB will get you into the second brace. Even outside fragments,
TAB will expand environment abbreviations at the beginning of a line. For example,
if you write ‘equ’ at the beginning of a line and press TAB, this abbreviation will be
expanded to an equation environment. To get a list of all abbreviations, type M-x

cdlatex-command-help RET.

• Pressing _ and ^ inside a LATEX fragment will insert these characters together with a
pair of braces. If you use TAB to move out of the braces, and if the braces surround
only a single character or macro, they are removed again (depending on the variable
cdlatex-simplify-sub-super-scripts).

• Pressing the grave accent ` followed by a character inserts math macros, also outside
LATEX fragments. If you wait more than 1.5 seconds after the grave accent, a help
window will pop up.

15 Org mode has a method to test if the cursor is inside such a fragment, see the documentation of the
function org-inside-LaTeX-fragment-p.

http://www.astro.uva.nl/~dominik/Tools/cdlatex
http://www.astro.uva.nl/~dominik/Tools/cdlatex

Chapter 11: Markup for rich export 138

• Pressing the apostrophe ' followed by another character modifies the symbol before
point with an accent or a font. If you wait more than 1.5 seconds after the apostrophe, a
help window will pop up. Character modification will work only inside LATEX fragments;
outside the quote is normal.

11.8 Special blocks

Org syntax includes pre-defined blocks (see [Paragraphs], page 129 and Section 11.3 [Literal
examples], page 131). It is also possible to create blocks containing raw code targeted at a
specific back-end (e.g., ‘#+BEGIN_LATEX’).

Any other block is a special block. Its name is case-sensitive.

For example, ‘#+BEGIN_abstract’ and ‘#+BEGIN_video’ are special blocks. The first
one is useful when exporting to LATEX, the second one when exporting to HTML5.

Each export back-end decides if they should be exported, and how. When the block is
ignored, its contents are still exported, as if the opening and closing block lines were not
there. For example, when exporting a ‘#+BEGIN_test’ block, HTML back-end wraps its
contents within a ‘<div name="test">’ tag.

Refer to back-end specific documentation for more information.

Chapter 12: Exporting 139

12 Exporting

The Org mode export facilities can be used to export Org documents or parts of Org
documents to a variety of other formats. In addition, these facilities can be used with
orgtbl-mode and/or orgstruct-mode in foreign buffers so you can author tables and lists
in Org syntax and convert them in place to the target language.

ASCII export produces a readable and simple version of an Org file for printing and
sharing notes. HTML export allows you to easily publish notes on the web, or to build full-
fledged websites. LATEX export lets you use Org mode and its structured editing functions
to create arbitrarily complex LATEX files for any kind of document. OpenDocument Text
(ODT) export allows seamless collaboration across organizational boundaries. Markdown
export lets you seamlessly collaborate with other developers. Finally, iCal export can extract
entries with deadlines or appointments to produce a file in the iCalendar format.

12.1 The export dispatcher

The main entry point for export related tasks is the dispatcher, a hierarchical menu from
which it is possible to select an export format and toggle export options1 from which it is
possible to select an export format and to toggle export options.

C-c C-e org-export-dispatch

Dispatch for export and publishing commands. When called with a C-u prefix
argument, repeat the last export command on the current buffer while preserv-
ing toggled options. If the current buffer hasn’t changed and subtree export
was activated, the command will affect that same subtree.

Normally the entire buffer is exported, but if there is an active region only that part of
the buffer will be exported.

Several export options (see Section 12.3 [Export settings], page 140) can be toggled from
the export dispatcher with the following key combinations:

C-a Toggle asynchronous export. Asynchronous export uses an external Emacs
process that is configured with a specified initialization file.

While exporting asynchronously, the output is not displayed, but stored in
a place called “the export stack”. This stack can be displayed by calling the
dispatcher with a double C-u prefix argument, or with & key from the dispatcher
menu.

To make this behavior the default, customize the variable org-export-in-

background.

C-b Toggle body-only export. Its effect depends on the back-end used. Typically,
if the back-end has a header section (like <head>...</head> in the HTML
back-end), a body-only export will not include this header.

C-s Toggle subtree export. The top heading becomes the document title.

You can change the default state of this option by setting org-export-

initial-scope.

1 It is also possible to use a less intrusive interface by setting org-export-dispatch-use-expert-ui to
a non-nil value. In that case, only a prompt is visible from the minibuffer. From there one can still
switch back to regular menu by pressing ?.

Chapter 12: Exporting 140

C-v Toggle visible-only export. Only export the text that is currently visible, i.e.,
not hidden by outline visibility in the buffer.

12.2 Export back-ends

An export back-end is a library that translates Org syntax into a foreign format. An export
format is not available until the proper back-end has been loaded.

By default, the following four back-ends are loaded: ascii, html, icalendar and latex.
It is possible to add more (or remove some) by customizing org-export-backends.

Built-in back-ends include:

• ascii (ASCII format)

• beamer (LATEX Beamer format)

• html (HTML format)

• icalendar (iCalendar format)

• latex (LATEX format)

• man (Man page format)

• md (Markdown format)

• odt (OpenDocument Text format)

• org (Org format)

• texinfo (Texinfo format)

Other back-ends might be found in the contrib/ directory (see Section 1.2 [Installation],
page 2).

12.3 Export settings

Export options can be set: globally with variables; for an individual file by making variables
buffer-local with in-buffer settings (see Section 15.6 [In-buffer settings], page 225), by setting
individual keywords, or by specifying them in a compact form with the #+OPTIONS keyword;
or for a tree by setting properties (see Chapter 7 [Properties and columns], page 64). Options
set at a specific level override options set at a more general level.

In-buffer settings may appear anywhere in the file, either directly or indirectly through
a file included using ‘#+SETUPFILE: filename’ syntax. Option keyword sets tailored to
a particular back-end can be inserted from the export dispatcher (see Section 12.1 [The
export dispatcher], page 139) using the Insert template command by pressing #. To
insert keywords individually, a good way to make sure the keyword is correct is to type #+
and then to use M-<TAB> for completion.

The export keywords available for every back-end, and their equivalent global variables,
include:

‘AUTHOR’ The document author (user-full-name).

‘CREATOR’ Entity responsible for output generation (org-export-creator-string).

‘DATE’ A date or a time-stamp2.

2 The variable org-export-date-timestamp-format defines how this time-stamp will be exported.

Chapter 12: Exporting 141

‘EMAIL’ The email address (user-mail-address).

‘LANGUAGE’
The language used for translating some strings (org-export-default-
language). E.g., ‘#+LANGUAGE: fr’ will tell Org to translate File (english)
into Fichier (french) in the clocktable.

‘SELECT_TAGS’
The tags that select a tree for export (org-export-select-tags). The default
value is :export:. Within a subtree tagged with :export:, you can still exclude
entries with :noexport: (see below). When headlines are selectively exported
with :export: anywhere in a file, text before the first headline is ignored.

‘EXCLUDE_TAGS’
The tags that exclude a tree from export (org-export-exclude-tags). The
default value is :noexport:. Entries with the :noexport: tag will be uncon-
ditionally excluded from the export, even if they have an :export: tag. Code
blocks contained in excluded subtrees will still be executed during export even
though the subtree is not exported.

‘TITLE’ The title to be shown. You can use several such keywords for long titles.

The #+OPTIONS keyword is a compact3 form that recognizes the following arguments:

': Toggle smart quotes (org-export-with-smart-quotes).

*: Toggle emphasized text (org-export-with-emphasize).

-: Toggle conversion of special strings (org-export-with-special-strings).

:: Toggle fixed-width sections (org-export-with-fixed-width).

<: Toggle inclusion of any time/date active/inactive stamps (org-export-with-
timestamps).

\n: Toggle line-break-preservation (org-export-preserve-breaks).

^: Toggle TEX-like syntax for sub- and superscripts. If you write "^:{}", ‘a_{b}’
will be interpreted, but the simple ‘a_b’ will be left as it is (org-export-with-
sub-superscripts).

arch: Configure export of archived trees. Can be set to headline to only process the
headline, skipping its contents (org-export-with-archived-trees).

author: Toggle inclusion of author name into exported file (org-export-with-author).

c: Toggle inclusion of CLOCK keywords (org-export-with-clocks).

creator: Toggle inclusion of creator info into exported file (org-export-with-creator).

d: Toggle inclusion of drawers, or list drawers to include (org-export-with-
drawers).

date: Toggle inclusion of a date into exported file (org-export-with-date).

e: Toggle inclusion of entities (org-export-with-entities).

3 If you want to configure many options this way, you can use several #+OPTIONS lines.

Chapter 12: Exporting 142

email: Toggle inclusion of the author’s e-mail into exported file (org-export-with-
email).

f: Toggle the inclusion of footnotes (org-export-with-footnotes).

H: Set the number of headline levels for export (org-export-headline-levels).
Below that level, headlines are treated differently. In most back-ends, they
become list items.

inline: Toggle inclusion of inlinetasks (org-export-with-inlinetasks).

num: Toggle section-numbers (org-export-with-section-numbers). It can also be
set to a number ‘n’, so only headlines at that level or above will be numbered.
Finally, irrespective of the level of a specific headline, the numbering of it can
be disabled by setting the UNNUMBERED property to non-nil. This also affects
subheadings.

p: Toggle export of planning information (org-export-with-planning). “Plan-
ning information” is the line containing the SCHEDULED:, the DEADLINE: or the
CLOSED: cookies or a combination of them.

pri: Toggle inclusion of priority cookies (org-export-with-priority).

prop: Toggle inclusion of property drawers, or list properties to include (org-export-
with-properties).

stat: Toggle inclusion of statistics cookies (org-export-with-statistics-
cookies).

tags: Toggle inclusion of tags, may also be not-in-toc (org-export-with-tags).

tasks: Toggle inclusion of tasks (TODO items), can be nil to remove all tasks, todo to
remove DONE tasks, or a list of keywords to keep (org-export-with-tasks).

tex: Configure export of LATEX fragments and environments. It may be set to
verbatim (org-export-with-latex).

timestamp:

Toggle inclusion of the creation time into exported file (org-export-time-
stamp-file).

title: Toggle inclusion of title (org-export-with-title).

toc: Toggle inclusion of the table of contents, or set the level limit (org-export-
with-toc).

todo: Toggle inclusion of TODO keywords into exported text (org-export-with-
todo-keywords).

|: Toggle inclusion of tables (org-export-with-tables).

When exporting only a subtree, each of the previous keywords4 can be overridden lo-
cally by special node properties. These begin with ‘EXPORT_’, followed by the name of the
keyword they supplant. For example, ‘DATE’ and ‘OPTIONS’ keywords become, respectively,
‘EXPORT_DATE’ and ‘EXPORT_OPTIONS’ properties.

4 With the exception of ‘SETUPFILE’.

Chapter 12: Exporting 143

If org-export-allow-bind-keywords is non-nil, Emacs variables can become buffer-
local during export by using the BIND keyword. Its syntax is ‘#+BIND: variable value’.
This is particularly useful for in-buffer settings that cannot be changed using specific key-
words.

The name of the output file to be generated is taken from the file associated to the buffer,
when possible, or asked to you otherwise. For subtree export, you can also set EXPORT_

FILE_NAME property. In all cases, only the base name of the file is retained, and a back-end
specific extension is added.

12.4 ASCII/Latin-1/UTF-8 export

ASCII export produces a simple and very readable version of an Org mode file, containing
only plain ASCII. Latin-1 and UTF-8 export augment the file with special characters and
symbols available in these encodings.

Upon exporting, text is filled and justified, when appropriate, according the text width
set in org-ascii-text-width.

Links are exported in a footnote-like style, with the descriptive part in the text and the
link in a note before the next heading. See the variable org-ascii-links-to-notes for
details and other options.

ASCII export commands

C-c C-e t a/l/u org-ascii-export-to-ascii

Export as an ASCII file. For an Org file, myfile.org, the ASCII file will be
myfile.txt. The file will be overwritten without warning. When the origi-
nal file is myfile.txt, the resulting file becomes myfile.txt.txt in order to
prevent data loss.

C-c C-e t A/L/U org-ascii-export-as-ascii

Export to a temporary buffer. Do not create a file.

ASCII specific export settings

ASCII export introduces a single of keywords, similar to the general options settings de-
scribed in Section 12.3 [Export settings], page 140.

‘SUBTITLE’
The document subtitle.

Header and sectioning structure

In the exported version, the first three outline levels become headlines, defining a general
document structure. Additional levels are exported as lists. The transition can also occur
at a different level (see Section 12.3 [Export settings], page 140).

Quoting ASCII text

You can insert text that will only appear when using ASCII back-end with the following
constructs:

Text @@ascii:and additional text@@ within a paragraph.

Chapter 12: Exporting 144

#+ASCII: Some text

#+BEGIN_ASCII

All lines in this block will appear only when using this back-end.

#+END_ASCII

ASCII specific attributes

ASCII back-end only understands one attribute, :width, which specifies the length, in
characters, of a given horizontal rule. It must be specified using an ATTR_ASCII line,
directly preceding the rule.

#+ATTR_ASCII: :width 10

ASCII special blocks

In addition to #+BEGIN_CENTER blocks (see [Paragraphs], page 129), it is possible to justify
contents to the left or the right of the page with the following dedicated blocks.

#+BEGIN_JUSTIFYLEFT

It's just a jump to the left...

#+END_JUSTIFYLEFT

#+BEGIN_JUSTIFYRIGHT

...and then a step to the right.

#+END_JUSTIFYRIGHT

12.5 Beamer export

The LATEX class Beamer allows production of high quality presentations using LATEX and
pdf processing. Org mode has special support for turning an Org mode file or tree into a
Beamer presentation.

12.5.1 Beamer export commands

C-c C-e l b org-beamer-export-to-latex

Export as a LATEX file. For an Org file myfile.org, the LATEX file will be
myfile.tex. The file will be overwritten without warning.

C-c C-e l B org-beamer-export-as-latex

Export to a temporary buffer. Do not create a file.

C-c C-e l P org-beamer-export-to-pdf

Export as LATEX and then process to PDF.

C-c C-e l O

Export as LATEX and then process to PDF, then open the resulting PDF file.

12.5.2 Beamer specific export settings

Beamer export introduces a number of keywords, similar to the general options settings
described in Section 12.3 [Export settings], page 140.

Chapter 12: Exporting 145

‘BEAMER_THEME’
The Beamer theme (org-beamer-theme). Options can be specified via brackets,
for example:

#+BEAMER_THEME: Rochester [height=20pt]

‘BEAMER_FONT_THEME’
The Beamer font theme.

‘BEAMER_INNER_THEME’
The Beamer inner theme.

‘BEAMER_OUTER_THEME’
The Beamer outer theme.

‘BEAMER_HEADER’
Arbitrary lines inserted into the preamble, just before the ‘hyperref’ settings.

‘DESCRIPTION’
The document description. By default these are inserted as metadata using
‘hyperref’. Document metadata can be configured via org-latex-hyperref-

template. Description can also be typeset as part of the front matter via
org-latex-title-command. You can use several #+DESCRIPTION keywords if
the description is is long.

‘KEYWORDS’
The keywords defining the contents of the document. By default these are
inserted as metadata using ‘hyperref’. Document metadata can be config-
ured via org-latex-hyperref-template. Description can also be typeset as
part of the front matter via org-latex-title-command. You can use several
#+KEYWORDS if the description is is long.

‘SUBTITLE’
The document subtitle. This is typeset using the format string org-beamer-

subtitle-format. It can also access via org-latex-hyperref-template or
typeset as part of the front matter via org-latex-title-command.

12.5.3 Sectioning, Frames and Blocks in Beamer

Any tree with not-too-deep level nesting should in principle be exportable as a Beamer
presentation. Headlines fall into three categories: sectioning elements, frames and blocks.

− Headlines become frames when their level is equal to org-beamer-frame-level or H
value in an OPTIONS line (see Section 12.3 [Export settings], page 140).

Though, if a headline in the current tree has a BEAMER_ENV property set to either to
frame or fullframe, its level overrides the variable. A fullframe is a frame with an
empty (ignored) title.

− All frame’s children become block environments. Special block types can be enforced
by setting headline’s BEAMER_ENV property5 to an appropriate value (see org-beamer-
environments-default for supported values and org-beamer-environments-extra

for adding more).

5 If this property is set, the entry will also get a :B_environment: tag to make this visible. This tag has
no semantic meaning, it is only a visual aid.

Chapter 12: Exporting 146

− As a special case, if the BEAMER_ENV property is set to either appendix, note, noteNH
or againframe, the headline will become, respectively, an appendix, a note (within
frame or between frame, depending on its level), a note with its title ignored or an
\againframe command. In the latter case, a BEAMER_REF property is mandatory in
order to refer to the frame being resumed, and contents are ignored.

Also, a headline with an ignoreheading environment will have its contents only in-
serted in the output. This special value is useful to have data between frames, or to
properly close a column environment.

Headlines also support BEAMER_ACT and BEAMER_OPT properties. The former is trans-
lated as an overlay/action specification, or a default overlay specification when enclosed
within square brackets. The latter specifies options6 for the current frame or block. The
export back-end will automatically wrap properties within angular or square brackets when
appropriate.

Moreover, headlines handle the BEAMER_COL property. Its value should be a decimal
number representing the width of the column as a fraction of the total text width. If
the headline has no specific environment, its title will be ignored and its contents will fill
the column created. Otherwise, the block will fill the whole column and the title will be
preserved. Two contiguous headlines with a non-nil BEAMER_COL value share the same
columns LATEX environment. It will end before the next headline without such a property.
This environment is generated automatically. Although, it can also be explicitly created,
with a special columns value for BEAMER_ENV property (if it needs to be set up with some
specific options, for example).

12.5.4 Beamer specific syntax

The Beamer back-end is an extension of the LATEX back-end. As such, all LATEX specific
syntax (e.g., ‘#+LATEX:’ or ‘#+ATTR_LATEX:’) is recognized. See Section 12.7 [LATEX and
PDF export], page 155 for more information.

Table of contents generated from toc:t OPTION keyword are wrapped within a frame

environment. Those generated from a TOC keyword (see [Table of contents], page 128) are
not. In that case, it is also possible to specify options, enclosed within square brackets.

#+TOC: headlines [currentsection]

Beamer specific code can be inserted with the following constructs:

#+BEAMER: \pause

#+BEGIN_BEAMER

All lines in this block will appear only when using this back-end.

#+END_BEAMER

Text @@beamer:some code@@ within a paragraph.

In particular, this last example can be used to add overlay specifications to objects whose
type is among bold, item, link, radio-target and target, when the value is enclosed
within angular brackets and put at the beginning the object.

6 The fragile option is added automatically if it contains code that requires a verbatim environment,
though.

Chapter 12: Exporting 147

A *@@beamer:<2->@@useful* feature

Eventually, every plain list has support for :environment, :overlay and :options

attributes through ATTR_BEAMER affiliated keyword. The first one allows the use of a dif-
ferent environment, the second sets overlay specifications and the last one inserts optional
arguments in current list environment.

#+ATTR_BEAMER: :overlay +-

- item 1

- item 2

12.5.5 Editing support

You can turn on a special minor mode org-beamer-mode for faster editing with:

#+STARTUP: beamer

C-c C-b org-beamer-select-environment

In org-beamer-mode, this key offers fast selection of a Beamer environment or
the BEAMER_COL property.

12.5.6 A Beamer example

Here is a simple example Org document that is intended for Beamer export.

#+TITLE: Example Presentation

#+AUTHOR: Carsten Dominik

#+OPTIONS: H:2 toc:t num:t

#+LATEX_CLASS: beamer

#+LATEX_CLASS_OPTIONS: [presentation]

#+BEAMER_THEME: Madrid

#+COLUMNS: %45ITEM %10BEAMER_ENV(Env) %10BEAMER_ACT(Act) %4BEAMER_COL(Col) %8BEAMER_OPT(Opt)

* This is the first structural section

** Frame 1

*** Thanks to Eric Fraga :B_block:

:PROPERTIES:

:BEAMER_COL: 0.48

:BEAMER_ENV: block

:END:

for the first viable Beamer setup in Org

*** Thanks to everyone else :B_block:

:PROPERTIES:

:BEAMER_COL: 0.48

:BEAMER_ACT: <2->

:BEAMER_ENV: block

:END:

for contributing to the discussion

**** This will be formatted as a beamer note :B_note:

:PROPERTIES:

:BEAMER_env: note

Chapter 12: Exporting 148

:END:

** Frame 2 (where we will not use columns)

*** Request

Please test this stuff!

12.6 HTML export

Org mode contains an HTML (XHTML 1.0 strict) exporter with extensive HTML format-
ting, in ways similar to John Gruber’s markdown language, but with additional support for
tables.

12.6.1 HTML export commands

C-c C-e h h org-html-export-to-html

Export as an HTML file. For an Org file myfile.org, the HTML file will
be myfile.html. The file will be overwritten without warning. C-c C-e h o

Export as an HTML file and immediately open it with a browser.

C-c C-e h H org-html-export-as-html

Export to a temporary buffer. Do not create a file.

12.6.2 HTML Specific export settings

HTML export introduces a number of keywords, similar to the general options settings
described in Section 12.3 [Export settings], page 140.

‘DESCRIPTION’
The document description. This description is inserted as a HTML meta tag.
You can use several such keywords if the list is long.

‘HTML_DOCTYPE’
The document type, e.g. HTML5, (org-html-doctype).

‘HTML_CONTAINER’
The container, e.g. ‘div’, used to wrap sections and elements (org-html-
container-element).

‘HTML_LINK_HOME’
The home link URL (org-html-link-home).

‘HTML_LINK_UP’
The up link URL (org-html-link-up).

‘HTML_MATHJAX’
Options for the MathJax (org-html-mathjax-options). MathJax is used to
typeset LATEX math in HTML documents. Section 12.6.9 [Math formatting in
HTML export], page 152 contains an example.

‘HTML_HEAD’
Arbitrary lines appended to the end of the head of the document (org-html-
head).

‘HTML_HEAD_EXTRA’
Arbitrary lines appended to the end of the header of the document (org-html-
head-extra).

Chapter 12: Exporting 149

‘KEYWORDS’
The keywords defining the contents of the document. This description is in-
serted as a HTML meta tag. You can use several such keywords if the list is
long.

‘LATEX_HEADER’
Arbitrary lines appended to the preamble used when transcoding LATEX frag-
ments to images. See Section 12.6.9 [Math formatting in HTML export],
page 152 for details.

‘SUBTITLE’
The document subtitle. The formatting depends on whether HTML5 in used
and on the ‘subtitle’ CSS class.

These keywords are treated in details in the following sections.

12.6.3 HTML doctypes

Org can export to various (X)HTML flavors.

Setting the variable org-html-doctype allows you to export to different (X)HTML
variants. The exported HTML will be adjusted according to the syntax requirements of
that variant. You can either set this variable to a doctype string directly, in which case the
exporter will try to adjust the syntax automatically, or you can use a ready-made doctype.
The ready-made options are:

• “html4-strict”

• “html4-transitional”

• “html4-frameset”

• “xhtml-strict”

• “xhtml-transitional”

• “xhtml-frameset”

• “xhtml-11”

• “html5”

• “xhtml5”

See the variable org-html-doctype-alist for details. The default is “xhtml-strict”.

Fancy HTML5 export

HTML5 introduces several new element types. By default, Org will not make use of these
element types, but you can set org-html-html5-fancy to t (or set html5-fancy item in an
OPTIONS line), to enable a few new block-level elements. These are created using arbitrary
#+BEGIN and #+END blocks. For instance:

#+BEGIN_ASIDE

Lorem ipsum

#+END_ASIDE

Will export to:

<aside>

<p>Lorem ipsum</p>

Chapter 12: Exporting 150

</aside>

While this:

#+ATTR_HTML: :controls controls :width 350

#+BEGIN_VIDEO

#+HTML: <source src="movie.mp4" type="video/mp4">

#+HTML: <source src="movie.ogg" type="video/ogg">

Your browser does not support the video tag.

#+END_VIDEO

Becomes:

<video controls="controls" width="350">

<source src="movie.mp4" type="video/mp4">

<source src="movie.ogg" type="video/ogg">

<p>Your browser does not support the video tag.</p>

</video>

Special blocks that do not correspond to HTML5 elements (see org-html-html5-

elements) will revert to the usual behavior, i.e., #+BEGIN_lederhosen will still export to
‘<div class="lederhosen">’.

Headlines cannot appear within special blocks. To wrap a headline and its contents in
e.g., ‘<section>’ or ‘<article>’ tags, set the HTML_CONTAINER property on the headline
itself.

12.6.4 HTML preamble and postamble

The HTML exporter lets you define a preamble and a postamble.

The default value for org-html-preamble is t, which means that the preamble is inserted
depending on the relevant format string in org-html-preamble-format.

Setting org-html-preamble to a string will override the default format string. If you
set it to a function, it will insert the output of the function, which must be a string. Setting
to nil will not insert any preamble.

The default value for org-html-postamble is 'auto, which means that the HTML
exporter will look for information about the author, the email, the creator and the date,
and build the postamble from these values. Setting org-html-postamble to t will insert the
postamble from the relevant format string found in org-html-postamble-format. Setting
it to nil will not insert any postamble.

12.6.5 Quoting HTML tags

Plain ‘<’ and ‘>’ are always transformed to ‘<’ and ‘>’ in HTML export. If you
want to include raw HTML code, which should only appear in HTML export, mark it with
‘@@html:’ as in ‘@@html:@@bold text@@html:@@’. For more extensive HTML that
should be copied verbatim to the exported file use either

#+HTML: Literal HTML code for export

or

#+BEGIN_HTML

All lines between these markers are exported literally

#+END_HTML

Chapter 12: Exporting 151

12.6.6 Links in HTML export

Internal links (see Section 4.2 [Internal links], page 38) will continue to work in HTML.
This includes automatic links created by radio targets (see Section 4.2.1 [Radio targets],
page 39). Links to external files will still work if the target file is on the same relative path
as the published Org file. Links to other .org files will be translated into HTML links under
the assumption that an HTML version also exists of the linked file, at the same relative
path; setting org-html-link-org-files-as-html to nil disables this translation. ‘id:’
links can then be used to jump to specific entries across files. For information related to
linking files while publishing them to a publishing directory see Section 13.1.6 [Publishing
links], page 190.

If you want to specify attributes for links, you can do so using a special #+ATTR_HTML
line to define attributes that will be added to the <a> or tags. Here is an example
that sets title and style attributes for a link:

#+ATTR_HTML: :title The Org mode homepage :style color:red;

[[http://orgmode.org]]

12.6.7 Tables in HTML export

Org mode tables are exported to HTML using the table attributes defined in org-html-

table-default-attributes. The default setting makes tables without cell borders and
frame. If you would like to change this for individual tables, place something like the
following before the table:

#+CAPTION: This is a table with lines around and between cells

#+ATTR_HTML: :border 2 :rules all :frame border

You can also group columns in the HTML output (see Section 3.3 [Column groups],
page 23).

Below is a list of options for customizing tables HTML export.

org-html-table-align-individual-fields

Non-nil means attach style attributes for alignment to each table field.

org-html-table-caption-above

When non-nil, place caption string at the beginning of the table.

org-html-table-data-tags

The opening and ending tags for table data fields.

org-html-table-default-attributes

Default attributes and values which will be used in table tags.

org-html-table-header-tags

The opening and ending tags for table header fields.

org-html-table-row-tags

The opening and ending tags for table rows.

org-html-table-use-header-tags-for-first-column

Non-nil means format column one in tables with header tags.

Chapter 12: Exporting 152

12.6.8 Images in HTML export

HTML export can inline images given as links in the Org file, and it can make an image the
clickable part of a link. By default7, images are inlined if a link does not have a description.
So ‘[[file:myimg.jpg]]’ will be inlined, while ‘[[file:myimg.jpg][the image]]’ will
just produce a link ‘the image’ that points to the image. If the description part itself is a
file: link or a http: URL pointing to an image, this image will be inlined and activated
so that clicking on the image will activate the link. For example, to include a thumbnail
that will link to a high resolution version of the image, you could use:

[[file:highres.jpg][file:thumb.jpg]]

If you need to add attributes to an inlined image, use a #+ATTR_HTML. In the example
below we specify the alt and title attributes to support text viewers and accessibility,
and align it to the right.

#+CAPTION: A black cat stalking a spider

#+ATTR_HTML: :alt cat/spider image :title Action! :align right

[[./img/a.jpg]]

You could use http addresses just as well.

12.6.9 Math formatting in HTML export

LATEX math snippets (see Section 11.7.3 [LATEX fragments], page 136) can be displayed in
two different ways on HTML pages. The default is to use MathJax which should work out
of the box with Org8. Some MathJax display options can be configured via org-html-

mathjax-options, or in the buffer. For example, with the following settings,

#+HTML_MATHJAX: align: left indent: 5em tagside: left font: Neo-Euler

equation labels will be displayed on the left marign and equations will be five ems from
the left margin.

See the docstring of org-html-mathjax-options for all supported variables. The MathJax
template can be configure via org-html-mathjax-template.

If you prefer, you can also request that LATEX fragments are processed into small im-
ages that will be inserted into the browser page. Before the availability of MathJax, this
was the default method for Org files. This method requires that the dvipng program or
imagemagick suite is available on your system. You can still get this processing with

#+OPTIONS: tex:dvipng

or:

#+OPTIONS: tex:imagemagick

12.6.10 Text areas in HTML export

An alternative way to publish literal code examples in HTML is to use text areas, where
the example can even be edited before pasting it into an application. It is triggered by
:textarea attribute at an example or src block.

7 But see the variable org-html-inline-images.
8 By default Org loads MathJax from MathJax.org. A link to the terms of service of the MathJax CDN

can be found in the docstring of org-html-mathjax-options.

http://www.mathjax.org
http://docs.mathjax.org/en/latest/start.html#using-the-mathjax-content-delivery-network-cdn

Chapter 12: Exporting 153

You may also use :height and :width attributes to specify the height and width of the
text area, which default to the number of lines in the example, and 80, respectively. For
example

#+ATTR_HTML: :textarea t :width 40

#+BEGIN_EXAMPLE

(defun org-xor (a b)

"Exclusive or."

(if a (not b) b))

#+END_EXAMPLE

12.6.11 CSS support

You can modify the CSS style definitions for the exported file. The HTML exporter assigns
the following special CSS classes9 to appropriate parts of the document—your style spec-
ifications may change these, in addition to any of the standard classes like for headlines,
tables, etc.

p.author author information, including email
p.date publishing date
p.creator creator info, about org mode version
.title document title
.subtitle document subtitle
.todo TODO keywords, all not-done states
.done the DONE keywords, all states that count as done
.WAITING each TODO keyword also uses a class named after itself
.timestamp timestamp
.timestamp-kwd keyword associated with a timestamp, like SCHEDULED
.timestamp-wrapper span around keyword plus timestamp
.tag tag in a headline
._HOME each tag uses itself as a class, "@" replaced by " "

.target target for links

.linenr the line number in a code example

.code-highlighted for highlighting referenced code lines
div.outline-N div for outline level N (headline plus text))
div.outline-text-N extra div for text at outline level N
.section-number-N section number in headlines, different for each level
.figure-number label like "Figure 1:"
.table-number label like "Table 1:"
.listing-number label like "Listing 1:"
div.figure how to format an inlined image
pre.src formatted source code
pre.example normal example
p.verse verse paragraph
div.footnotes footnote section headline
p.footnote footnote definition paragraph, containing a footnote
.footref a footnote reference number (always a <sup>)

9 If the classes on TODO keywords and tags lead to conflicts, use the variables org-html-todo-kwd-class-
prefix and org-html-tag-class-prefix to make them unique.

Chapter 12: Exporting 154

.footnum footnote number in footnote definition (always <sup>)

Each exported file contains a compact default style that defines these classes in a basic
way10. You may overwrite these settings, or add to them by using the variables org-html-
head and org-html-head-extra. You can override the global values of these variables for
each file by using these keywords:

#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="style1.css" />

#+HTML_HEAD_EXTRA: <link rel="alternate stylesheet" type="text/css" href="style2.css" />

For longer style definitions, you can use several such lines. You could also directly write a
<style> </style> section in this way, without referring to an external file.

In order to add styles to a subtree, use the :HTML_CONTAINER_CLASS: property to assign
a class to the tree. In order to specify CSS styles for a particular headline, you can use the
id specified in a :CUSTOM_ID: property.

12.6.12 JavaScript supported display of web pages

Sebastian Rose has written a JavaScript program especially designed to enhance the web
viewing experience of HTML files created with Org. This program allows you to view large
files in two different ways. The first one is an Info-like mode where each section is displayed
separately and navigation can be done with the n and p keys (and some other keys as well,
press ? for an overview of the available keys). The second view type is a folding view
much like Org provides inside Emacs. The script is available at http://orgmode.org/

org-info.js and you can find the documentation for it at http://orgmode.org/worg/
code/org-info-js/. We host the script at our site, but if you use it a lot, you might not
want to be dependent on http://orgmode.org and prefer to install a local copy on your
own web server.

All it then takes to use this program is adding a single line to the Org file:

#+INFOJS_OPT: view:info toc:nil

If this line is found, the HTML header will automatically contain the code needed to invoke
the script. Using the line above, you can set the following viewing options:

path: The path to the script. The default is to grab the script from
http://orgmode.org/org-info.js, but you might want to have
a local copy and use a path like ‘../scripts/org-info.js’.

view: Initial view when the website is first shown. Possible values are:
info Info-like interface with one section per page.
overview Folding interface, initially showing only top-level.
content Folding interface, starting with all headlines visible.
showall Folding interface, all headlines and text visible.

sdepth: Maximum headline level that will still become an independent
section for info and folding modes. The default is taken from
org-export-headline-levels (= the H switch in #+OPTIONS).
If this is smaller than in org-export-headline-levels, each
info/folding section can still contain child headlines.

10 This style is defined in the constant org-html-style-default, which you should not modify. To turn
inclusion of these defaults off, customize org-html-head-include-default-style or set html-style to
nil in an OPTIONS line.

http://orgmode.org/org-info.js
http://orgmode.org/org-info.js
http://orgmode.org/worg/code/org-info-js/
http://orgmode.org/worg/code/org-info-js/
http://orgmode.org
http://orgmode.org/org-info.js

Chapter 12: Exporting 155

toc: Should the table of contents initially be visible?
Even when nil, you can always get to the "toc" with i.

tdepth: The depth of the table of contents. The defaults are taken from
the variables org-export-headline-levels and org-export-with-toc.

ftoc: Does the CSS of the page specify a fixed position for the "toc"?
If yes, the toc will never be displayed as a section.

ltoc: Should there be short contents (children) in each section?
Make this above if the section should be above initial text.

mouse: Headings are highlighted when the mouse is over them. Should be
‘underline’ (default) or a background color like ‘#cccccc’.

buttons: Should view-toggle buttons be everywhere? When nil (the
default), only one such button will be present.

You can choose default values for these options by customizing the variable org-html-

infojs-options. If you always want to apply the script to your pages, configure the
variable org-html-use-infojs.

12.7 LATEX and PDF export

LATEX export can produce an arbitrarily complex LaTeX document of any standard or
custom document class. With further processing11, which the LATEX exporter is able to
control, this back-end is able to produce PDF output. Because the LATEX exporter can
be configured to use the hyperref package, the default setup produces fully-linked PDF
output.

As in LATEX, blank lines are meaningful for this back-end: a paragraph will not be started
if two contiguous syntactical elements are not separated by an empty line.

This back-end also offers enhanced support for footnotes. Thus, it handles nested foot-
notes, footnotes in tables and footnotes in a list item’s description.

12.7.1 LATEX export commands

C-c C-e l l org-latex-export-to-latex

Export as a LATEX file. For an Org file myfile.org, the LATEX file will be
myfile.tex. The file will be overwritten without warning.

C-c C-e l L org-latex-export-as-latex

Export to a temporary buffer. Do not create a file.

C-c C-e l p org-latex-export-to-pdf

Export as LATEX and then process to PDF.

C-c C-e l o

Export as LATEX and then process to PDF, then open the resulting PDF file.

12.7.2 LATEX specific export settings

The LATEX exporter introduces a number of keywords, similar to the general options settings
described in Section 12.3 [Export settings], page 140.

11 The default LATEX output is designed for processing with pdftex or latex. The LATEX exporter can be
configured to support alternative TeX engines, see see org-latex-pdf-process, and alternative packages,
see org-latex-default-packages-alist and org-latex-packages-alist.

Chapter 12: Exporting 156

‘DESCRIPTION’
The document description. By default these are inserted as metadata using
‘hyperref’. Document metadata can be configured via org-latex-hyperref-

template. Description can also be typeset as part of the front matter via
org-latex-title-command. You can use several #+DESCRIPTION keywords if
the description is is long.

‘LATEX_CLASS’
The predefined preamble and headline level mapping to use (org-latex-
default-class). Must be an element in org-latex-classes.

‘LATEX_CLASS_OPTIONS’
Options given to the LATEX document class.

‘LATEX_HEADER’
Arbitrary lines added to the preamble of the document, before the ‘hyperref’
settings. The location can be controlled via org-latex-classes.

‘LATEX_HEADER_EXTRA’
Arbitrary lines added to the preamble of the document, before the ‘hyperref’
settings. The location can be controlled via org-latex-classes.

‘KEYWORDS’
The keywords defining the contents of the document. By default these are
inserted as metadata using ‘hyperref’. Document metadata can be config-
ured via org-latex-hyperref-template. Description can also be typeset as
part of the front matter via org-latex-title-command. You can use several
#+KEYWORDS if the description is is long.

‘SUBTITLE’
The document subtitle. This is typeset according to org-latex-subtitle-

format. If org-latex-subtitle-separate is non-nil it is typed as part of
the ‘\title’-macro. It can also access via org-latex-hyperref-template or
typeset as part of the front matter via org-latex-title-command.

These keywords are treated in details in the following sections.

12.7.3 Header and sectioning structure

By default, the first three outline levels become headlines, defining a general document
structure. Additional levels are exported as itemize or enumerate lists. The transition
can also occur at a different level (see Section 12.3 [Export settings], page 140).

By default, the LATEX output uses the class article.

You can change this globally by setting a different value for org-latex-default-class
or locally by adding an option like #+LATEX_CLASS: myclass in your file, or with a EXPORT_
LATEX_CLASS property that applies when exporting a region containing only this (sub)tree.
The class must be listed in org-latex-classes. This variable defines a header template
for each class12, and allows you to define the sectioning structure for each class. You can
also define your own classes there.

12 Into which the values of org-latex-default-packages-alist and org-latex-packages-alist are
spliced.

Chapter 12: Exporting 157

The LATEX_CLASS_OPTIONS keyword or EXPORT_LATEX_CLASS_OPTIONS property can
specify the options for the \documentclass macro. These options have to be provided,
as expected by LATEX, within square brackets.

You can also use the LATEX_HEADER and LATEX_HEADER_EXTRA13 keywords in order to
add lines to the header. See the docstring of org-latex-classes for more information.

An example is shown below.

#+LATEX_CLASS: article

#+LATEX_CLASS_OPTIONS: [a4paper]

#+LATEX_HEADER: \usepackage{xyz}

* Headline 1

some text

12.7.4 Quoting LATEX code

Embedded LATEX as described in Section 11.7 [Embedded LATEX], page 134, will be correctly
inserted into the LATEX file. Furthermore, you can add special code that should only be
present in LATEX export with the following constructs:

Code within @@latex:some code@@ a paragraph.

#+LATEX: Literal LATEX code for export

#+BEGIN_LATEX

All lines between these markers are exported literally

#+END_LATEX

12.7.5 LATEX specific attributes

LATEX understands attributes specified in an ATTR_LATEX line. They affect tables, images,
plain lists, source blocks, example blocks and special blocks.

Tables in LATEX export

For LATEX export of a table, you can specify a label and a caption (see Section 11.2 [Images
and tables], page 130). You can also use attributes to control table layout and contents.
Valid LATEX attributes include:

:mode Nature of table’s contents. It can be set to table, math, inline-math or
verbatim. In particular, when in math or inline-math mode, every cell is
exported as-is, horizontal rules are ignored and the table will be wrapped in
a math environment. Also, contiguous tables sharing the same math mode
will be wrapped within the same environment. Default mode is determined in
org-latex-default-table-mode.

13 Unlike LATEX_HEADER, contents from LATEX_HEADER_EXTRA keywords will not be loaded when previewing
LATEX snippets (see Section 11.7.4 [Previewing LATEX fragments], page 136).

Chapter 12: Exporting 158

:environment

Environment used for the table. It can be set to any LATEX table environ-
ment, like tabularx14, longtable, array, tabu15, bmatrix. . . It defaults to
org-latex-default-table-environment value.

:caption #+CAPTION keyword is the simplest way to set a caption for a table (see
Section 11.2 [Images and tables], page 130). If you need more advanced
commands for that task, you can use :caption attribute instead. Its value
should be raw LATEX code. It has precedence over #+CAPTION.

:float

:placement

The :float specifies the float environment for the table. Possible values are
sideways16, multicolumn, t and nil. When unspecified, a table with a caption
will have a table environment. Moreover, the :placement attribute can specify
the positioning of the float. Note: :placement is ignored for :float sideways

tables.

:align

:font

:width Set, respectively, the alignment string of the table, its font size and its width.
They only apply on regular tables.

:spread Boolean specific to the tabu and longtabu environments, and only takes effect
when used in conjunction with the :width attribute. When :spread is non-nil,
the table will be spread or shrunk by the value of :width.

:booktabs

:center

:rmlines They toggle, respectively, booktabs usage (assuming the package is properly
loaded), table centering and removal of every horizontal rule but the first one (in
a "table.el" table only). In particular, org-latex-tables-booktabs (respec-
tively org-latex-tables-centered) activates the first (respectively second)
attribute globally.

:math-prefix

:math-suffix

:math-arguments

A string that will be inserted, respectively, before the table within the math en-
vironment, after the table within the math environment, and between the macro
name and the contents of the table. The :math-arguments attribute is used
for matrix macros that require more than one argument (e.g., qbordermatrix).

Thus, attributes can be used in a wide array of situations, like writing a table that will
span over multiple pages, or a matrix product:

#+ATTR_LATEX: :environment longtable :align l|lp{3cm}r|l

| | |

14 Requires adding the tabularx package to org-latex-packages-alist.
15 Requires adding the tabu package to org-latex-packages-alist.
16 Formerly, the value was sidewaystable. This is deprecated since Org 8.3.

Chapter 12: Exporting 159

| | |

#+ATTR_LATEX: :mode math :environment bmatrix :math-suffix \times

| a | b |

| c | d |

#+ATTR_LATEX: :mode math :environment bmatrix

| 1 | 2 |

| 3 | 4 |

In the example below, LATEX command \bicaption{HeadingA}{HeadingB} will set the
caption.

#+ATTR_LATEX: :caption \bicaption{HeadingA}{HeadingB}

| | |

| | |

Images in LATEX export

Images that are linked to without a description part in the link, like ‘[[file:img.jpg]]’ or
‘[[./img.jpg]]’ will be inserted into the PDF output file resulting from LATEX processing.
Org will use an \includegraphics macro to insert the image17.

You can specify specify image width or height with, respectively, :width and :height

attributes. It is also possible to add any other option with the :options attribute, as shown
in the following example:

#+ATTR_LATEX: :width 5cm :options angle=90

[[./img/sed-hr4049.pdf]]

If you need a specific command for the caption, use :caption attribute. It will override
standard #+CAPTION value, if any.

#+ATTR_LATEX: :caption \bicaption{HeadingA}{HeadingB}

[[./img/sed-hr4049.pdf]]

If you have specified a caption as described in Section 11.2 [Images and tables], page 130,
the picture will be wrapped into a figure environment and thus become a floating element.
You can also ask Org to export an image as a float without specifying caption by setting
the :float attribute. You may also set it to:

− t: if you want to use the standard ‘figure’ environment. It is used by default if you
provide a caption to the image.

− multicolumn: if you wish to include an image which spans multiple columns in a page.
This will export the image wrapped in a figure* environment.

− wrap: if you would like to let text flow around the image. It will make the figure occupy
the left half of the page.

− sideways: if you would like the image to appear alone on a separate page rotated
ninety degrees using the sidewaysfigure environment. Setting this :float option
will ignore the :placement setting.

− nil: if you need to avoid any floating environment, even when a caption is provided.

17 In the case of TikZ (http://sourceforge.net/projects/pgf/) images, it will become an \input macro
wrapped within a tikzpicture environment.

http://sourceforge.net/projects/pgf/

Chapter 12: Exporting 160

To modify the placement option of any floating environment, set the placement attribute.

#+ATTR_LATEX: :float wrap :width 0.38\textwidth :placement {r}{0.4\textwidth}

[[./img/hst.png]]

If the :comment-include attribute is set to a non-nil value, the LATEX
\includegraphics macro will be commented out.

Plain lists in LATEX export

Plain lists accept two optional attributes: :environment and :options. The first one
allows the use of a non-standard environment (e.g., ‘inparaenum’). The second one specifies
additional arguments for that environment.

#+ATTR_LATEX: :environment compactitem :options [\circ]

- you need ``paralist'' package to reproduce this example.

Source blocks in LATEX export

In addition to syntax defined in Section 11.3 [Literal examples], page 131, names and cap-
tions (see Section 11.2 [Images and tables], page 130), source blocks also accept two addi-
tional attributes: :float and :options.

You may set the former to

− t: if you want to make the source block a float. It is the default value when a caption
is provided.

− multicolumn: if you wish to include a source block which spans multiple columns in a
page.

− nil: if you need to avoid any floating environment, even when a caption is provided.
It is useful for source code that may not fit in a single page.

#+ATTR_LATEX: :float nil

#+BEGIN_SRC emacs-lisp

Code that may not fit in a single page.

#+END_SRC

The latter allows to specify options relative to the package used to highlight code in the
output (e.g., listings). This is the local counterpart to org-latex-listings-options

and org-latex-minted-options variables, which see.

#+ATTR_LATEX: :options commentstyle=\bfseries

#+BEGIN_SRC emacs-lisp

(defun Fib (n) ; Count rabbits.

(if (< n 2) n (+ (Fib (- n 1)) (Fib (- n 2)))))

#+END_SRC

Example blocks in LATEX export

By default, when exporting to LATEX, example blocks contents are wrapped in a ‘verbatim’
environment. It is possible to use a different environment globally using an appropriate
export filter (see Section 12.15 [Advanced configuration], page 180). You can also change
this per block using :environment parameter.

#+ATTR_LATEX: :environment myverbatim

#+BEGIN_EXAMPLE

Chapter 12: Exporting 161

This sentence is false.

#+END_EXAMPLE

Special blocks in LATEX export

In LATEX back-end, special blocks become environments of the same name. Value of
:options attribute will be appended as-is to that environment’s opening string. For exam-
ple:

#+BEGIN_abstract

We demonstrate how to solve the Syracuse problem.

#+END_abstract

#+ATTR_LATEX: :options [Proof of important theorem]

#+BEGIN_proof

...

Therefore, any even number greater than 2 is the sum of two primes.

#+END_proof

becomes

\begin{abstract}

We demonstrate how to solve the Syracuse problem.

\end{abstract}

\begin{proof}[Proof of important theorem]

...

Therefore, any even number greater than 2 is the sum of two primes.

\end{proof}

If you need to insert a specific caption command, use :caption attribute. It will override
standard #+CAPTION value, if any. For example:

#+ATTR_LATEX: :caption \MyCaption{HeadingA}

#+BEGIN_proof

...

#+END_proof

Horizontal rules

Width and thickness of a given horizontal rule can be controlled with, respectively, :width
and :thickness attributes:

#+ATTR_LATEX: :width .6\textwidth :thickness 0.8pt

12.8 Markdown export

md export back-end generates Markdown syntax18 for an Org mode buffer.

It is built over HTML back-end: any construct not supported by Markdown syntax (e.g.,
tables) will be controlled and translated by html back-end (see Section 12.6 [HTML export],
page 148).

18 Vanilla flavor, as defined at http://daringfireball.net/projects/markdown/.

http://daringfireball.net/projects/markdown/

Chapter 12: Exporting 162

Markdown export commands

C-c C-e m m org-md-export-to-markdown

Export as a text file written in Markdown syntax. For an Org file, myfile.org,
the resulting file will be myfile.md. The file will be overwritten without warn-
ing.

C-c C-e m M org-md-export-as-markdown

Export to a temporary buffer. Do not create a file.

C-c C-e m o

Export as a text file with Markdown syntax, then open it.

Header and sectioning structure

Markdown export can generate both atx and setext types for headlines, according to
org-md-headline-style. The former introduces a hard limit of two levels, whereas the
latter pushes it to six. Headlines below that limit are exported as lists. You can also set a
soft limit before that one (see Section 12.3 [Export settings], page 140).

12.9 OpenDocument Text export

Org mode19 supports export to OpenDocument Text (ODT) format. Documents created
by this exporter use the OpenDocument-v1.2 specification20 and are compatible with Li-
breOffice 3.4.

12.9.1 Pre-requisites for ODT export

The ODT exporter relies on the zip program to create the final output. Check the avail-
ability of this program before proceeding further.

12.9.2 ODT export commands

C-c C-e o o org-odt-export-to-odt

Export as OpenDocument Text file.

If org-odt-preferred-output-format is specified, automatically convert the
exported file to that format. See [Automatically exporting to other formats],
page 163.

For an Org file myfile.org, the ODT file will be myfile.odt. The file will be
overwritten without warning. If there is an active region,21 only the region will
be exported. If the selected region is a single tree,22 the tree head will become
the document title. If the tree head entry has, or inherits, an EXPORT_FILE_

NAME property, that name will be used for the export.

C-c C-e o O Export as an OpenDocument Text file and open the resulting file.

If org-odt-preferred-output-format is specified, open the converted file in-
stead. See [Automatically exporting to other formats], page 163.

19 Versions 7.8 or later
20 Open Document Format for Office Applications (OpenDocument) Version 1.2
21 This requires transient-mark-mode to be turned on
22 To select the current subtree, use C-c @

http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2.html

Chapter 12: Exporting 163

12.9.3 ODT specific export settings

The ODT exporter introduces a number of keywords, similar to the general options settings
described in Section 12.3 [Export settings], page 140.

‘DESCRIPTION’
The document description. These are inserted as document metadata. You can
use several such keywords if the list is long.

‘KEYWORDS’
The keywords defining the contents of the document. These are inserted as
document metadata. You can use several such keywords if the list is long.

‘ODT_STYLES_FILE’
The style file of the document (org-odt-styles-file). See Section 12.9.5
[Applying custom styles], page 163 for details.

‘SUBTITLE’
The document subtitle.

12.9.4 Extending ODT export

The ODT exporter can interface with a variety of document converters and supports popular
converters out of the box. As a result, you can use it to export to formats like ‘doc’ or
convert a document from one format (say ‘csv’) to another format (say ‘ods’ or ‘xls’).

If you have a working installation of LibreOffice, a document converter is pre-configured
for you and you can use it right away. If you would like to use unoconv as your preferred
converter, customize the variable org-odt-convert-process to point to unoconv. You can
also use your own favorite converter or tweak the default settings of the LibreOffice and
‘unoconv’ converters. See [Configuring a document converter], page 168.

Automatically exporting to other formats

Very often, you will find yourself exporting to ODT format, only to immediately save the
exported document to other formats like ‘doc’, ‘docx’, ‘rtf’, ‘pdf’ etc. In such cases, you
can specify your preferred output format by customizing the variable org-odt-preferred-
output-format. This way, the export commands (see [Exporting to ODT], page 162) can
be extended to export to a format that is of immediate interest to you.

Converting between document formats

There are many document converters in the wild which support conversion to and from
various file formats, including, but not limited to the ODT format. LibreOffice converter,
mentioned above, is one such converter. Once a converter is configured, you can interact
with it using the following command.

M-x org-odt-convert RET

Convert an existing document from one format to another. With a prefix ar-
gument, also open the newly produced file.

12.9.5 Applying custom styles

The ODT exporter ships with a set of OpenDocument styles (see [Working with Open-
Document style files], page 169) that ensure a well-formatted output. These factory styles,

Chapter 12: Exporting 164

however, may not cater to your specific tastes. To customize the output, you can either
modify the above styles files directly, or generate the required styles using an application
like LibreOffice. The latter method is suitable for expert and non-expert users alike, and is
described here.

Applying custom styles: the easy way

1. Create a sample example.org file with the below settings and export it to ODT format.

#+OPTIONS: H:10 num:t

2. Open the above example.odt using LibreOffice. Use the Stylist to locate the target
styles—these typically have the ‘Org’ prefix—and modify those to your taste. Save
the modified file either as an OpenDocument Text (.odt) or OpenDocument Template
(.ott) file.

3. Customize the variable org-odt-styles-file and point it to the newly created file.
For additional configuration options see [Overriding factory styles], page 169.

If you would like to choose a style on a per-file basis, you can use the #+ODT_STYLES_

FILE option. A typical setting will look like

#+ODT_STYLES_FILE: "/path/to/example.ott"

or

#+ODT_STYLES_FILE: ("/path/to/file.ott" ("styles.xml" "image/hdr.png"))

Using third-party styles and templates

You can use third-party styles and templates for customizing your output. This will produce
the desired output only if the template provides all style names that the ‘ODT’ exporter relies
on. Unless this condition is met, the output is going to be less than satisfactory. So it is
highly recommended that you only work with templates that are directly derived from the
factory settings.

12.9.6 Links in ODT export

ODT exporter creates native cross-references for internal links. It creates Internet-style
links for all other links.

A link with no description and destined to a regular (un-itemized) outline heading is
replaced with a cross-reference and section number of the heading.

A ‘\ref{label}’-style reference to an image, table etc. is replaced with a cross-reference
and sequence number of the labeled entity. See Section 12.9.10 [Labels and captions in
ODT export], page 168.

12.9.7 Tables in ODT export

Export of native Org mode tables (see Chapter 3 [Tables], page 19) and simple table.el

tables is supported. However, export of complex table.el tables—tables that have column
or row spans—is not supported. Such tables are stripped from the exported document.

By default, a table is exported with top and bottom frames and with rules separating
row and column groups (see Section 3.3 [Column groups], page 23). Furthermore, all tables
are typeset to occupy the same width. If the table specifies alignment and relative width

Chapter 12: Exporting 165

for its columns (see Section 3.2 [Column width and alignment], page 22) then these are
honored on export.23

You can control the width of the table by specifying :rel-width property using an
#+ATTR_ODT line.

For example, consider the following table which makes use of all the rules mentioned
above.

#+ATTR_ODT: :rel-width 50

| Area/Month | Jan | Feb | Mar | Sum |

|---------------+-------+-------+-------+-------|

| / | < | | | < |

| <l13> | <r5> | <r5> | <r5> | <r6> |

| North America | 1 | 21 | 926 | 948 |

| Middle East | 6 | 75 | 844 | 925 |

| Asia Pacific | 9 | 27 | 790 | 826 |

|---------------+-------+-------+-------+-------|

| Sum | 16 | 123 | 2560 | 2699 |

On export, the table will occupy 50% of text area. The columns will be sized (roughly)
in the ratio of 13:5:5:5:6. The first column will be left-aligned and rest of the columns will
be right-aligned. There will be vertical rules after separating the header and last columns
from other columns. There will be horizontal rules separating the header and last rows from
other rows.

If you are not satisfied with the above formatting options, you can create custom table
styles and associate them with a table using the #+ATTR_ODT line. See [Customizing tables
in ODT export], page 171.

12.9.8 Images in ODT export

Embedding images

You can embed images within the exported document by providing a link to the desired
image file with no link description. For example, to embed ‘img.png’ do either of the
following:

[[file:img.png]]

[[./img.png]]

Embedding clickable images

You can create clickable images by providing a link whose description is a link to an image
file. For example, to embed a image org-mode-unicorn.png which when clicked jumps to
http://Orgmode.org website, do the following

[[http://orgmode.org][./org-mode-unicorn.png]]

Sizing and scaling of embedded images

You can control the size and scale of the embedded images using the #+ATTR_ODT attribute.

23 The column widths are interpreted as weighted ratios with the default weight being 1

http://Orgmode.org

Chapter 12: Exporting 166

The exporter specifies the desired size of the image in the final document in units of cen-
timeters. In order to scale the embedded images, the exporter queries for pixel dimensions
of the images using one of a) ImageMagick’s identify program or b) Emacs create-image
and image-size APIs24. The pixel dimensions are subsequently converted in to units of
centimeters using org-odt-pixels-per-inch. The default value of this variable is set to
display-pixels-per-inch. You can tweak this variable to achieve the best results.

The examples below illustrate the various possibilities.

Explicitly size the image
To embed img.png as a 10 cm x 10 cm image, do the following:

#+ATTR_ODT: :width 10 :height 10

[[./img.png]]

Scale the image
To embed img.png at half its size, do the following:

#+ATTR_ODT: :scale 0.5

[[./img.png]]

Scale the image to a specific width
To embed img.png with a width of 10 cm while retaining the original
height:width ratio, do the following:

#+ATTR_ODT: :width 10

[[./img.png]]

Scale the image to a specific height
To embed img.png with a height of 10 cm while retaining the original
height:width ratio, do the following

#+ATTR_ODT: :height 10

[[./img.png]]

Anchoring of images

You can control the manner in which an image is anchored by setting the :anchor property
of it’s #+ATTR_ODT line. You can specify one of the following three values for the :anchor

property: ‘"as-char"’, ‘"paragraph"’ and ‘"page"’.

To create an image that is anchored to a page, do the following:

#+ATTR_ODT: :anchor "page"

[[./img.png]]

12.9.9 Math formatting in ODT export

The ODT exporter has special support for handling math.

Working with LATEX math snippets

LATEX math snippets (see Section 11.7.3 [LATEX fragments], page 136) can be embedded in
the ODT document in one of the following ways:

24 Use of ImageMagick is only desirable. However, if you routinely produce documents that have large im-
ages or you export your Org files that has images using a Emacs batch script, then the use of ImageMagick
is mandatory.

Chapter 12: Exporting 167

1. MathML

This option is activated on a per-file basis with

#+OPTIONS: LaTeX:t

With this option, LATEX fragments are first converted into MathML fragments using
an external LATEX-to-MathML converter program. The resulting MathML fragments
are then embedded as an OpenDocument Formula in the exported document.

You can specify the LATEX-to-MathML converter by customizing the variables
org-latex-to-mathml-convert-command and org-latex-to-mathml-jar-file.

To use MathToWeb25 as your converter, you can configure the above variables as

(setq org-latex-to-mathml-convert-command

"java -jar %j -unicode -force -df %o %I"

org-latex-to-mathml-jar-file

"/path/to/mathtoweb.jar")

To use LATEXML26 use

(setq org-latex-to-mathml-convert-command

"latexmlmath \"%i\" --presentationmathml=%o")

You can use the following commands to quickly verify the reliability of the LATEX-to-
MathML converter.

M-x org-odt-export-as-odf RET

Convert a LATEX math snippet to an OpenDocument formula (.odf) file.

M-x org-odt-export-as-odf-and-open RET

Convert a LATEX math snippet to an OpenDocument formula (.odf) file
and open the formula file with the system-registered application.

2. PNG images

This option is activated on a per-file basis with

#+OPTIONS: tex:dvipng

or:

#+OPTIONS: tex:imagemagick

With this option, LATEX fragments are processed into PNG images and the resulting
images are embedded in the exported document. This method requires that the dvipng
program or imagemagick suite be available on your system.

Working with MathML or OpenDocument formula files

For various reasons, you may find embedding LATEX math snippets in an ODT document
less than reliable. In that case, you can embed a math equation by linking to its MathML
(.mml) source or its OpenDocument formula (.odf) file as shown below:

[[./equation.mml]]

or

[[./equation.odf]]

25 See MathToWeb.
26 See http://dlmf.nist.gov/LaTeXML/.

http://www.mathtoweb.com/cgi-bin/mathtoweb_home.pl
http://dlmf.nist.gov/LaTeXML/

Chapter 12: Exporting 168

12.9.10 Labels and captions in ODT export

You can label and caption various category of objects—an inline image, a table, a LATEX
fragment or a Math formula—using #+LABEL and #+CAPTION lines. See Section 11.2 [Images
and tables], page 130. ODT exporter enumerates each labeled or captioned object of a given
category separately. As a result, each such object is assigned a sequence number based on
order of it’s appearance in the Org file.

In the exported document, a user-provided caption is augmented with the category and
sequence number. Consider the following inline image in an Org file.

#+CAPTION: Bell curve

#+LABEL: fig:SED-HR4049

[[./img/a.png]]

It could be rendered as shown below in the exported document.

Figure 2: Bell curve

You can modify the category component of the caption by customizing the option
org-odt-category-map-alist. For example, to tag all embedded images with the string
‘Illustration’ (instead of the default ‘Figure’) use the following setting:

(setq org-odt-category-map-alist

(("__Figure__" "Illustration" "value" "Figure" org-odt--enumerable-image-p)))

With this, previous image will be captioned as below in the exported document.

Illustration 2: Bell curve

12.9.11 Literal examples in ODT export

Export of literal examples (see Section 11.3 [Literal examples], page 131) with full fontifi-
cation is supported. Internally, the exporter relies on htmlfontify.el to generate all style
definitions needed for a fancy listing.27 The auto-generated styles have ‘OrgSrc’ as pre-
fix and inherit their color from the faces used by Emacs font-lock library for the source
language.

If you prefer to use your own custom styles for fontification, you can do so by customizing
the option org-odt-create-custom-styles-for-srcblocks.

You can turn off fontification of literal examples by customizing the option org-odt-

fontify-srcblocks.

12.9.12 Advanced topics in ODT export

If you rely heavily on ODT export, you may want to exploit the full set of features that the
exporter offers. This section describes features that would be of interest to power users.

Configuring a document converter

The ODT exporter can work with popular converters with little or no extra configuration
from your side. See Section 12.9.4 [Extending ODT export], page 163. If you are using a
converter that is not supported by default or if you would like to tweak the default converter
settings, proceed as below.

27 Your htmlfontify.el library must at least be at Emacs 24.1 levels for fontification to be turned on.

Chapter 12: Exporting 169

1. Register the converter

Name your converter and add it to the list of known converters by customizing the
option org-odt-convert-processes. Also specify how the converter can be invoked
via command-line to effect the conversion.

2. Configure its capabilities

Specify the set of formats the converter can handle by customizing the variable
org-odt-convert-capabilities. Use the default value for this variable as a guide
for configuring your converter. As suggested by the default setting, you can specify
the full set of formats supported by the converter and not limit yourself to specifying
formats that are related to just the OpenDocument Text format.

3. Choose the converter

Select the newly added converter as the preferred one by customizing the option
org-odt-convert-process.

Working with OpenDocument style files

This section explores the internals of the ODT exporter and the means by which it produces
styled documents. Read this section if you are interested in exploring the automatic and
custom OpenDocument styles used by the exporter.

a) Factory styles

The ODT exporter relies on two files for generating its output. These files are bundled with
the distribution under the directory pointed to by the variable org-odt-styles-dir. The
two files are:

• OrgOdtStyles.xml

This file contributes to the styles.xml file of the final ‘ODT’ document. This file gets
modified for the following purposes:

1. To control outline numbering based on user settings.

2. To add styles generated by htmlfontify.el for fontification of code blocks.

• OrgOdtContentTemplate.xml

This file contributes to the content.xml file of the final ‘ODT’ document. The contents
of the Org outline are inserted between the ‘<office:text>’. . . ‘</office:text>’ el-
ements of this file.

Apart from serving as a template file for the final content.xml, the file serves the
following purposes:

1. It contains automatic styles for formatting of tables which are referenced by the
exporter.

2. It contains ‘<text:sequence-decl>’. . . ‘</text:sequence-decl>’ elements that
control how various entities—tables, images, equations, etc.—are numbered.

b) Overriding factory styles

The following two variables control the location from which the ODT exporter picks up the
custom styles and content template files. You can customize these variables to override the
factory styles used by the exporter.

Chapter 12: Exporting 170

• org-odt-styles-file

Use this variable to specify the styles.xml that will be used in the final output. You
can specify one of the following values:

1. A styles.xml file

Use this file instead of the default styles.xml

2. A .odt or .ott file

Use the styles.xml contained in the specified OpenDocument Text or Template
file

3. A .odt or .ott file and a subset of files contained within them

Use the styles.xml contained in the specified OpenDocument Text or Template
file. Additionally extract the specified member files and embed those within the
final ‘ODT’ document.

Use this option if the styles.xml file references additional files like header and
footer images.

4. nil

Use the default styles.xml

• org-odt-content-template-file

Use this variable to specify the blank content.xml that will be used in the final output.

Creating one-off styles

There are times when you would want one-off formatting in the exported document. You
can achieve this by embedding raw OpenDocument XML in the Org file. The use of this
feature is better illustrated with couple of examples.

1. Embedding ODT tags as part of regular text

You can inline OpenDocument syntax by enclosing it within ‘@@odt:...@@’ markup.
For example, to highlight a region of text do the following:

@@odt:<text:span text:style-name="Highlight">This is a highlighted

text</text:span>@@. But this is a regular text.

Hint: To see the above example in action, edit your styles.xml (see [Factory styles],
page 169) and add a custom ‘Highlight’ style as shown below.

<style:style style:name="Highlight" style:family="text">

<style:text-properties fo:background-color="#ff0000"/>

</style:style>

2. Embedding a one-line OpenDocument XML

You can add a simple OpenDocument one-liner using the #+ODT: directive. For exam-
ple, to force a page break do the following:

#+ODT: <text:p text:style-name="PageBreak"/>

Hint: To see the above example in action, edit your styles.xml (see [Factory styles],
page 169) and add a custom ‘PageBreak’ style as shown below.

<style:style style:name="PageBreak" style:family="paragraph"

style:parent-style-name="Text_20_body">

<style:paragraph-properties fo:break-before="page"/>

</style:style>

Chapter 12: Exporting 171

3. Embedding a block of OpenDocument XML

You can add a large block of OpenDocument XML using the #+BEGIN_ODT. . .#+END_
ODT construct.

For example, to create a one-off paragraph that uses bold text, do the following:

#+BEGIN_ODT

<text:p text:style-name="Text_20_body_20_bold">

This paragraph is specially formatted and uses bold text.

</text:p>

#+END_ODT

Customizing tables in ODT export

You can override the default formatting of the table by specifying a custom table style with
the #+ATTR_ODT line. For a discussion on default formatting of tables see Section 12.9.7
[Tables in ODT export], page 164.

This feature closely mimics the way table templates are defined in the OpenDocument-
v1.2 specification.28

To have a quick preview of this feature, install the below setting and export the table
that follows:

(setq org-odt-table-styles

(append org-odt-table-styles

'(("TableWithHeaderRowAndColumn" "Custom"

((use-first-row-styles . t)

(use-first-column-styles . t)))

("TableWithFirstRowandLastRow" "Custom"

((use-first-row-styles . t)

(use-last-row-styles . t))))))

#+ATTR_ODT: :style TableWithHeaderRowAndColumn

| Name | Phone | Age |

| Peter | 1234 | 17 |

| Anna | 4321 | 25 |

In the above example, you used a template named ‘Custom’ and installed two table styles
with the names ‘TableWithHeaderRowAndColumn’ and ‘TableWithFirstRowandLastRow’.
(Important: The OpenDocument styles needed for producing the above template have
been pre-defined for you. These styles are available under the section marked ‘Custom
Table Template’ in OrgOdtContentTemplate.xml (see [Factory styles], page 169). If you
need additional templates you have to define these styles yourselves.

To use this feature proceed as follows:

1. Create a table template29

A table template is nothing but a set of ‘table-cell’ and ‘paragraph’ styles for each
of the following table cell categories:

− Body

28 OpenDocument-v1.2 Specification
29 See the <table:table-template> element of the OpenDocument-v1.2 specification

http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2.html

Chapter 12: Exporting 172

− First column

− Last column

− First row

− Last row

− Even row

− Odd row

− Even column

− Odd Column

The names for the above styles must be chosen based on the name of the table template
using a well-defined convention.

The naming convention is better illustrated with an example. For a table template
with the name ‘Custom’, the needed style names are listed in the following table.

Table cell type table-cell style paragraph style

Body ‘CustomTableCell’ ‘CustomTableParagraph’
First column ‘CustomFirstColumnTableCell’ ‘CustomFirstColumnTableParagraph’
Last column ‘CustomLastColumnTableCell’ ‘CustomLastColumnTableParagraph’
First row ‘CustomFirstRowTableCell’ ‘CustomFirstRowTableParagraph’
Last row ‘CustomLastRowTableCell’ ‘CustomLastRowTableParagraph’
Even row ‘CustomEvenRowTableCell’ ‘CustomEvenRowTableParagraph’
Odd row ‘CustomOddRowTableCell’ ‘CustomOddRowTableParagraph’
Even column ‘CustomEvenColumnTableCell’ ‘CustomEvenColumnTableParagraph’
Odd column ‘CustomOddColumnTableCell’ ‘CustomOddColumnTableParagraph’

To create a table template with the name ‘Custom’, define the above styles in the
<office:automatic-styles>...</office:automatic-styles> element of the content
template file (see [Factory styles], page 169).

2. Define a table style30

To define a table style, create an entry for the style in the variable org-odt-table-

styles and specify the following:

− the name of the table template created in step (1)

− the set of cell styles in that template that are to be activated

For example, the entry below defines two different table styles ‘TableWithHeaderRowAndColumn’
and ‘TableWithFirstRowandLastRow’ based on the same template ‘Custom’. The
styles achieve their intended effect by selectively activating the individual cell styles
in that template.

(setq org-odt-table-styles

(append org-odt-table-styles

30 See the attributes table:template-name, table:use-first-row-styles, table:use-last-row-styles,
table:use-first-column-styles, table:use-last-column-styles, table:use-banding-

rows-styles, and table:use-banding-column-styles of the <table:table> element in the
OpenDocument-v1.2 specification

Chapter 12: Exporting 173

'(("TableWithHeaderRowAndColumn" "Custom"

((use-first-row-styles . t)

(use-first-column-styles . t)))

("TableWithFirstRowandLastRow" "Custom"

((use-first-row-styles . t)

(use-last-row-styles . t))))))

3. Associate a table with the table style

To do this, specify the table style created in step (2) as part of the ATTR_ODT line as
shown below.

#+ATTR_ODT: :style "TableWithHeaderRowAndColumn"

| Name | Phone | Age |

| Peter | 1234 | 17 |

| Anna | 4321 | 25 |

Validating OpenDocument XML

Occasionally, you will discover that the document created by the ODT exporter cannot
be opened by your favorite application. One of the common reasons for this is that the
.odt file is corrupt. In such cases, you may want to validate the document against the
OpenDocument RELAX NG Compact Syntax (RNC) schema.

For de-compressing the .odt file31: See Info file emacs, node ‘File Archives’. For
general help with validation (and schema-sensitive editing) of XML files: See Info file
nxml-mode, node ‘Introduction’.

If you have ready access to OpenDocument .rnc files and the needed schema-locating
rules in a single folder, you can customize the variable org-odt-schema-dir to point to that
directory. The ODT exporter will take care of updating the rng-schema-locating-files
for you.

12.10 Org export

org export back-end creates a normalized version of the Org document in current buffer.
In particular, it evaluates Babel code (see Section 14.5 [Evaluating code blocks], page 197)
and removes other back-ends specific contents.

Org export commands

C-c C-e O o org-org-export-to-org

Export as an Org document. For an Org file, myfile.org, the resulting file will
be myfile.org.org. The file will be overwritten without warning.

C-c C-e O O org-org-export-as-org

Export to a temporary buffer. Do not create a file.

C-c C-e O v

Export to an Org file, then open it.

31 .odt files are nothing but ‘zip’ archives

Chapter 12: Exporting 174

12.11 Texinfo export

‘texinfo’ export back-end generates Texinfo code and can compile it into an Info file.

12.11.1 Texinfo export commands

C-c C-e i t org-texinfo-export-to-texinfo

Export as a Texinfo file. For an Org file, myfile.org, the resulting file will be
myfile.texi. The file will be overwritten without warning.

C-c C-e i i org-texinfo-export-to-info

Export to Texinfo and then process to an Info file32.

12.11.2 Texinfo specific export settings

The Texinfo exporter introduces a number of keywords, similar to the general options
settings described in Section 12.3 [Export settings], page 140.

‘SUBTITLE’
The document subtitle.

‘SUBAUTHOR’
The document subauthor.

‘TEXINFO_FILENAME’
The Texinfo filename.

‘TEXINFO_CLASS’
The class of the document (org-texinfo-default-class). This must be a
member of org-texinfo-classes.

‘TEXINFO_HEADER’
Arbitrary lines inserted at the end of the preamble.

‘TEXINFO_POST_HEADER’
Arbitrary lines inserted at the end of the preamble.

‘TEXINFO_DIR_CATEGORY’
The directory category of the document.

‘TEXINFO_DIR_TITLE’
The directory title of the document.

‘TEXINFO_DIR_DESC’
The directory description of the document.

‘TEXINFO_PRINTED_TITLE’
The printed title of the document.

These keywords are treated in details in the following sections.

32 By setting org-texinfo-info-process, it is possible to generate other formats, including DocBook.

Chapter 12: Exporting 175

12.11.3 Document preamble

When processing a document, ‘texinfo’ back-end generates a minimal file header along with
a title page, a copyright page, and a menu. You control the latter through the structure of
the document (see Section 12.11.4 [Headings and sectioning structure], page 176). Various
keywords allow to tweak the other parts. It is also possible to give directions to install the
document in the ‘Top’ node.

File header

Upon creating the header of a Texinfo file, the back-end guesses a name for the Info file
to be compiled. This may not be a sensible choice, e.g., if you want to produce the final
document in a different directory. Specify an alternate path with #+TEXINFO_FILENAME

keyword to override the default destination.

Along with the output file name, the header contains information about the language (see
Section 12.3 [Export settings], page 140) and current encoding used33. Insert a #+TEXINFO_

HEADER keyword for each additional command needed, e.g., @code{@synindex}.

If you happen to regularly install the same set of commands, it may be easier to de-
fine your own class in org-texinfo-classes, which see. Set #+TEXINFO_CLASS keyword
accordingly in your document to activate it.

Title and copyright page

The default template includes a title page for hard copy output. The title and author
displayed on this page are extracted from, respectively, #+TITLE and #+AUTHOR keywords
(see Section 12.3 [Export settings], page 140). It is also possible to print a different, more
specific, title with #+TEXINFO_PRINTED_TITLE keyword, and add subtitles with #+SUBTITLE

keyword. Both expect raw Texinfo code in their value.

Likewise, information brought by #+AUTHOR may not be enough. You can include other
authors with several #+SUBAUTHOR keywords. Values are also expected to be written in
Texinfo code.

#+AUTHOR: Jane Smith

#+SUBAUTHOR: John Doe

#+TEXINFO_PRINTED_TITLE: This Long Title@inlinefmt{tex,@*} Is Broken in @TeX{}

Copying material is defined in a dedicated headline with a non-nil :COPYING: property.
The contents are inserted within a @copying command at the beginning of the document
whereas the heading itself does not appear in the structure of the document.

Copyright information is printed on the back of the title page.

* Copying

:PROPERTIES:

:COPYING: t

:END:

This is a short example of a complete Texinfo file, version 1.0.

Copyright \copy 2015 Free Software Foundation, Inc.

33 See org-texinfo-coding-system for more information.

Chapter 12: Exporting 176

The Top node

You may ultimately want to install your new Info file in your system. You can write an
appropriate entry in the top level directory specifying its category and title with, respec-
tively, #+TEXINFO_DIR_CATEGORY and #+TEXINFO_DIR_TITLE. Optionally, you can add a
short description using #+TEXINFO_DIR_DESC. The following example would write an entry
similar to Org’s in the ‘Top’ node.

#+TEXINFO_DIR_CATEGORY: Emacs

#+TEXINFO_DIR_TITLE: Org Mode: (org)

#+TEXINFO_DIR_DESC: Outline-based notes management and organizer

12.11.4 Headings and sectioning structure

‘texinfo’ uses a pre-defined scheme, or class, to convert headlines into Texinfo structuring
commands. For example, a top level headline appears as @chapter if it should be numbered
or as @unnumbered otherwise. If you need to use a different set of commands, e.g., to start
with @part instead of @chapter, install a new class in org-texinfo-classes, then activate
it with #+TEXINFO_CLASS keyword. Export process defaults to org-texinfo-default-

class when there is no such keyword in the document.

If a headline’s level has no associated structuring command, or is below a certain thresh-
old (see Section 12.3 [Export settings], page 140), that headline becomes a list in Texinfo
output.

As an exception, a headline with a non-nil :APPENDIX: property becomes an appendix,
independently on its level and the class used.

Each regular sectioning structure creates a menu entry, named after the heading. You
can provide a different, e.g., shorter, title in :ALT_TITLE: property (see [Table of contents],
page 128). Optionally, you can specify a description for the item in :DESCRIPTION: property.
E.g.,

* Controlling Screen Display

:PROPERTIES:

:ALT_TITLE: Display

:DESCRIPTION: Controlling Screen Display

:END:

12.11.5 Indices

Index entries are created using dedicated keywords. ‘texinfo’ back-end provides one for
each predefined type: #+CINDEX, #+FINDEX, #+KINDEX, #+PINDEX, #+TINDEX and #+VINDEX.
For custom indices, you can write raw Texinfo code (see Section 12.11.6 [Quoting Texinfo
code], page 177).

#+CINDEX: Defining indexing entries

To generate an index, you need to set the :INDEX: property of a headline to an appro-
priate abbreviation (e.g., ‘cp’ or ‘vr’). The headline is then exported as an unnumbered
chapter or section command and the index is inserted after its contents.

* Concept Index

:PROPERTIES:

:INDEX: cp

:END:

Chapter 12: Exporting 177

12.11.6 Quoting Texinfo code

It is possible to insert raw Texinfo code using any of the following constructs

Richard @@texinfo:@sc{@@Stallman@@texinfo:}@@ commence' GNU.

#+TEXINFO: @need800

This paragraph is preceded by...

#+BEGIN_TEXINFO

@auindex Johnson, Mark

@auindex Lakoff, George

#+END_TEXINFO

12.11.7 Texinfo specific attributes

‘texinfo’ back-end understands several attributes in plain lists, tables and images. They
must be specified using an #+ATTR_TEXINFO keyword, written just above the list, table or
image.

Plain lists

In Texinfo output, description lists appear as two-column tables, using the default command
@table. You can use @ftable or @vtable34 instead with :table-type attribute.

In any case, these constructs require a highlighting command for entries in the list. You
can provide one with :indic attribute. If you do not, it defaults to the value stored in
org-texinfo-def-table-markup, which see.

#+ATTR_TEXINFO: :indic @asis

- foo :: This is the text for /foo/, with no highlighting.

Tables

When exporting a table, column widths are deduced from the longest cell in each column.
You can also define them explicitly as fractions of the line length, using :columns attribute.

#+ATTR_TEXINFO: :columns .5 .5

| a cell | another cell |

Images

Images are links to files with a supported image extension and no description. Image scaling
is set with :width and :height attributes. You can also use :alt to specify alternate text,
as Texinfo code.

#+ATTR_TEXINFO: :width 1in :alt Alternate @i{text}

[[ridt.pdf]]

12.11.8 An example

Here is a thorough example. See Info file texinfo, node ‘GNU Sample Texts’ for an equiv-
alent Texinfo code.

34 For more information, See Info file texinfo, node ‘Two-column Tables’.

Chapter 12: Exporting 178

#+MACRO: version 2.0

#+MACRO: updated last updated 4 March 2014

#+OPTIONS: ':t toc:t author:t email:t

#+TITLE: GNU Sample {{{version}}}

#+AUTHOR: A.U. Thor

#+EMAIL: bug-sample@gnu.org

#+LANGUAGE: en

#+TEXINFO_FILENAME: sample.info

#+TEXINFO_HEADER: @syncodeindex pg cp

#+TEXINFO_DIR_CATEGORY: Texinfo documentation system

#+TEXINFO_DIR_TITLE: sample: (sample)

#+TEXINFO_DIR_DESC: Invoking sample

#+TEXINFO_PRINTED_TITLE: GNU Sample

#+SUBTITLE: for version {{{version}}}, {{{updated}}}

* Copying

:PROPERTIES:

:COPYING: t

:END:

This manual is for GNU Sample (version {{{version}}},

{{{updated}}}), which is an example in the Texinfo documentation.

Copyright @@texinfo:@copyright{}@@ 2013 Free Software Foundation,

Inc.

#+BEGIN_QUOTE

Permission is granted to copy, distribute and/or modify this

document under the terms of the GNU Free Documentation License,

Version 1.3 or any later version published by the Free Software

Foundation; with no Invariant Sections, with no Front-Cover Texts,

and with no Back-Cover Texts. A copy of the license is included in

the section entitled "GNU Free Documentation License".

#+END_QUOTE

* Invoking sample

#+PINDEX: sample

#+CINDEX: invoking @command{sample}

This is a sample manual. There is no sample program to invoke, but

if there were, you could see its basic usage and command line

options here.

Chapter 12: Exporting 179

* GNU Free Documentation License

:PROPERTIES:

:APPENDIX: t

:END:

#+TEXINFO: @include fdl.texi

* Index

:PROPERTIES:

:INDEX: cp

:END:

12.12 iCalendar export

Some people use Org mode for keeping track of projects, but still prefer a standard calen-
dar application for anniversaries and appointments. In this case it can be useful to show
deadlines and other time-stamped items in Org files in the calendar application. Org mode
can export calendar information in the standard iCalendar format. If you also want to have
TODO entries included in the export, configure the variable org-icalendar-include-

todo. Plain timestamps are exported as VEVENT, and TODO items as VTODO. It will
also create events from deadlines that are in non-TODO items. Deadlines and scheduling
dates in TODO items will be used to set the start and due dates for the TODO entry35. As
categories, it will use the tags locally defined in the heading, and the file/tree category36.
See the variable org-icalendar-alarm-time for a way to assign alarms to entries with a
time.

The iCalendar standard requires each entry to have a globally unique identifier (UID).
Org creates these identifiers during export. If you set the variable org-icalendar-store-
UID, the UID will be stored in the :ID: property of the entry and re-used next time you
report this entry. Since a single entry can give rise to multiple iCalendar entries (as a
timestamp, a deadline, a scheduled item, and as a TODO item), Org adds prefixes to the
UID, depending on what triggered the inclusion of the entry. In this way the UID remains
unique, but a synchronization program can still figure out from which entry all the different
instances originate.

C-c C-e c f org-icalendar-export-to-ics

Create iCalendar entries for the current buffer and store them in the same
directory, using a file extension .ics.

C-c C-e c a org-icalendar-export-agenda-files

Like C-c C-e c f, but do this for all files in org-agenda-files. For each of
these files, a separate iCalendar file will be written.

C-c C-e c c org-icalendar-combine-agenda-files

Create a single large iCalendar file from all files in org-agenda-files and write
it to the file given by org-icalendar-combined-agenda-file.

35 See the variables org-icalendar-use-deadline and org-icalendar-use-scheduled.
36 To add inherited tags or the TODO state, configure the variable org-icalendar-categories.

Chapter 12: Exporting 180

The export will honor SUMMARY, DESCRIPTION and LOCATION37 properties if the
selected entries have them. If not, the summary will be derived from the headline, and the
description from the body (limited to org-icalendar-include-body characters).

How this calendar is best read and updated, depends on the application you are using.
The FAQ covers this issue.

12.13 Other built-in back-ends

On top of the aforementioned back-ends, Org comes with other built-in ones:

• ox-man.el: export to a man page.

To activate these export back-end, customize org-export-backends or load them di-
rectly with e.g., (require 'ox-man). This will add new keys in the export dispatcher (see
Section 12.1 [The export dispatcher], page 139).

See the comment section of these files for more information on how to use them.

12.14 Export in foreign buffers

Most built-in back-ends come with a command to convert the selected region into a selected
format and replace this region by the exported output. Here is a list of such conversion
commands:

org-html-convert-region-to-html

Convert the selected region into HTML.

org-latex-convert-region-to-latex

Convert the selected region into LATEX.

org-texinfo-convert-region-to-texinfo

Convert the selected region into Texinfo.

org-md-convert-region-to-md

Convert the selected region into MarkDown.

This is particularly useful for converting tables and lists in foreign buffers. E.g., in an
HTML buffer, you can turn on orgstruct-mode, then use Org commands for editing a list,
and finally select and convert the list with M-x org-html-convert-region-to-html RET.

12.15 Advanced configuration

Hooks

Two hooks are run during the first steps of the export process. The first one, org-export-
before-processing-hook is called before expanding macros, Babel code and include key-
words in the buffer. The second one, org-export-before-parsing-hook, as its name
suggests, happens just before parsing the buffer. Their main use is for heavy duties, that is
duties involving structural modifications of the document. For example, one may want to
remove every headline in the buffer during export. The following code can achieve this:

37 The LOCATION property can be inherited from higher in the hierarchy if you configure org-use-

property-inheritance accordingly.

Chapter 12: Exporting 181

(defun my-headline-removal (backend)

"Remove all headlines in the current buffer.

BACKEND is the export back-end being used, as a symbol."

(org-map-entries

(lambda () (delete-region (point) (progn (forward-line) (point))))))

(add-hook 'org-export-before-parsing-hook 'my-headline-removal)

Note that functions used in these hooks require a mandatory argument, a symbol rep-
resenting the back-end used.

Filters

Filters are lists of functions applied on a specific part of the output from a given back-end.
More explicitly, each time a back-end transforms an Org object or element into another
language, all functions within a given filter type are called in turn on the string produced.
The string returned by the last function will be the one used in the final output.

There are filter sets for each type of element or object, for plain text, for the parse tree,
for the export options and for the final output. They are all named after the same scheme:
org-export-filter-TYPE-functions, where TYPE is the type targeted by the filter. Valid
types are:

body bold babel-call
center-block clock code
diary-sexp drawer dynamic-block
entity example-block export-block
export-snippet final-output fixed-width
footnote-definition footnote-reference headline
horizontal-rule inline-babel-call inline-src-block
inlinetask italic item
keyword latex-environment latex-fragment
line-break link node-property
options paragraph parse-tree
plain-list plain-text planning
property-drawer quote-block radio-target
section special-block src-block
statistics-cookie strike-through subscript
superscript table table-cell
table-row target timestamp
underline verbatim verse-block

For example, the following snippet allows me to use non-breaking spaces in the Org
buffer and get them translated into LATEX without using the \nbsp macro (where _ stands
for the non-breaking space):

Chapter 12: Exporting 182

(defun my-latex-filter-nobreaks (text backend info)

"Ensure \"_\" are properly handled in LaTeX export."

(when (org-export-derived-backend-p backend 'latex)

(replace-regexp-in-string "_" "~" text)))

(add-to-list 'org-export-filter-plain-text-functions

'my-latex-filter-nobreaks)

Three arguments must be provided to a filter: the code being changed, the back-end used,
and some information about the export process. You can safely ignore the third argument
for most purposes. Note the use of org-export-derived-backend-p, which ensures that
the filter will only be applied when using latex back-end or any other back-end derived
from it (e.g., beamer).

Defining filters for individual files

You can customize the export for just a specific file by binding export filter variables using
#+BIND. Here is an example where we introduce two filters, one to remove brackets from
time stamps, and one to entirely remove any strike-through text. The functions doing the
filtering are defined in an src block that allows the filter function definitions to exist in the
file itself and ensures that the functions will be there when needed.

#+BIND: org-export-filter-timestamp-functions (tmp-f-timestamp)

#+BIND: org-export-filter-strike-through-functions (tmp-f-strike-through)

#+begin_src emacs-lisp :exports results :results none

(defun tmp-f-timestamp (s backend info)

(replace-regexp-in-string "&[lg]t;\\|[][]" "" s))

(defun tmp-f-strike-through (s backend info) "")

#+end_src

Extending an existing back-end

This is obviously the most powerful customization, since the changes happen at the parser
level. Indeed, some export back-ends are built as extensions of other ones (e.g., Markdown
back-end an extension of HTML back-end).

Extending a back-end means that if an element type is not transcoded by the new back-
end, it will be handled by the original one. Hence you can extend specific parts of a back-end
without too much work.

As an example, imagine we want the ascii back-end to display the language used in
a source block, when it is available, but only when some attribute is non-nil, like the
following:

#+ATTR_ASCII: :language t

Because that back-end is lacking in that area, we are going to create a new back-end,
my-ascii that will do the job.

Chapter 12: Exporting 183

(defun my-ascii-src-block (src-block contents info)

"Transcode a SRC-BLOCK element from Org to ASCII.

CONTENTS is nil. INFO is a plist used as a communication

channel."

(if (not (org-export-read-attribute :attr_ascii src-block :language))

(org-export-with-backend 'ascii src-block contents info)

(concat

(format ",--[%s]--\n%s`----"

(org-element-property :language src-block)

(replace-regexp-in-string

"^" "| "

(org-element-normalize-string

(org-export-format-code-default src-block info)))))))

(org-export-define-derived-backend 'my-ascii 'ascii

:translate-alist '((src-block . my-ascii-src-block)))

The my-ascii-src-block function looks at the attribute above the element. If it isn’t
true, it gives hand to the ascii back-end. Otherwise, it creates a box around the code,
leaving room for the language. A new back-end is then created. It only changes its behavior
when translating src-block type element. Now, all it takes to use the new back-end is
calling the following from an Org buffer:

(org-export-to-buffer 'my-ascii "*Org MY-ASCII Export*")

It is obviously possible to write an interactive function for this, install it in the export
dispatcher menu, and so on.

Chapter 13: Publishing 184

13 Publishing

Org includes a publishing management system that allows you to configure automatic
HTML conversion of projects composed of interlinked org files. You can also configure
Org to automatically upload your exported HTML pages and related attachments, such as
images and source code files, to a web server.

You can also use Org to convert files into PDF, or even combine HTML and PDF
conversion so that files are available in both formats on the server.

Publishing has been contributed to Org by David O’Toole.

13.1 Configuration

Publishing needs significant configuration to specify files, destination and many other prop-
erties of a project.

13.1.1 The variable org-publish-project-alist

Publishing is configured almost entirely through setting the value of one variable, called
org-publish-project-alist. Each element of the list configures one project, and may be
in one of the two following forms:

("project-name" :property value :property value ...)

i.e., a well-formed property list with alternating keys and values
or

("project-name" :components ("project-name" "project-name" ...))

In both cases, projects are configured by specifying property values. A project defines
the set of files that will be published, as well as the publishing configuration to use when
publishing those files. When a project takes the second form listed above, the individual
members of the :components property are taken to be sub-projects, which group together
files requiring different publishing options. When you publish such a “meta-project”, all
the components will also be published, in the sequence given.

13.1.2 Sources and destinations for files

Most properties are optional, but some should always be set. In particular, Org needs to
know where to look for source files, and where to put published files.

:base-directory Directory containing publishing source files
:publishing-directory Directory where output files will be published. You can di-

rectly publish to a web server using a file name syntax appro-
priate for the Emacs tramp package. Or you can publish to a
local directory and use external tools to upload your website
(see Section 13.2 [Uploading files], page 191).

:preparation-function Function or list of functions to be called before starting the
publishing process, for example, to run make for updating files
to be published. The project property list is scoped into this
call as the variable project-plist.

Chapter 13: Publishing 185

:completion-function Function or list of functions called after finishing the publish-
ing process, for example, to change permissions of the result-
ing files. The project property list is scoped into this call as
the variable project-plist.

13.1.3 Selecting files

By default, all files with extension .org in the base directory are considered part of the
project. This can be modified by setting the properties

:base-extension Extension (without the dot!) of source files. This actually is a
regular expression. Set this to the symbol any if you want to get
all files in :base-directory, even without extension.

:exclude Regular expression to match file names that should not be pub-
lished, even though they have been selected on the basis of their
extension.

:include List of files to be included regardless of :base-extension and
:exclude.

:recursive non-nil means, check base-directory recursively for files to
publish.

13.1.4 Publishing action

Publishing means that a file is copied to the destination directory and possibly transformed
in the process. The default transformation is to export Org files as HTML files, and this
is done by the function org-html-publish-to-html, which calls the HTML exporter (see
Section 12.6 [HTML export], page 148). But you also can publish your content as PDF
files using org-latex-publish-to-pdf or as ascii, Texinfo, etc., using the corresponding
functions.

If you want to publish the Org file as an .org file but with the archived, commented and
tag-excluded trees removed, use the function org-org-publish-to-org. This will produce
file.org and put it in the publishing directory. If you want a htmlized version of this file,
set the parameter :htmlized-source to t, it will produce file.org.html in the publishing
directory1.

Other files like images only need to be copied to the publishing destination. For this
you can use org-publish-attachment. For non-org files, you always need to specify the
publishing function:

:publishing-function Function executing the publication of a file. This may also be
a list of functions, which will all be called in turn.

:htmlized-source non-nil means, publish htmlized source.

The function must accept three arguments: a property list containing at least a
:publishing-directory property, the name of the file to be published and the path to

1 If the publishing directory is the same than the source directory, file.org will be exported as
file.org.org, so probably don’t want to do this.

Chapter 13: Publishing 186

the publishing directory of the output file. It should take the specified file, make the
necessary transformation (if any) and place the result into the destination folder.

13.1.5 Options for the exporters

The property list can be used to set export options during the publishing process. In
most cases, these properties correspond to user variables in Org. While some properties
are available for all export back-ends, most of them are back-end specific. The following
sections list properties along with the variable they belong to. See the documentation string
of these options for details.

When a property is given a value in org-publish-project-alist, its setting overrides
the value of the corresponding user variable (if any) during publishing. Options set within
a file (see Section 12.3 [Export settings], page 140), however, override everything.

Generic properties

:archived-trees org-export-with-archived-trees

:exclude-tags org-export-exclude-tags

:headline-levels org-export-headline-levels

:language org-export-default-language

:preserve-breaks org-export-preserve-breaks

:section-numbers org-export-with-section-numbers

:select-tags org-export-select-tags

:with-author org-export-with-author

:with-creator org-export-with-creator

:with-date org-export-with-date

:with-drawers org-export-with-drawers

:with-email org-export-with-email

:with-emphasize org-export-with-emphasize

:with-fixed-width org-export-with-fixed-width

:with-footnotes org-export-with-footnotes

:with-latex org-export-with-latex

:with-planning org-export-with-planning

:with-priority org-export-with-priority

:with-properties org-export-with-properties

:with-special-strings org-export-with-special-strings

:with-sub-superscript org-export-with-sub-superscripts

:with-tables org-export-with-tables

:with-tags org-export-with-tags

:with-tasks org-export-with-tasks

:with-timestamps org-export-with-timestamps

:with-title org-export-with-title

:with-toc org-export-with-toc

:with-todo-keywords org-export-with-todo-keywords

ASCII specific properties

:ascii-bullets org-ascii-bullets

:ascii-caption-above org-ascii-caption-above

Chapter 13: Publishing 187

:ascii-charset org-ascii-charset

:ascii-global-margin org-ascii-global-margin

:ascii-format-drawer-function org-ascii-format-drawer-function

:ascii-format-inlinetask-function org-ascii-format-inlinetask-function

:ascii-headline-spacing org-ascii-headline-spacing

:ascii-indented-line-width org-ascii-indented-line-width

:ascii-inlinetask-width org-ascii-inlinetask-width

:ascii-inner-margin org-ascii-inner-margin

:ascii-links-to-notes org-ascii-links-to-notes

:ascii-list-margin org-ascii-list-margin

:ascii-paragraph-spacing org-ascii-paragraph-spacing

:ascii-quote-margin org-ascii-quote-margin

:ascii-table-keep-all-vertical-lines org-ascii-table-keep-all-vertical-lines

:ascii-table-use-ascii-art org-ascii-table-use-ascii-art

:ascii-table-widen-columns org-ascii-table-widen-columns

:ascii-text-width org-ascii-text-width

:ascii-underline org-ascii-underline

:ascii-verbatim-format org-ascii-verbatim-format

Beamer specific properties

:beamer-theme org-beamer-theme

:beamer-column-view-format org-beamer-column-view-format

:beamer-environments-extra org-beamer-environments-extra

:beamer-frame-default-options org-beamer-frame-default-options

:beamer-outline-frame-options org-beamer-outline-frame-options

:beamer-outline-frame-title org-beamer-outline-frame-title

:beamer-subtitle-format org-beamer-subtitle-format

HTML specific properties

:html-allow-name-attribute-in-anchors org-html-allow-name-attribute-in-anchors

:html-checkbox-type org-html-checkbox-type

:html-container org-html-container-element

:html-divs org-html-divs

:html-doctype org-html-doctype

:html-extension org-html-extension

:html-footnote-format org-html-footnote-format

:html-footnote-separator org-html-footnote-separator

:html-footnotes-section org-html-footnotes-section

:html-format-drawer-function org-html-format-drawer-function

:html-format-headline-function org-html-format-headline-function

:html-format-inlinetask-function org-html-format-inlinetask-function

:html-head-extra org-html-head-extra

:html-head-include-default-style org-html-head-include-default-style

:html-head-include-scripts org-html-head-include-scripts

:html-head org-html-head

:html-home/up-format org-html-home/up-format

Chapter 13: Publishing 188

:html-html5-fancy org-html-html5-fancy

:html-indent org-html-indent

:html-infojs-options org-html-infojs-options

:html-infojs-template org-html-infojs-template

:html-inline-image-rules org-html-inline-image-rules

:html-inline-images org-html-inline-images

:html-link-home org-html-link-home

:html-link-org-files-as-html org-html-link-org-files-as-html

:html-link-up org-html-link-up

:html-link-use-abs-url org-html-link-use-abs-url

:html-mathjax-options org-html-mathjax-options

:html-mathjax-template org-html-mathjax-template

:html-metadata-timestamp-format org-html-metadata-timestamp-format

:html-postamble-format org-html-postamble-format

:html-postamble org-html-postamble

:html-preamble-format org-html-preamble-format

:html-preamble org-html-preamble

:html-table-align-individual-fields org-html-table-align-individual-fields

:html-table-attributes org-html-table-default-attributes

:html-table-caption-above org-html-table-caption-above

:html-table-data-tags org-html-table-data-tags

:html-table-header-tags org-html-table-header-tags

:html-table-row-tags org-html-table-row-tags

:html-table-use-header-tags-for-first-column org-html-table-use-header-tags-for-first-column

:html-tag-class-prefix org-html-tag-class-prefix

:html-text-markup-alist org-html-text-markup-alist

:html-todo-kwd-class-prefix org-html-todo-kwd-class-prefix

:html-toplevel-hlevel org-html-toplevel-hlevel

:html-use-infojs org-html-use-infojs

:html-use-unicode-chars org-html-use-unicode-chars

:html-validation-link org-html-validation-link

:html-viewport org-html-viewport

:html-xml-declaration org-html-xml-declaration

LATEX specific properties

:latex-active-timestamp-format org-latex-active-timestamp-format

:latex-caption-above org-latex-caption-above

:latex-classes org-latex-classes

:latex-class org-latex-default-class

:latex-default-figure-position org-latex-default-figure-position

:latex-default-table-environment org-latex-default-table-environment

:latex-default-table-mode org-latex-default-table-mode

:latex-diary-timestamp-format org-latex-diary-timestamp-format

:latex-footnote-separator org-latex-footnote-separator

:latex-format-drawer-function org-latex-format-drawer-function

:latex-format-headline-function org-latex-format-headline-function

Chapter 13: Publishing 189

:latex-format-inlinetask-function org-latex-format-inlinetask-function

:latex-hyperref-template org-latex-hyperref-template

:latex-image-default-height org-latex-image-default-height

:latex-image-default-option org-latex-image-default-option

:latex-image-default-width org-latex-image-default-width

:latex-inactive-timestamp-format org-latex-inactive-timestamp-format

:latex-inline-image-rules org-latex-inline-image-rules

:latex-link-with-unknown-path-format org-latex-link-with-unknown-path-format

:latex-listings-langs org-latex-listings-langs

:latex-listings-options org-latex-listings-options

:latex-listings org-latex-listings

:latex-minted-langs org-latex-minted-langs

:latex-minted-options org-latex-minted-options

:latex-prefer-user-labels org-latex-prefer-user-labels

:latex-subtitle-format org-latex-subtitle-format

:latex-subtitle-separate org-latex-subtitle-separate

:latex-table-scientific-notation org-latex-table-scientific-notation

:latex-tables-booktabs org-latex-tables-booktabs

:latex-tables-centered org-latex-tables-centered

:latex-text-markup-alist org-latex-text-markup-alist

:latex-title-command org-latex-title-command

:latex-toc-command org-latex-toc-command

Markdown specific properties

:md-headline-style org-md-headline-style

ODT specific properties

:odt-content-template-file org-odt-content-template-file

:odt-display-outline-level org-odt-display-outline-level

:odt-fontify-srcblocks org-odt-fontify-srcblocks

:odt-format-drawer-function org-odt-format-drawer-function

:odt-format-headline-function org-odt-format-headline-function

:odt-format-inlinetask-function org-odt-format-inlinetask-function

:odt-inline-formula-rules org-odt-inline-formula-rules

:odt-inline-image-rules org-odt-inline-image-rules

:odt-pixels-per-inch org-odt-pixels-per-inch

:odt-styles-file org-odt-styles-file

:odt-table-styles org-odt-table-styles

:odt-use-date-fields org-odt-use-date-fields

Texinfo specific properties

:texinfo-active-timestamp-format org-texinfo-active-timestamp-format

:texinfo-classes org-texinfo-classes

:texinfo-class org-texinfo-default-class

:texinfo-def-table-markup org-texinfo-def-table-markup

:texinfo-diary-timestamp-format org-texinfo-diary-timestamp-format

Chapter 13: Publishing 190

:texinfo-filename org-texinfo-filename

:texinfo-format-drawer-function org-texinfo-format-drawer-function

:texinfo-format-headline-function org-texinfo-format-headline-function

:texinfo-format-inlinetask-function org-texinfo-format-inlinetask-function

:texinfo-inactive-timestamp-format org-texinfo-inactive-timestamp-format

:texinfo-link-with-unknown-path-format org-texinfo-link-with-unknown-path-format

:texinfo-node-description-column org-texinfo-node-description-column

:texinfo-table-scientific-notation org-texinfo-table-scientific-notation

:texinfo-tables-verbatim org-texinfo-tables-verbatim

:texinfo-text-markup-alist org-texinfo-text-markup-alist

13.1.6 Links between published files

To create a link from one Org file to another, you would use something like
‘[[file:foo.org][The foo]]’ or simply ‘file:foo.org.’ (see Chapter 4 [Hyperlinks],
page 38). When published, this link becomes a link to foo.html. You can thus interlink
the pages of your "org web" project and the links will work as expected when you publish
them to HTML. If you also publish the Org source file and want to link to it, use an http:

link instead of a file: link, because file: links are converted to link to the corresponding
html file.

You may also link to related files, such as images. Provided you are careful with relative
file names, and provided you have also configured Org to upload the related files, these
links will work too. See Section 13.3.2 [Complex example], page 192, for an example of this
usage.

13.1.7 Generating a sitemap

The following properties may be used to control publishing of a map of files for a given
project.

:auto-sitemap When non-nil, publish a sitemap during org-publish-

current-project or org-publish-all.

:sitemap-filename Filename for output of sitemap. Defaults to sitemap.org
(which becomes sitemap.html).

:sitemap-title Title of sitemap page. Defaults to name of file.

:sitemap-function Plug-in function to use for generation of the sitemap.
Defaults to org-publish-org-sitemap, which generates
a plain list of links to all files in the project.

:sitemap-sort-folders Where folders should appear in the sitemap. Set this to
first (default) or last to display folders first or last,
respectively. Any other value will mix files and folders.

Chapter 13: Publishing 191

:sitemap-sort-files How the files are sorted in the site map. Set
this to alphabetically (default), chronologically or
anti-chronologically. chronologically sorts the
files with older date first while anti-chronologically

sorts the files with newer date first. alphabetically

sorts the files alphabetically. The date of a file is re-
trieved with org-publish-find-date.

:sitemap-ignore-case Should sorting be case-sensitive? Default nil.

:sitemap-file-entry-format With this option one can tell how a sitemap’s entry is for-
matted in the sitemap. This is a format string with some
escape sequences: %t stands for the title of the file, %a
stands for the author of the file and %d stands for the date
of the file. The date is retrieved with the org-publish-
find-date function and formatted with org-publish-

sitemap-date-format. Default %t.

:sitemap-date-format Format string for the format-time-string function that
tells how a sitemap entry’s date is to be formatted. This
property bypasses org-publish-sitemap-date-format

which defaults to %Y-%m-%d.

:sitemap-sans-extension When non-nil, remove filenames’ extensions from the
generated sitemap. Useful to have cool URIs (see
http://www.w3.org/Provider/Style/URI). Defaults
to nil.

13.1.8 Generating an index

Org mode can generate an index across the files of a publishing project.

:makeindex When non-nil, generate in index in the file theindex.org and
publish it as theindex.html.

The file will be created when first publishing a project with the :makeindex set. The
file only contains a statement #+INCLUDE: "theindex.inc". You can then build around
this include statement by adding a title, style information, etc.

13.2 Uploading files

For those people already utilizing third party sync tools such as rsync or unison, it might
be preferable not to use the built in remote publishing facilities of Org mode which rely
heavily on Tramp. Tramp, while very useful and powerful, tends not to be so efficient for
multiple file transfer and has been known to cause problems under heavy usage.

Specialized synchronization utilities offer several advantages. In addition to timestamp
comparison, they also do content and permissions/attribute checks. For this reason you
might prefer to publish your web to a local directory (possibly even in place with your Org
files) and then use unison or rsync to do the synchronization with the remote host.

http://www.w3.org/Provider/Style/URI

Chapter 13: Publishing 192

Since Unison (for example) can be configured as to which files to transfer to a certain
remote destination, it can greatly simplify the project publishing definition. Simply keep
all files in the correct location, process your Org files with org-publish and let the syn-
chronization tool do the rest. You do not need, in this scenario, to include attachments
such as jpg, css or gif files in the project definition since the 3rd party tool syncs them.

Publishing to a local directory is also much faster than to a remote one, so that you can
afford more easily to republish entire projects. If you set org-publish-use-timestamps-
flag to nil, you gain the main benefit of re-including any changed external files such as
source example files you might include with #+INCLUDE:. The timestamp mechanism in
Org is not smart enough to detect if included files have been modified.

13.3 Sample configuration

Below we provide two example configurations. The first one is a simple project publishing
only a set of Org files. The second example is more complex, with a multi-component
project.

13.3.1 Example: simple publishing configuration

This example publishes a set of Org files to the public_html directory on the local machine.

(setq org-publish-project-alist

'(("org"

:base-directory "~/org/"

:publishing-directory "~/public_html"

:section-numbers nil

:with-toc nil

:html-head "<link rel=\"stylesheet\"

href=\"../other/mystyle.css\"

type=\"text/css\"/>")))

13.3.2 Example: complex publishing configuration

This more complicated example publishes an entire website, including Org files converted
to HTML, image files, Emacs Lisp source code, and style sheets. The publishing directory
is remote and private files are excluded.

To ensure that links are preserved, care should be taken to replicate your directory
structure on the web server, and to use relative file paths. For example, if your Org files are
kept in ~/org and your publishable images in ~/images, you would link to an image with

file:../images/myimage.png

On the web server, the relative path to the image should be the same. You can accomplish
this by setting up an "images" folder in the right place on the web server, and publishing
images to it.

(setq org-publish-project-alist

'(("orgfiles"

:base-directory "~/org/"

:base-extension "org"

:publishing-directory "/ssh:user@host:~/html/notebook/"

:publishing-function org-html-publish-to-html

Chapter 13: Publishing 193

:exclude "PrivatePage.org" ;; regexp

:headline-levels 3

:section-numbers nil

:with-toc nil

:html-head "<link rel=\"stylesheet\"

href=\"../other/mystyle.css\" type=\"text/css\"/>"

:html-preamble t)

("images"

:base-directory "~/images/"

:base-extension "jpg\\|gif\\|png"

:publishing-directory "/ssh:user@host:~/html/images/"

:publishing-function org-publish-attachment)

("other"

:base-directory "~/other/"

:base-extension "css\\|el"

:publishing-directory "/ssh:user@host:~/html/other/"

:publishing-function org-publish-attachment)

("website" :components ("orgfiles" "images" "other"))))

13.4 Triggering publication

Once properly configured, Org can publish with the following commands:

C-c C-e P x org-publish

Prompt for a specific project and publish all files that belong to it.

C-c C-e P p org-publish-current-project

Publish the project containing the current file.

C-c C-e P f org-publish-current-file

Publish only the current file.

C-c C-e P a org-publish-all

Publish every project.

Org uses timestamps to track when a file has changed. The above functions normally only
publish changed files. You can override this and force publishing of all files by giving a prefix
argument to any of the commands above, or by customizing the variable org-publish-

use-timestamps-flag. This may be necessary in particular if files include other files via
#+SETUPFILE: or #+INCLUDE:.

Chapter 14: Working with source code 194

14 Working with source code

Source code can be included in Org mode documents using a ‘src’ block, e.g.:

#+BEGIN_SRC emacs-lisp

(defun org-xor (a b)

"Exclusive or."

(if a (not b) b))

#+END_SRC

Org mode provides a number of features for working with live source code, including
editing of code blocks in their native major-mode, evaluation of code blocks, converting
code blocks into source files (known as tangling in literate programming), and exporting
code blocks and their results in several formats. This functionality was contributed by Eric
Schulte and Dan Davison, and was originally named Org-babel.

The following sections describe Org mode’s code block handling facilities.

14.1 Structure of code blocks

Live code blocks can be specified with a ‘src’ block or inline.1 The structure of a ‘src’
block is

#+NAME: <name>

#+BEGIN_SRC <language> <switches> <header arguments>

<body>

#+END_SRC

The #+NAME: line is optional, and can be used to name the code block. Live code
blocks require that a language be specified on the #+BEGIN_SRC line. Switches and header
arguments are optional.

Live code blocks can also be specified inline using

src_<language>{<body>}

or

src_<language>[<header arguments>]{<body>}

<#+NAME: name>

This line associates a name with the code block. This is similar to the #+NAME:
Name lines that can be used to name tables in Org mode files. Referencing the
name of a code block makes it possible to evaluate the block from other places
in the file, from other files, or from Org mode table formulas (see Section 3.5
[The spreadsheet], page 24). Names are assumed to be unique and the behavior
of Org mode when two or more blocks share the same name is undefined.

<language>

The language of the code in the block (see Section 14.7 [Languages], page 199).

<switches>

Optional switches control code block export (see the discussion of switches in
Section 11.3 [Literal examples], page 131)

1 Note that ‘src’ blocks may be inserted using Org mode’s Section 15.2 [Easy templates], page 223 system

Chapter 14: Working with source code 195

<header arguments>

Optional header arguments control many aspects of evaluation, export and
tangling of code blocks (see Section 14.8 [Header arguments], page 200). Header
arguments can also be set on a per-buffer or per-subtree basis using properties.

source code, header arguments

<body> Source code in the specified language.

14.2 Editing source code

Use C-c ' to edit the current code block. This brings up a language major-mode edit buffer
containing the body of the code block. Manually saving this buffer with C-x C-s will write
the contents back to the Org buffer. You can also set org-edit-src-auto-save-idle-

delay to save the base buffer after some idle delay, or org-edit-src-turn-on-auto-save
to auto-save this buffer into a separate file using auto-save-mode. Use C-c ' again to exit.

The org-src-mode minor mode will be active in the edit buffer. The following variables
can be used to configure the behavior of the edit buffer. See also the customization group
org-edit-structure for further configuration options.

org-src-lang-modes

If an Emacs major-mode named <lang>-mode exists, where <lang> is the lan-
guage named in the header line of the code block, then the edit buffer will
be placed in that major-mode. This variable can be used to map arbitrary
language names to existing major modes.

org-src-window-setup

Controls the way Emacs windows are rearranged when the edit buffer is created.

org-src-preserve-indentation

By default, the value is nil, which means that when code blocks are evaluated
during export or tangled, they are re-inserted into the code block, which may
replace sequences of spaces with tab characters. When non-nil, whitespace in
code blocks will be preserved during export or tangling, exactly as it appears.
This variable is especially useful for tangling languages such as Python, in which
whitespace indentation in the output is critical.

org-src-ask-before-returning-to-edit-buffer

By default, Org will ask before returning to an open edit buffer. Set this variable
to nil to switch without asking.

To turn on native code fontification in the Org buffer, configure the variable org-src-

fontify-natively.

14.3 Exporting code blocks

It is possible to export the code of code blocks, the results of code block evaluation, both
the code and the results of code block evaluation, or none. For most languages, the default
exports code. However, for some languages (e.g., ditaa) the default exports the results of
code block evaluation. For information on exporting code block bodies, see Section 11.3
[Literal examples], page 131.

The :exports header argument can be used to specify export behavior (note that these
arguments are only relevant for code blocks, not inline code):

Chapter 14: Working with source code 196

Header arguments:

:exports code

The default in most languages. The body of the code block is exported, as
described in Section 11.3 [Literal examples], page 131.

:exports results

The code block will be evaluated each time to buffer is exported, and the results
will be placed in the Org mode buffer for export, either updating previous results
of the code block located anywhere in the buffer or, if no previous results exist,
placing the results immediately after the code block. The body of the code
block will not be exported.

:exports both

Both the code block and its results will be exported.

:exports none

Neither the code block nor its results will be exported.

It is possible to inhibit the evaluation of code blocks during export. Setting the
org-export-babel-evaluate variable to nil will ensure that no code blocks are evaluated
as part of the export process. This can be useful in situations where potentially untrusted
Org mode files are exported in an automated fashion, for example when Org mode is used
as the markup language for a wiki. It is also possible to set this variable to inline-only.
In that case, only inline code blocks will be evaluated, in order to insert their results.
Non-inline code blocks are assumed to have their results already inserted in the buffer by
manual evaluation. This setting is useful to avoid expensive recalculations during export,
not to provide security.

Code blocks in commented subtrees (see [Comment lines], page 130) are never evaluated
on export. However, code blocks in subtrees excluded from export (see Section 12.3 [Export
settings], page 140) may be evaluated on export.

14.4 Extracting source code

Creating pure source code files by extracting code from source blocks is referred to as
“tangling”—a term adopted from the literate programming community. During “tangling”
of code blocks their bodies are expanded using org-babel-expand-src-block which can
expand both variable and “noweb” style references (see Section 14.10 [Noweb reference
syntax], page 220).

Header arguments

:tangle no

The default. The code block is not included in the tangled output.

:tangle yes

Include the code block in the tangled output. The output file name is the name
of the org file with the extension ‘.org’ replaced by the extension for the block
language.

:tangle filename

Include the code block in the tangled output to file ‘filename’.

Chapter 14: Working with source code 197

Functions

org-babel-tangle

Tangle the current file. Bound to C-c C-v t.

With prefix argument only tangle the current code block.

org-babel-tangle-file

Choose a file to tangle. Bound to C-c C-v f.

Hooks

org-babel-post-tangle-hook

This hook is run from within code files tangled by org-babel-tangle. Example
applications could include post-processing, compilation or evaluation of tangled
code files.

Jumping between code and Org

When tangling code from an Org-mode buffer to a source code file, you’ll frequently find
yourself viewing the file of tangled source code (e.g., many debuggers point to lines of the
source code file). It is useful to be able to navigate from the tangled source to the Org-mode
buffer from which the code originated.

The org-babel-tangle-jump-to-org function provides this jumping from code to Org-
mode functionality. Two header arguments are required for jumping to work, first the
padline (Section 14.8.2.12 [padline], page 211) option must be set to true (the default
setting), second the comments (Section 14.8.2.11 [comments], page 211) header argument
must be set to links, which will insert comments into the source code buffer which point
back to the original Org-mode file.

14.5 Evaluating code blocks

Code blocks can be evaluated2 and the results of evaluation optionally placed in the Org
mode buffer. The results of evaluation are placed following a line that begins by default
with #+RESULTS and optionally a cache identifier and/or the name of the evaluated code
block. The default value of #+RESULTS can be changed with the customizable variable
org-babel-results-keyword.

By default, the evaluation facility is only enabled for Lisp code blocks specified as
emacs-lisp. However, source code blocks in many languages can be evaluated within
Org mode (see Section 14.7 [Languages], page 199 for a list of supported languages and
Section 14.1 [Structure of code blocks], page 194 for information on the syntax used to
define a code block).

There are a number of ways to evaluate code blocks. The simplest is to press C-c C-c

or C-c C-v e with the point on a code block3. This will call the org-babel-execute-src-
block function to evaluate the block and insert its results into the Org mode buffer.

2 Whenever code is evaluated there is a potential for that code to do harm. Org mode provides safeguards
to ensure that code is only evaluated after explicit confirmation from the user. For information on these
safeguards (and on how to disable them) see Section 15.4 [Code evaluation security], page 224.

3 The option org-babel-no-eval-on-ctrl-c-ctrl-c can be used to remove code evaluation from the C-c
C-c key binding.

Chapter 14: Working with source code 198

It is also possible to evaluate named code blocks from anywhere in an Org mode buffer or
an Org mode table. These named code blocks can be located in the current Org mode buffer
or in the “Library of Babel” (see Section 14.6 [Library of Babel], page 198). Named code
blocks can be evaluated with a separate #+CALL: line or inline within a block of text. In
both cases the result is wrapped according to the value of org-babel-inline-result-wrap,
which by default is "=%s=" for markup that produces verbatim text.

The syntax of the #+CALL: line is

#+CALL: <name>(<arguments>)

#+CALL: <name>[<inside header arguments>](<arguments>) <end header arguments>

The syntax for inline evaluation of named code blocks is

... call_<name>(<arguments>) ...

... call_<name>[<inside header arguments>](<arguments>)[<end header arguments>] ...

<name> The name of the code block to be evaluated (see Section 14.1 [Structure of code
blocks], page 194).

<arguments>

Arguments specified in this section will be passed to the code block. These
arguments use standard function call syntax, rather than header argument syn-
tax. For example, a #+CALL: line that passes the number four to a code block
named double, which declares the header argument :var n=2, would be written
as #+CALL: double(n=4).

<inside header arguments>

Inside header arguments are passed through and applied to the named code
block. These arguments use header argument syntax rather than standard
function call syntax. Inside header arguments affect how the code block is eval-
uated. For example, [:results output] will collect the results of everything
printed to STDOUT during execution of the code block.

<end header arguments>

End header arguments are applied to the calling instance and do not affect
evaluation of the named code block. They affect how the results are incorpo-
rated into the Org mode buffer and how the call line is exported. For example,
:results html will insert the results of the call line evaluation in the Org buffer,
wrapped in a BEGIN_HTML: block.

For more examples of passing header arguments to #+CALL: lines see [Header
arguments in function calls], page 202.

14.6 Library of Babel

The “Library of Babel” consists of code blocks that can be called from any Org mode file.
Code blocks defined in the “Library of Babel” can be called remotely as if they were in the
current Org mode buffer (see Section 14.5 [Evaluating code blocks], page 197 for information
on the syntax of remote code block evaluation).

The central repository of code blocks in the “Library of Babel” is housed in an Org mode
file located in the ‘doc’ directory of Org mode.

Chapter 14: Working with source code 199

Users can add code blocks they believe to be generally useful to their “Library of Babel.”
The code blocks can be stored in any Org mode file and then loaded into the library with
org-babel-lob-ingest.

Code blocks located in any Org mode file can be loaded into the “Library of Babel” with
the org-babel-lob-ingest function, bound to C-c C-v i.

14.7 Languages

Code blocks in the following languages are supported.

Language Identifier Language Identifier
Asymptote asymptote Awk awk
C C C++ C++
Clojure clojure CSS css
D d ditaa ditaa
Graphviz dot Emacs Calc calc
Emacs Lisp emacs-lisp Fortran fortran
gnuplot gnuplot Haskell haskell
Java java Javascript js
LaTeX latex Ledger ledger
Lisp lisp Lilypond lilypond
MATLAB matlab Mscgen mscgen
Objective Caml ocaml Octave octave
Org mode org Oz oz
Perl perl Plantuml plantuml
Processing.js processing Python python
R R Ruby ruby
Sass sass Scheme scheme
GNU Screen screen Sed sed
shell sh SQL sql
SQLite sqlite

Language-specific documentation is available for some languages. If available, it can be
found at http://orgmode.org/worg/org-contrib/babel/languages.html.

The option org-babel-load-languages controls which languages are enabled for eval-
uation (by default only emacs-lisp is enabled). This variable can be set using the cus-
tomization interface or by adding code like the following to your emacs configuration.

The following disables emacs-lisp evaluation and enables evaluation of R code blocks.

(org-babel-do-load-languages

'org-babel-load-languages

'((emacs-lisp . nil)

(R . t)))

It is also possible to enable support for a language by loading the related elisp file with
require.

The following adds support for evaluating clojure code blocks.

(require 'ob-clojure)

http://orgmode.org/worg/org-contrib/babel/languages.html

Chapter 14: Working with source code 200

14.8 Header arguments

Code block functionality can be configured with header arguments. This section provides
an overview of the use of header arguments, and then describes each header argument in
detail.

14.8.1 Using header arguments

The values of header arguments can be set in several way. When the header arguments in
each layer have been determined, they are combined in order from the first, least specific
(having the lowest priority) up to the last, most specific (having the highest priority). A
header argument with a higher priority replaces the same header argument specified at
lower priority.

System-wide header arguments

System-wide values of header arguments can be specified by adapting the org-babel-

default-header-args variable:

:session => "none"

:results => "replace"

:exports => "code"

:cache => "no"

:noweb => "no"

For example, the following example could be used to set the default value of :noweb
header arguments to yes. This would have the effect of expanding :noweb references by
default when evaluating source code blocks.

(setq org-babel-default-header-args

(cons '(:noweb . "yes")

(assq-delete-all :noweb org-babel-default-header-args)))

Language-specific header arguments

Each language can define its own set of default header arguments in variable
org-babel-default-header-args:<lang>, where <lang> is the name of the language.
See the language-specific documentation available online at http://orgmode.org/worg/
org-contrib/babel.

Header arguments in Org mode properties

Buffer-wide header arguments may be specified as properties through the use of
#+PROPERTY: lines placed anywhere in an Org mode file (see Section 7.1 [Property syntax],
page 64).

For example the following would set session to *R* (only for R code blocks), and
results to silent for every code block in the buffer, ensuring that all execution took place
in the same session, and no results would be inserted into the buffer.

#+PROPERTY: header-args:R :session *R*

#+PROPERTY: header-args :results silent

Header arguments read from Org mode properties can also be set on a per-subtree basis
using property drawers (see Section 7.1 [Property syntax], page 64). When properties are

http://orgmode.org/worg/org-contrib/babel
http://orgmode.org/worg/org-contrib/babel

Chapter 14: Working with source code 201

used to set default header arguments, they are always looked up with inheritance, regardless
of the value of org-use-property-inheritance. Properties are evaluated as seen by the
outermost call or source block.4

In the following example the value of the :cache header argument will default to yes in
all code blocks in the subtree rooted at the following heading:

* outline header

:PROPERTIES:

:header-args: :cache yes

:END:

Properties defined in this way override the properties set in org-babel-default-

header-args and are applied for all activated languages. It is convenient to use the
org-set-property function bound to C-c C-x p to set properties in Org mode documents.

Language-specific header arguments in Org mode properties

Language-specific header arguments are also read from properties header-args:<lang>

where <lang> is the name of the language targeted. As an example

* Heading

:PROPERTIES:

:header-args:clojure: :session *clojure-1*

:header-args:R: :session *R*

:END:

** Subheading

:PROPERTIES:

:header-args:clojure: :session *clojure-2*

:END:

would independently set a default session header argument for R and clojure for calls
and source blocks under subtree “Heading” and change to a different clojure setting for
evaluations under subtree “Subheading”, while the R session is inherited from “Heading”
and therefore unchanged.

Code block specific header arguments

The most common way to assign values to header arguments is at the code block level.
This can be done by listing a sequence of header arguments and their values as part of
the #+BEGIN_SRC line. Properties set in this way override both the values of org-babel-
default-header-args and header arguments specified as properties. In the following ex-
ample, the :results header argument is set to silent, meaning the results of execution
will not be inserted in the buffer, and the :exports header argument is set to code, meaning
only the body of the code block will be preserved on export to HTML or LATEX.

#+NAME: factorial

#+BEGIN_SRC haskell :results silent :exports code :var n=0

fac 0 = 1

fac n = n * fac (n-1)

4 The deprecated syntax for default header argument properties, using the name of the header argument
as a property name directly, evaluates the property as seen by the corresponding source block definition.
This behavior has been kept for backwards compatibility.

Chapter 14: Working with source code 202

#+END_SRC

Similarly, it is possible to set header arguments for inline code blocks

src_haskell[:exports both]{fac 5}

Code block header arguments can span multiple lines using #+HEADER: or #+HEADERS:
lines preceding a code block or nested between the #+NAME: line and the #+BEGIN_SRC line
of a named code block.

Multi-line header arguments on an un-named code block:

#+HEADERS: :var data1=1

#+BEGIN_SRC emacs-lisp :var data2=2

(message "data1:%S, data2:%S" data1 data2)

#+END_SRC

#+RESULTS:

: data1:1, data2:2

Multi-line header arguments on a named code block:

#+NAME: named-block

#+HEADER: :var data=2

#+BEGIN_SRC emacs-lisp

(message "data:%S" data)

#+END_SRC

#+RESULTS: named-block

: data:2

Header arguments in function calls

At the most specific level, header arguments for “Library of Babel” or #+CALL: lines can be
set as shown in the two examples below. For more information on the structure of #+CALL:
lines see Section 14.5 [Evaluating code blocks], page 197.

The following will apply the :exports results header argument to the evaluation of
the #+CALL: line.

#+CALL: factorial(n=5) :exports results

The following will apply the :session special header argument to the evaluation of
the factorial code block.

#+CALL: factorial[:session special](n=5)

14.8.2 Specific header arguments

Header arguments consist of an initial colon followed by the name of the argument in
lowercase letters. The following header arguments are defined:

Additional header arguments are defined on a language-specific basis, see Section 14.7
[Languages], page 199.

14.8.2.1 :var

The :var header argument is used to pass arguments to code blocks. The specifics of
how arguments are included in a code block vary by language; these are addressed in the

Chapter 14: Working with source code 203

language-specific documentation. However, the syntax used to specify arguments is the
same across all languages. In every case, variables require a default value when they are
declared.

The values passed to arguments can either be literal values, references, or Emacs Lisp
code (see Section 14.8.2.1 [var], page 202). References include anything in the Org mode
file that takes a #+NAME: or #+RESULTS: line: tables, lists, #+BEGIN_EXAMPLE blocks, other
code blocks and the results of other code blocks.

Note: When a reference is made to another code block, the referenced block will be
evaluated unless it has current cached results (see Section 14.8.2.18 [cache], page 213).

Argument values can be indexed in a manner similar to arrays (see Section 14.8.2.1 [var],
page 202).

The following syntax is used to pass arguments to code blocks using the :var header
argument.

:var name=assign

The argument, assign, can either be a literal value, such as a string ‘"string"’ or a
number ‘9’, or a reference to a table, a list, a literal example, another code block (with or
without arguments), or the results of evaluating another code block.

Here are examples of passing values by reference:

table an Org mode table named with either a #+NAME: line

#+NAME: example-table

| 1 |

| 2 |

| 3 |

| 4 |

#+NAME: table-length

#+BEGIN_SRC emacs-lisp :var table=example-table

(length table)

#+END_SRC

#+RESULTS: table-length

: 4

list a simple list named with a #+NAME: line (note that nesting is not carried through
to the source code block)

#+NAME: example-list

- simple

- not

- nested

- list

#+BEGIN_SRC emacs-lisp :var x=example-list

(print x)

#+END_SRC

Chapter 14: Working with source code 204

#+RESULTS:

| simple | list |

code block without arguments
a code block name (from the example above), as assigned by #+NAME:, optionally
followed by parentheses

#+BEGIN_SRC emacs-lisp :var length=table-length()

(* 2 length)

#+END_SRC

#+RESULTS:

: 8

code block with arguments
a code block name, as assigned by #+NAME:, followed by parentheses and op-
tional arguments passed within the parentheses following the code block name
using standard function call syntax

#+NAME: double

#+BEGIN_SRC emacs-lisp :var input=8

(* 2 input)

#+END_SRC

#+RESULTS: double

: 16

#+NAME: squared

#+BEGIN_SRC emacs-lisp :var input=double(input=1)

(* input input)

#+END_SRC

#+RESULTS: squared

: 4

literal example
a literal example block named with a #+NAME: line

#+NAME: literal-example

#+BEGIN_EXAMPLE

A literal example

on two lines

#+END_EXAMPLE

#+NAME: read-literal-example

#+BEGIN_SRC emacs-lisp :var x=literal-example

(concatenate 'string x " for you.")

#+END_SRC

#+RESULTS: read-literal-example

: A literal example

Chapter 14: Working with source code 205

: on two lines for you.

Indexable variable values

It is possible to reference portions of variable values by “indexing” into the variables. Indexes
are 0 based with negative values counting back from the end. If an index is separated by
,s then each subsequent section will index into the next deepest nesting or dimension of
the value. Note that this indexing occurs before other table related header arguments like
:hlines, :colnames and :rownames are applied. The following example assigns the last
cell of the first row the table example-table to the variable data:

#+NAME: example-table

| 1 | a |

| 2 | b |

| 3 | c |

| 4 | d |

#+BEGIN_SRC emacs-lisp :var data=example-table[0,-1]

data

#+END_SRC

#+RESULTS:

: a

Ranges of variable values can be referenced using two integers separated by a :, in which
case the entire inclusive range is referenced. For example the following assigns the middle
three rows of example-table to data.

#+NAME: example-table

| 1 | a |

| 2 | b |

| 3 | c |

| 4 | d |

| 5 | 3 |

#+BEGIN_SRC emacs-lisp :var data=example-table[1:3]

data

#+END_SRC

#+RESULTS:

| 2 | b |

| 3 | c |

| 4 | d |

Additionally, an empty index, or the single character *, are both interpreted to mean
the entire range and as such are equivalent to 0:-1, as shown in the following example in
which the entire first column is referenced.

#+NAME: example-table

| 1 | a |

| 2 | b |

Chapter 14: Working with source code 206

| 3 | c |

| 4 | d |

#+BEGIN_SRC emacs-lisp :var data=example-table[,0]

data

#+END_SRC

#+RESULTS:

| 1 | 2 | 3 | 4 |

It is possible to index into the results of code blocks as well as tables. Any number of
dimensions can be indexed. Dimensions are separated from one another by commas, as
shown in the following example.

#+NAME: 3D

#+BEGIN_SRC emacs-lisp

'(((1 2 3) (4 5 6) (7 8 9))

((10 11 12) (13 14 15) (16 17 18))

((19 20 21) (22 23 24) (25 26 27)))

#+END_SRC

#+BEGIN_SRC emacs-lisp :var data=3D[1,,1]

data

#+END_SRC

#+RESULTS:

| 11 | 14 | 17 |

Emacs Lisp evaluation of variables

Emacs lisp code can be used to initialize variable values. When a variable value starts with
(, [, ' or ` it will be evaluated as Emacs Lisp and the result of the evaluation will be
assigned as the variable value. The following example demonstrates use of this evaluation
to reliably pass the file-name of the Org mode buffer to a code block—note that evaluation
of header arguments is guaranteed to take place in the original Org mode file, while there
is no such guarantee for evaluation of the code block body.

#+BEGIN_SRC sh :var filename=(buffer-file-name) :exports both

wc -w $filename

#+END_SRC

Note that values read from tables and lists will not be evaluated as Emacs Lisp, as shown
in the following example.

#+NAME: table

| (a b c) |

#+HEADERS: :var data=table[0,0]

#+BEGIN_SRC perl

$data

#+END_SRC

Chapter 14: Working with source code 207

#+RESULTS:

: (a b c)

14.8.2.2 :results

There are four classes of :results header argument. Only one option per class may be
supplied per code block.

• collection header arguments specify how the results should be collected from the code
block

• type header arguments specify what type of result the code block will return—which
has implications for how they will be processed before insertion into the Org mode
buffer

• format header arguments specify what type of result the code block will return—which
has implications for how they will be inserted into the Org mode buffer

• handling header arguments specify how the results of evaluating the code block should
be handled.

Collection

The following options are mutually exclusive, and specify how the results should be collected
from the code block.

• value This is the default. The result is the value of the last statement in the code
block. This header argument places the evaluation in functional mode. Note that in
some languages, e.g., Python, use of this result type requires that a return statement
be included in the body of the source code block. E.g., :results value.

• output The result is the collection of everything printed to STDOUT during the execu-
tion of the code block. This header argument places the evaluation in scripting mode.
E.g., :results output.

Type

The following options are mutually exclusive and specify what type of results the code block
will return. By default, results are inserted as either a table or scalar depending on their
value.

• table, vector The results should be interpreted as an Org mode table. If a single
value is returned, it will be converted into a table with one row and one column. E.g.,
:results value table.

• list The results should be interpreted as an Org mode list. If a single scalar value is
returned it will be converted into a list with only one element.

• scalar, verbatim The results should be interpreted literally—they will not be con-
verted into a table. The results will be inserted into the Org mode buffer as quoted
text. E.g., :results value verbatim.

• file The results will be interpreted as the path to a file, and will be inserted into the
Org mode buffer as a file link. E.g., :results value file.

Format

The following options are mutually exclusive and specify what type of results the code block
will return. By default, results are inserted according to the type as specified above.

Chapter 14: Working with source code 208

• raw The results are interpreted as raw Org mode code and are inserted directly into
the buffer. If the results look like a table they will be aligned as such by Org mode.
E.g., :results value raw.

• org The results are will be enclosed in a BEGIN_SRC org block. They are not comma-
escaped by default but they will be if you hit TAB in the block and/or if you export the
file. E.g., :results value org.

• html Results are assumed to be HTML and will be enclosed in a BEGIN_HTML block.
E.g., :results value html.

• latex Results assumed to be LATEX and are enclosed in a BEGIN_LaTeX block. E.g.,
:results value latex.

• code Result are assumed to be parsable code and are enclosed in a code block. E.g.,
:results value code.

• pp The result is converted to pretty-printed code and is enclosed in a code block. This
option currently supports Emacs Lisp, Python, and Ruby. E.g., :results value pp.

• drawer The result is wrapped in a RESULTS drawer. This can be useful for inserting
raw or org syntax results in such a way that their extent is known and they can be
automatically removed or replaced.

Handling

The following results options indicate what happens with the results once they are collected.

• silent The results will be echoed in the minibuffer but will not be inserted into the
Org mode buffer. E.g., :results output silent.

• replace The default value. Any existing results will be removed, and the new re-
sults will be inserted into the Org mode buffer in their place. E.g., :results output

replace.

• append If there are pre-existing results of the code block then the new results will be
appended to the existing results. Otherwise the new results will be inserted as with
replace.

• prepend If there are pre-existing results of the code block then the new results will be
prepended to the existing results. Otherwise the new results will be inserted as with
replace.

14.8.2.3 :file

The header argument :file is used to specify an external file in which to save code block
results. After code block evaluation an Org mode style [[file:]] link (see Section 4.1
[Link format], page 38) to the file will be inserted into the Org mode buffer. Some languages
including R, gnuplot, dot, and ditaa provide special handling of the :file header argument
automatically wrapping the code block body in the boilerplate code required to save output
to the specified file. This is often useful for saving graphical output of a code block to the
specified file.

The argument to :file should be either a string specifying the path to a file, or a list
of two strings in which case the first element of the list should be the path to a file and the
second a description for the link.

Chapter 14: Working with source code 209

14.8.2.4 :file-desc

The value of the :file-desc header argument is used to provide a description for file code
block results which are inserted as Org mode links (see Section 4.1 [Link format], page 38).
If the :file-desc header argument is given with no value the link path will be placed in
both the “link” and the “description” portion of the Org mode link.

14.8.2.5 :file-ext

The value of the :file-ext header argument is used to provide an extension to write the
file output to. It is combined with the #+NAME: of the source block and the value of the
Section 14.8.2.6 [output-dir], page 209 header argument to generate a complete file name.

This header arg will be overridden by :file, and thus has no effect when the latter is
specified.

14.8.2.6 :output-dir

The value of the :output-dir header argument is used to provide a directory to write the
file output to. It may specify an absolute directory (beginning with /) or a relative directory
(without /). It can be combined with the #+NAME: of the source block and the value of the
Section 14.8.2.5 [file-ext], page 209 header argument to generate a complete file name, or
used along with a Section 14.8.2.3 [file], page 208 header arg.

14.8.2.7 :dir and remote execution

While the :file header argument can be used to specify the path to the output file,
:dir specifies the default directory during code block execution. If it is absent, then the
directory associated with the current buffer is used. In other words, supplying :dir path

temporarily has the same effect as changing the current directory with M-x cd path RET,
and then not supplying :dir. Under the surface, :dir simply sets the value of the Emacs
variable default-directory.

When using :dir, you should supply a relative path for file output (e.g., :file

myfile.jpg or :file results/myfile.jpg) in which case that path will be interpreted
relative to the default directory.

In other words, if you want your plot to go into a folder called Work in your home
directory, you could use

#+BEGIN_SRC R :file myplot.png :dir ~/Work

matplot(matrix(rnorm(100), 10), type="l")

#+END_SRC

Remote execution

A directory on a remote machine can be specified using tramp file syntax, in which case the
code will be evaluated on the remote machine. An example is

#+BEGIN_SRC R :file plot.png :dir /dand@yakuba.princeton.edu:

plot(1:10, main=system("hostname", intern=TRUE))

#+END_SRC

Text results will be returned to the local Org mode buffer as usual, and file output will
be created on the remote machine with relative paths interpreted relative to the remote
directory. An Org mode link to the remote file will be created.

Chapter 14: Working with source code 210

So, in the above example a plot will be created on the remote machine, and a link of the
following form will be inserted in the org buffer:

[[file:/scp:dand@yakuba.princeton.edu:/home/dand/plot.png][plot.png]]

Most of this functionality follows immediately from the fact that :dir sets the value of
the Emacs variable default-directory, thanks to tramp. Those using XEmacs, or GNU
Emacs prior to version 23 may need to install tramp separately in order for these features
to work correctly.

Further points

• If :dir is used in conjunction with :session, although it will determine the starting
directory for a new session as expected, no attempt is currently made to alter the
directory associated with an existing session.

• :dir should typically not be used to create files during export with :exports results

or :exports both. The reason is that, in order to retain portability of exported mate-
rial between machines, during export links inserted into the buffer will not be expanded
against default directory. Therefore, if default-directory is altered using :dir,
it is probable that the file will be created in a location to which the link does not point.

14.8.2.8 :exports

The :exports header argument specifies what should be included in HTML or LATEX ex-
ports of the Org mode file. Note that the :exports option is only relevant for code blocks,
not inline code.

• code The default. The body of code is included into the exported file. E.g., :exports
code.

• results The result of evaluating the code is included in the exported file. E.g.,
:exports results.

• both Both the code and results are included in the exported file. E.g., :exports both.

• none Nothing is included in the exported file. E.g., :exports none.

14.8.2.9 :tangle

The :tangle header argument specifies whether or not the code block should be included
in tangled extraction of source code files.

• tangle The code block is exported to a source code file named after the full path
(including the directory) and file name (w/o extension) of the Org mode file. E.g.,
:tangle yes.

• no The default. The code block is not exported to a source code file. E.g., :tangle
no.

• other Any other string passed to the :tangle header argument is interpreted as a path
(directory and file name relative to the directory of the Org mode file) to which the
block will be exported. E.g., :tangle path.

14.8.2.10 :mkdirp

The :mkdirp header argument can be used to create parent directories of tangled files when
missing. This can be set to yes to enable directory creation or to no to inhibit directory
creation.

Chapter 14: Working with source code 211

14.8.2.11 :comments

By default code blocks are tangled to source-code files without any insertion of comments
beyond those which may already exist in the body of the code block. The :comments header
argument can be set as follows to control the insertion of extra comments into the tangled
code file.

• no The default. No extra comments are inserted during tangling.

• link The code block is wrapped in comments which contain pointers back to the
original Org file from which the code was tangled.

• yes A synonym for “link” to maintain backwards compatibility.

• org Include text from the Org mode file as a comment. The text is picked from the
leading context of the tangled code and is limited by the nearest headline or source
block as the case may be.

• both Turns on both the “link” and “org” comment options.

• noweb Turns on the “link” comment option, and additionally wraps expanded noweb
references in the code block body in link comments.

14.8.2.12 :padline

Control in insertion of padding lines around code block bodies in tangled code files. The
default value is yes which results in insertion of newlines before and after each tangled code
block. The following arguments are accepted.

• yes Insert newlines before and after each code block body in tangled code files.

• no Do not insert any newline padding in tangled output.

14.8.2.13 :no-expand

By default, code blocks are expanded with org-babel-expand-src-block during tangling.
This has the effect of assigning values to variables specified with :var (see Section 14.8.2.1
[var], page 202), and of replacing “noweb” references (see Section 14.10 [Noweb reference
syntax], page 220) with their targets. The :no-expand header argument can be used to
turn off this behavior. Note: The :no-expand header argument has no impact on export,
i.e. code blocks will irrespective of this header argument expanded for execution.

14.8.2.14 :session

The :session header argument starts a (possibly named) session for an interpreted lan-
guage where the interpreter’s state is preserved. All code blocks sharing the same name are
exectuted by the same interpreter process. By default, a session is not started.

• none The default. Each block is evaluated in its own interpreter process, which is
terminated after the evaluation.

• other Any other string passed to the :session header argument will give the session a
name. For example, :session mysession. If :session is given but no name string is
specified, the session is named according to the language used in the block. All blocks
with the same session name share the same session. Using different session names
enables concurrent sessions (even for the same interpreted language, if the language
supports multiple sessions).

Chapter 14: Working with source code 212

14.8.2.15 :noweb

The :noweb header argument controls expansion of “noweb” syntax references (see
Section 14.10 [Noweb reference syntax], page 220) when the code block is evaluated,
tangled, or exported. The :noweb header argument can have one of the five values: no,
yes, tangle, or no-export strip-export.

• no The default. “Noweb” syntax references in the body of the code block will not be
expanded before the code block is evaluated, tangled or exported.

• yes “Noweb” syntax references in the body of the code block will be expanded before
the code block is evaluated, tangled or exported.

• tangle “Noweb” syntax references in the body of the code block will be expanded
before the code block is tangled. However, “noweb” syntax references will not be
expanded when the code block is evaluated or exported.

• no-export “Noweb” syntax references in the body of the code block will be expanded
before the block is evaluated or tangled. However, “noweb” syntax references will not
be expanded when the code block is exported.

• strip-export “Noweb” syntax references in the body of the code block will be ex-
panded before the block is evaluated or tangled. However, “noweb” syntax references
will be removed when the code block is exported.

• eval “Noweb” syntax references in the body of the code block will only be expanded
before the block is evaluated.

Noweb prefix lines

Noweb insertions are now placed behind the line prefix of the <<reference>>. This be-
havior is illustrated in the following example. Because the <<example>> noweb reference
appears behind the SQL comment syntax, each line of the expanded noweb reference will
be commented.

This code block:

-- <<example>>

expands to:

-- this is the

-- multi-line body of example

Note that noweb replacement text that does not contain any newlines will not be affected
by this change, so it is still possible to use inline noweb references.

14.8.2.16 :noweb-ref

When expanding “noweb” style references, the bodies of all code block with either a block
name matching the reference name or a :noweb-ref header argument matching the refer-
ence name will be concatenated together to form the replacement text.

By setting this header argument at the subtree or file level, simple code block concatena-
tion may be achieved. For example, when tangling the following Org mode file, the bodies
of code blocks will be concatenated into the resulting pure code file5.

5 (The example needs property inheritance to be turned on for the noweb-ref property, see Section 7.4
[Property inheritance], page 67).

Chapter 14: Working with source code 213

#+BEGIN_SRC sh :tangle yes :noweb yes :shebang #!/bin/sh

<<fullest-disk>>

#+END_SRC

* the mount point of the fullest disk

:PROPERTIES:

:noweb-ref: fullest-disk

:END:

** query all mounted disks

#+BEGIN_SRC sh

df \

#+END_SRC

** strip the header row

#+BEGIN_SRC sh

|sed '1d' \

#+END_SRC

** sort by the percent full

#+BEGIN_SRC sh

|awk '{print $5 " " $6}'|sort -n |tail -1 \

#+END_SRC

** extract the mount point

#+BEGIN_SRC sh

|awk '{print $2}'

#+END_SRC

The :noweb-sep (see Section 14.8.2.17 [noweb-sep], page 213) header argument holds
the string used to separate accumulate noweb references like those above. By default a
newline is used.

14.8.2.17 :noweb-sep

The :noweb-sep header argument holds the string used to separate accumulate noweb
references (see Section 14.8.2.16 [noweb-ref], page 212). By default a newline is used.

14.8.2.18 :cache

The :cache header argument controls the use of in-buffer caching of the results of evaluating
code blocks. It can be used to avoid re-evaluating unchanged code blocks. Note that
the :cache header argument will not attempt to cache results when the :session header
argument is used, because the results of the code block execution may be stored in the
session outside of the Org mode buffer. The :cache header argument can have one of two
values: yes or no.

• no The default. No caching takes place, and the code block will be evaluated every
time it is called.

• yes Every time the code block is run a SHA1 hash of the code and arguments passed to
the block will be generated. This hash is packed into the #+RESULTS: line and will be

Chapter 14: Working with source code 214

checked on subsequent executions of the code block. If the code block has not changed
since the last time it was evaluated, it will not be re-evaluated.

Code block caches notice if the value of a variable argument to the code block has
changed. If this is the case, the cache is invalidated and the code block is re-run. In the
following example, caller will not be re-run unless the results of random have changed
since it was last run.

#+NAME: random

#+BEGIN_SRC R :cache yes

runif(1)

#+END_SRC

#+RESULTS[a2a72cd647ad44515fab62e144796432793d68e1]: random

0.4659510825295

#+NAME: caller

#+BEGIN_SRC emacs-lisp :var x=random :cache yes

x

#+END_SRC

#+RESULTS[bec9c8724e397d5df3b696502df3ed7892fc4f5f]: caller

0.254227238707244

14.8.2.19 :sep

The :sep header argument can be used to control the delimiter used when writing tabular
results out to files external to Org mode. This is used either when opening tabular results
of a code block by calling the org-open-at-point function bound to C-c C-o on the code
block, or when writing code block results to an external file (see Section 14.8.2.3 [file],
page 208) header argument.

By default, when :sep is not specified output tables are tab delimited.

14.8.2.20 :hlines

Tables are frequently represented with one or more horizontal lines, or hlines. The :hlines
argument to a code block accepts the values yes or no, with a default value of no.

• no Strips horizontal lines from the input table. In most languages this is the desired
effect because an hline symbol is interpreted as an unbound variable and raises an
error. Setting :hlines no or relying on the default value yields the following results.

#+NAME: many-cols

| a | b | c |

|---+---+---|

| d | e | f |

|---+---+---|

| g | h | i |

#+NAME: echo-table

#+BEGIN_SRC python :var tab=many-cols

Chapter 14: Working with source code 215

return tab

#+END_SRC

#+RESULTS: echo-table

| a | b | c |

| d | e | f |

| g | h | i |

• yes Leaves hlines in the table. Setting :hlines yes has this effect.

#+NAME: many-cols

| a | b | c |

|---+---+---|

| d | e | f |

|---+---+---|

| g | h | i |

#+NAME: echo-table

#+BEGIN_SRC python :var tab=many-cols :hlines yes

return tab

#+END_SRC

#+RESULTS: echo-table

| a | b | c |

|---+---+---|

| d | e | f |

|---+---+---|

| g | h | i |

14.8.2.21 :colnames

The :colnames header argument accepts the values yes, no, or nil for unassigned. The
default value is nil. Note that the behavior of the :colnames header argument may differ
across languages.

• nil If an input table looks like it has column names (because its second row is an
hline), then the column names will be removed from the table before processing, then
reapplied to the results.

#+NAME: less-cols

| a |

|---|

| b |

| c |

#+NAME: echo-table-again

#+BEGIN_SRC python :var tab=less-cols

return [[val + '*' for val in row] for row in tab]

#+END_SRC

#+RESULTS: echo-table-again

Chapter 14: Working with source code 216

| a |

|----|

| b* |

| c* |

Please note that column names are not removed before the table is indexed using
variable indexing See Section 14.8.2.1 [var], page 202.

• no No column name pre-processing takes place

• yes Column names are removed and reapplied as with nil even if the table does not
“look like” it has column names (i.e., the second row is not an hline)

14.8.2.22 :rownames

The :rownames header argument can take on the values yes or no, with a default value
of no. Note that Emacs Lisp code blocks ignore the :rownames header argument entirely
given the ease with which tables with row names may be handled directly in Emacs Lisp.

• no No row name pre-processing will take place.

• yes The first column of the table is removed from the table before processing, and is
then reapplied to the results.

#+NAME: with-rownames

| one | 1 | 2 | 3 | 4 | 5 |

| two | 6 | 7 | 8 | 9 | 10 |

#+NAME: echo-table-once-again

#+BEGIN_SRC python :var tab=with-rownames :rownames yes

return [[val + 10 for val in row] for row in tab]

#+END_SRC

#+RESULTS: echo-table-once-again

| one | 11 | 12 | 13 | 14 | 15 |

| two | 16 | 17 | 18 | 19 | 20 |

Please note that row names are not removed before the table is indexed using variable
indexing See Section 14.8.2.1 [var], page 202.

14.8.2.23 :shebang

Setting the :shebang header argument to a string value (e.g., :shebang "#!/bin/bash")
causes the string to be inserted as the first line of any tangled file holding the code block,
and the file permissions of the tangled file are set to make it executable.

14.8.2.24 :tangle-mode

The tangle-mode header argument controls the permission set on tangled files. The value
of this header argument will be passed to set-file-modes. For example, to set a tangled
file as read only use :tangle-mode (identity #o444), or to set a tangled file as executable
use :tangle-mode (identity #o755). Blocks with shebang (Section 14.8.2.23 [shebang],
page 216) header arguments will automatically be made executable unless the tangle-mode
header argument is also used. The behavior is undefined if multiple code blocks with
different values for the tangle-mode header argument are tangled to the same file.

Chapter 14: Working with source code 217

14.8.2.25 :eval

The :eval header argument can be used to limit the evaluation of specific code blocks. The
:eval header argument can be useful for protecting against the evaluation of dangerous
code blocks or to ensure that evaluation will require a query regardless of the value of the
org-confirm-babel-evaluate variable. The possible values of :eval and their effects are
shown below.

never or no

The code block will not be evaluated under any circumstances.

query Evaluation of the code block will require a query.

never-export or no-export

The code block will not be evaluated during export but may still be called
interactively.

query-export

Evaluation of the code block during export will require a query.

If this header argument is not set then evaluation is determined by the value of
the org-confirm-babel-evaluate variable see Section 15.4 [Code evaluation security],
page 224.

14.8.2.26 :wrap

The :wrap header argument is used to mark the results of source block evaluation. The
header argument can be passed a string that will be appended to #+BEGIN_ and #+END_,
which will then be used to wrap the results. If not string is specified then the results will
be wrapped in a #+BEGIN/END_RESULTS block.

14.8.2.27 :post

The :post header argument is used to post-process the results of a code block execution.
When a post argument is given, the results of the code block will temporarily be bound to
the *this* variable. This variable may then be included in header argument forms such
as those used in Section 14.8.2.1 [var], page 202 header argument specifications allowing
passing of results to other code blocks, or direct execution via Emacs Lisp. Additional
header arguments may be passed to the :post-function.

The following two examples illustrate the usage of the :post header argument. The first
example shows how to attach a attribute-line via :post.

#+name: attr_wrap

#+begin_src sh :var data="" :var width="\\textwidth" :results output

echo "#+ATTR_LATEX: :width $width"

echo "$data"

#+end_src

#+header: :file /tmp/it.png

#+begin_src dot :post attr_wrap(width="5cm", data=*this*) :results drawer

digraph{

a -> b;

b -> c;

Chapter 14: Working with source code 218

c -> a;

}

#+end_src

#+RESULTS:

:RESULTS:

#+ATTR_LATEX :width 5cm

[[file:/tmp/it.png]]

:END:

The second examples shows how to use :post together with the :colnames header
argument.

#+name: round-tbl

#+begin_src emacs-lisp :var tbl="" fmt="%.3f"

(mapcar (lambda (row)

(mapcar (lambda (cell)

(if (numberp cell)

(format fmt cell)

cell))

row))

tbl)

#+end_src

#+begin_src R :colnames yes :post round-tbl[:colnames yes](*this*)

set.seed(42)

data.frame(foo=rnorm(1))

#+end_src

#+RESULTS:

| foo |

|-------|

| 1.371 |

14.8.2.28 :prologue

The value of the prologue header argument will be prepended to the code block body
before execution. For example, :prologue "reset" may be used to reset a gnuplot session
before execution of a particular code block, or the following configuration may be used to
do this for all gnuplot code blocks. Also see Section 14.8.2.29 [epilogue], page 218.

(add-to-list 'org-babel-default-header-args:gnuplot

'((:prologue . "reset")))

14.8.2.29 :epilogue

The value of the epilogue header argument will be appended to the code block body before
execution. Also see Section 14.8.2.28 [prologue], page 218.

Chapter 14: Working with source code 219

14.9 Results of evaluation

The way in which results are handled depends on whether a session is invoked, as well as on
whether :results value or :results output is used. The following table shows the table
possibilities. For a full listing of the possible results header arguments see Section 14.8.2.2
[Results], page 207.

Non-session Session
:results value value of last expression value of last expression
:results output contents of STDOUT concatenation of interpreter output

Note: With :results value, the result in both :session and non-session is returned
to Org mode as a table (a one- or two-dimensional vector of strings or numbers) when
appropriate.

14.9.1 Non-session

14.9.1.1 :results value

This is the default. Internally, the value is obtained by wrapping the code in a function
definition in the external language, and evaluating that function. Therefore, code should
be written as if it were the body of such a function. In particular, note that Python does
not automatically return a value from a function unless a return statement is present, and
so a ‘return’ statement will usually be required in Python.

This is the only one of the four evaluation contexts in which the code is automatically
wrapped in a function definition.

14.9.1.2 :results output

The code is passed to the interpreter as an external process, and the contents of the standard
output stream are returned as text. (In certain languages this also contains the error output
stream; this is an area for future work.)

14.9.2 Session

14.9.2.1 :results value

The code is passed to an interpreter running as an interactive Emacs inferior process. Only
languages which provide tools for interactive evaluation of code have session support, so
some language (e.g., C and ditaa) do not support the :session header argument, and in
other languages (e.g., Python and Haskell) which have limitations on the code which may
be entered into interactive sessions, those limitations apply to the code in code blocks using
the :session header argument as well.

Unless the :results output option is supplied (see below) the result returned is
the result of the last evaluation performed by the interpreter. (This is obtained in a
language-specific manner: the value of the variable _ in Python and Ruby, and the value
of .Last.value in R).

14.9.2.2 :results output

The code is passed to the interpreter running as an interactive Emacs inferior process. The
result returned is the concatenation of the sequence of (text) output from the interactive

Chapter 14: Working with source code 220

interpreter. Notice that this is not necessarily the same as what would be sent to STDOUT if
the same code were passed to a non-interactive interpreter running as an external process.
For example, compare the following two blocks:

#+BEGIN_SRC python :results output

print "hello"

2

print "bye"

#+END_SRC

#+RESULTS:

: hello

: bye

In non-session mode, the “2” is not printed and does not appear.

#+BEGIN_SRC python :results output :session

print "hello"

2

print "bye"

#+END_SRC

#+RESULTS:

: hello

: 2

: bye

But in :session mode, the interactive interpreter receives input “2” and prints out its
value, “2”. (Indeed, the other print statements are unnecessary here).

14.10 Noweb reference syntax

The “noweb” (see http://www.cs.tufts.edu/~nr/noweb/) Literate Programming system
allows named blocks of code to be referenced by using the familiar Noweb syntax:

<<code-block-name>>

When a code block is tangled or evaluated, whether or not “noweb” references are
expanded depends upon the value of the :noweb header argument. If :noweb yes, then a
Noweb reference is expanded before evaluation. If :noweb no, the default, then the reference
is not expanded before evaluation. See the Section 14.8.2.16 [noweb-ref], page 212 header
argument for a more flexible way to resolve noweb references.

It is possible to include the results of a code block rather than the body. This is done
by appending parenthesis to the code block name which may optionally contain arguments
to the code block as shown below.

<<code-block-name(optional arguments)>>

Note: the default value, :noweb no, was chosen to ensure that correct code is not broken
in a language, such as Ruby, where <<arg>> is a syntactically valid construct. If <<arg>>
is not syntactically valid in languages that you use, then please consider setting the default
value.

http://www.cs.tufts.edu/~nr/noweb/

Chapter 14: Working with source code 221

Note: if noweb tangling is slow in large Org mode files consider setting the org-babel-
use-quick-and-dirty-noweb-expansion variable to t. This will result in faster noweb ref-
erence resolution at the expense of not correctly resolving inherited values of the :noweb-ref
header argument.

14.11 Key bindings and useful functions

Many common Org mode key sequences are re-bound depending on the context.

Within a code block, the following key bindings are active:

C-c C-c org-babel-execute-src-block

C-c C-o org-babel-open-src-block-result

M-up org-babel-load-in-session

M-down org-babel-switch-to-session

In an Org mode buffer, the following key bindings are active:

C-c C-v p or C-c C-v C-p org-babel-previous-src-block

C-c C-v n or C-c C-v C-n org-babel-next-src-block

C-c C-v e or C-c C-v C-e org-babel-execute-maybe

C-c C-v o or C-c C-v C-o org-babel-open-src-block-result

C-c C-v v or C-c C-v C-v org-babel-expand-src-block

C-c C-v u or C-c C-v C-u org-babel-goto-src-block-head

C-c C-v g or C-c C-v C-g org-babel-goto-named-src-block

C-c C-v r or C-c C-v C-r org-babel-goto-named-result

C-c C-v b or C-c C-v C-b org-babel-execute-buffer

C-c C-v s or C-c C-v C-s org-babel-execute-subtree

C-c C-v d or C-c C-v C-d org-babel-demarcate-block

C-c C-v t or C-c C-v C-t org-babel-tangle

C-c C-v f or C-c C-v C-f org-babel-tangle-file

C-c C-v c or C-c C-v C-c org-babel-check-src-block

C-c C-v j or C-c C-v C-j org-babel-insert-header-arg

C-c C-v l or C-c C-v C-l org-babel-load-in-session

C-c C-v i or C-c C-v C-i org-babel-lob-ingest

C-c C-v I or C-c C-v C-I org-babel-view-src-block-info

C-c C-v z or C-c C-v C-z org-babel-switch-to-session-with-code

C-c C-v a or C-c C-v C-a org-babel-sha1-hash

C-c C-v h or C-c C-v C-h org-babel-describe-bindings

C-c C-v x or C-c C-v C-x org-babel-do-key-sequence-in-edit-

buffer

14.12 Batch execution

It is possible to call functions from the command line. This shell script calls org-babel-
tangle on every one of its arguments.

Be sure to adjust the paths to fit your system.

#!/bin/sh

Chapter 14: Working with source code 222

-*- mode: shell-script -*-

#

tangle files with org-mode

#

DIR=`pwd`

FILES=""

wrap each argument in the code required to call tangle on it

for i in $@; do

FILES="$FILES \"$i\""

done

emacs -Q --batch \

--eval "(progn

(add-to-list 'load-path (expand-file-name \"~/src/org/lisp/\"))

(add-to-list 'load-path (expand-file-name \"~/src/org/contrib/lisp/\" t))

(require 'org)(require 'org-exp)(require 'ob)(require 'ob-tangle)

(mapc (lambda (file)

(find-file (expand-file-name file \"$DIR\"))

(org-babel-tangle)

(kill-buffer)) '($FILES)))" 2>&1 |grep tangled

Chapter 15: Miscellaneous 223

15 Miscellaneous

15.1 Completion

Emacs would not be Emacs without completion, and Org mode uses it whenever it makes
sense. If you prefer an iswitchb- or ido-like interface for some of the completion prompts,
you can specify your preference by setting at most one of the variables org-completion-
use-iswitchb org-completion-use-ido.

Org supports in-buffer completion. This type of completion does not make use of the
minibuffer. You simply type a few letters into the buffer and use the key to complete text
right there.

M-TAB Complete word at point

• At the beginning of a headline, complete TODO keywords.

• After ‘\’, complete TEX symbols supported by the exporter.

• After ‘*’, complete headlines in the current buffer so that they can be used
in search links like ‘[[*find this headline]]’.

• After ‘:’ in a headline, complete tags. The list of tags is taken from the
variable org-tag-alist (possibly set through the ‘#+TAGS’ in-buffer op-
tion, see Section 6.2 [Setting tags], page 59), or it is created dynamically
from all tags used in the current buffer.

• After ‘:’ and not in a headline, complete property keys. The list of keys is
constructed dynamically from all keys used in the current buffer.

• After ‘[’, complete link abbreviations (see Section 4.6 [Link abbreviations],
page 44).

• After ‘#+’, complete the special keywords like ‘TYP_TODO’ or ‘OPTIONS’
which set file-specific options for Org mode. When the option keyword
is already complete, pressing M-TAB again will insert example settings for
this keyword.

• In the line after ‘#+STARTUP: ’, complete startup keywords, i.e., valid keys
for this line.

• Elsewhere, complete dictionary words using Ispell.

15.2 Easy templates

Org mode supports insertion of empty structural elements (like #+BEGIN_SRC and #+END_

SRC pairs) with just a few key strokes. This is achieved through a native template expansion
mechanism. Note that Emacs has several other template mechanisms which could be used
in a similar way, for example yasnippet.

To insert a structural element, type a ‘<’, followed by a template selector and TAB.
Completion takes effect only when the above keystrokes are typed on a line by itself.

The following template selectors are currently supported.

s #+BEGIN_SRC ... #+END_SRC

e #+BEGIN_EXAMPLE ... #+END_EXAMPLE

Chapter 15: Miscellaneous 224

q #+BEGIN_QUOTE ... #+END_QUOTE

v #+BEGIN_VERSE ... #+END_VERSE

c #+BEGIN_CENTER ... #+END_CENTER

l #+BEGIN_LaTeX ... #+END_LaTeX

L #+LaTeX:

h #+BEGIN_HTML ... #+END_HTML

H #+HTML:

a #+BEGIN_ASCII ... #+END_ASCII

A #+ASCII:

i #+INDEX: line
I #+INCLUDE: line

For example, on an empty line, typing "<e" and then pressing TAB, will expand into a
complete EXAMPLE template.

You can install additional templates by customizing the variable org-structure-

template-alist. See the docstring of the variable for additional details.

15.3 Speed keys

Single keys can be made to execute commands when the cursor is at the beginning of a
headline, i.e., before the first star. Configure the variable org-use-speed-commands to
activate this feature. There is a pre-defined list of commands, and you can add more
such commands using the variable org-speed-commands-user. Speed keys not only speed
up navigation and other commands, but they also provide an alternative way to execute
commands bound to keys that are not or not easily available on a TTY, or on a small mobile
device with a limited keyboard.

To see which commands are available, activate the feature and press ? with the cursor
at the beginning of a headline.

15.4 Code evaluation and security issues

Org provides tools to work with code snippets, including evaluating them.

Running code on your machine always comes with a security risk. Badly written or
malicious code can be executed on purpose or by accident. Org has default settings which
will only evaluate such code if you give explicit permission to do so, and as a casual user of
these features you should leave these precautions intact.

For people who regularly work with such code, the confirmation prompts can become
annoying, and you might want to turn them off. This can be done, but you must be aware
of the risks that are involved.

Code evaluation can happen under the following circumstances:

Source code blocks
Source code blocks can be evaluated during export, or when pressing C-c C-c

in the block. The most important thing to realize here is that Org mode files
which contain code snippets are, in a certain sense, like executable files. So you
should accept them and load them into Emacs only from trusted sources—just
like you would do with a program you install on your computer.

Chapter 15: Miscellaneous 225

Make sure you know what you are doing before customizing the variables which
take off the default security brakes.

[User Option]org-confirm-babel-evaluate
When t (the default), the user is asked before every code block evaluation.
When nil, the user is not asked. When set to a function, it is called with
two arguments (language and body of the code block) and should return
t to ask and nil not to ask.

For example, here is how to execute "ditaa" code (which is considered safe)
without asking:

(defun my-org-confirm-babel-evaluate (lang body)

(not (string= lang "ditaa"))) ; don't ask for ditaa

(setq org-confirm-babel-evaluate 'my-org-confirm-babel-evaluate)

Following shell and elisp links
Org has two link types that can directly evaluate code (see Section 4.3 [Exter-
nal links], page 39). These links can be problematic because the code to be
evaluated is not visible.

[User Option]org-confirm-shell-link-function
Function to queries user about shell link execution.

[User Option]org-confirm-elisp-link-function
Functions to query user for Emacs Lisp link execution.

Formulas in tables
Formulas in tables (see Section 3.5 [The spreadsheet], page 24) are code that is
evaluated either by the calc interpreter, or by the Emacs Lisp interpreter.

15.5 Customization

There are more than 500 variables that can be used to customize Org. For the sake of
compactness of the manual, I am not describing the variables here. A structured overview
of customization variables is available with M-x org-customize RET. Or select Browse Org

Group from the Org->Customization menu. Many settings can also be activated on a
per-file basis, by putting special lines into the buffer (see Section 15.6 [In-buffer settings],
page 225).

15.6 Summary of in-buffer settings

Org mode uses special lines in the buffer to define settings on a per-file basis. These lines
start with a ‘#+’ followed by a keyword, a colon, and then individual words defining a setting.
Several setting words can be in the same line, but you can also have multiple lines for the
keyword. While these settings are described throughout the manual, here is a summary.
After changing any of these lines in the buffer, press C-c C-c with the cursor still in the
line to activate the changes immediately. Otherwise they become effective only when the
file is visited again in a new Emacs session.

Chapter 15: Miscellaneous 226

#+ARCHIVE: %s_done::

This line sets the archive location for the agenda file. It applies for all sub-
sequent lines until the next ‘#+ARCHIVE’ line, or the end of the file. The first
such line also applies to any entries before it. The corresponding variable is
org-archive-location.

#+CATEGORY:

This line sets the category for the agenda file. The category applies to the
whole document.

#+COLUMNS: %25ITEM ...

Set the default format for columns view. This format applies when columns
view is invoked in locations where no COLUMNS property applies.

#+CONSTANTS: name1=value1 ...

Set file-local values for constants to be used in table formulas. This line sets
the local variable org-table-formula-constants-local. The global version
of this variable is org-table-formula-constants.

#+FILETAGS: :tag1:tag2:tag3:

Set tags that can be inherited by any entry in the file, including the top-level
entries.

#+LINK: linkword replace

These lines (several are allowed) specify link abbreviations. See Section 4.6
[Link abbreviations], page 44. The corresponding variable is org-link-abbrev-
alist.

#+PRIORITIES: highest lowest default

This line sets the limits and the default for the priorities. All three must be
either letters A–Z or numbers 0–9. The highest priority must have a lower
ASCII number than the lowest priority.

#+PROPERTY: Property_Name Value

This line sets a default inheritance value for entries in the current buffer, most
useful for specifying the allowed values of a property.

#+SETUPFILE: file

This line defines a file that holds more in-buffer setup. Normally this is entirely
ignored. Only when the buffer is parsed for option-setting lines (i.e., when
starting Org mode for a file, when pressing C-c C-c in a settings line, or when
exporting), then the contents of this file are parsed as if they had been included
in the buffer. In particular, the file can be any other Org mode file with internal
setup. You can visit the file the cursor is in the line with C-c '.

#+STARTUP:

This line sets options to be used at startup of Org mode, when an Org file is
being visited.

The first set of options deals with the initial visibility of the outline tree. The
corresponding variable for global default settings is org-startup-folded, with
a default value t, which means overview.

Chapter 15: Miscellaneous 227

overview top-level headlines only
content all headlines
showall no folding of any entries
showeverything show even drawer contents

Dynamic virtual indentation is controlled by the variable org-startup-

indented1

indent start with org-indent-mode turned on
noindent start with org-indent-mode turned off

Then there are options for aligning tables upon visiting a file. This is use-
ful in files containing narrowed table columns. The corresponding variable is
org-startup-align-all-tables, with a default value nil.

align align all tables
noalign donflt align tables on startup

When visiting a file, inline images can be automatically displayed. The corre-
sponding variable is org-startup-with-inline-images, with a default value
nil to avoid delays when visiting a file.

inlineimages show inline images
noinlineimages donflt show inline images on startup

When visiting a file, LATEX fragments can be converted to images automatically.
The variable org-startup-with-latex-preview which controls this behavior,
is set to nil by default to avoid delays on startup.

latexpreview preview LATEX fragments
nolatexpreview donflt preview LATEX fragments

Logging the closing and reopening of TODO items and clock intervals can be
configured using these options (see variables org-log-done, org-log-note-
clock-out and org-log-repeat)

logdone record a timestamp when an item is marked DONE
lognotedone record timestamp and a note when DONE
nologdone donflt record when items are marked DONE
logrepeat record a time when reinstating a repeating item
lognoterepeat record a note when reinstating a repeating item
nologrepeat do not record when reinstating repeating item
lognoteclock-out record a note when clocking out
nolognoteclock-out donflt record a note when clocking out
logreschedule record a timestamp when scheduling time changes
lognotereschedule record a note when scheduling time changes
nologreschedule do not record when a scheduling date changes
logredeadline record a timestamp when deadline changes
lognoteredeadline record a note when deadline changes
nologredeadline do not record when a deadline date changes
logrefile record a timestamp when refiling
lognoterefile record a note when refiling
nologrefile do not record when refiling

1 Emacs 23 and Org mode 6.29 are required

Chapter 15: Miscellaneous 228

logdrawer store log into drawer
nologdrawer store log outside of drawer
logstatesreversed reverse the order of states notes
nologstatesreversed do not reverse the order of states notes

Here are the options for hiding leading stars in outline headings, and for indent-
ing outlines. The corresponding variables are org-hide-leading-stars and
org-odd-levels-only, both with a default setting nil (meaning showstars

and oddeven).

hidestars make all but one of the stars starting a headline invisible.
showstars show all stars starting a headline
indent virtual indentation according to outline level
noindent no virtual indentation according to outline level
odd allow only odd outline levels (1,3,...)
oddeven allow all outline levels

To turn on custom format overlays over timestamps (variables org-put-time-
stamp-overlays and org-time-stamp-overlay-formats), use

customtime overlay custom time format

The following options influence the table spreadsheet (variable
constants-unit-system).

constcgs constants.el should use the c-g-s unit system
constSI constants.el should use the SI unit system

To influence footnote settings, use the following keywords. The corresponding
variables are org-footnote-define-inline, org-footnote-auto-label, and
org-footnote-auto-adjust.

fninline define footnotes inline
fnnoinline define footnotes in separate section
fnlocal define footnotes near first reference, but not inline
fnprompt prompt for footnote labels
fnauto create [fn:1]-like labels automatically (default)
fnconfirm offer automatic label for editing or confirmation
fnplain create [1]-like labels automatically
fnadjust automatically renumber and sort footnotes
nofnadjust do not renumber and sort automatically

To hide blocks on startup, use these keywords. The corresponding variable is
org-hide-block-startup.

hideblocks Hide all begin/end blocks on startup
nohideblocks Do not hide blocks on startup

The display of entities as UTF-8 characters is governed by the variable
org-pretty-entities and the keywords

entitiespretty Show entities as UTF-8 characters where possible
entitiesplain Leave entities plain

Chapter 15: Miscellaneous 229

#+TAGS: TAG1(c1) TAG2(c2)

These lines (several such lines are allowed) specify the valid tags in this file,
and (potentially) the corresponding fast tag selection keys. The corresponding
variable is org-tag-alist.

#+TBLFM: This line contains the formulas for the table directly above the line.

Table can have multiple lines containing ‘#+TBLFM:’. Note that only the first
line of ‘#+TBLFM:’ will be applied when you recalculate the table. For more
details see [Using multiple #+TBLFM lines], page 33 in Section 3.5.8 [Editing
and debugging formulas], page 31.

#+TITLE:, #+AUTHOR:, #+EMAIL:, #+LANGUAGE:, #+DATE:,

#+OPTIONS:, #+BIND:,

#+SELECT_TAGS:, #+EXCLUDE_TAGS:

These lines provide settings for exporting files. For more details see Section 12.3
[Export settings], page 140.

#+TODO: #+SEQ_TODO: #+TYP_TODO:

These lines set the TODO keywords and their interpretation in the current file.
The corresponding variable is org-todo-keywords.

15.7 The very busy C-c C-c key

The key C-c C-c has many purposes in Org, which are all mentioned scattered throughout
this manual. One specific function of this key is to add tags to a headline (see Chapter 6
[Tags], page 59). In many other circumstances it means something like “Hey Org, look here
and update according to what you see here”. Here is a summary of what this means in
different contexts.

− If there are highlights in the buffer from the creation of a sparse tree, or from clock
display, remove these highlights.

− If the cursor is in one of the special #+KEYWORD lines, this triggers scanning the buffer
for these lines and updating the information.

− If the cursor is inside a table, realign the table. This command works even if the
automatic table editor has been turned off.

− If the cursor is on a #+TBLFM line, re-apply the formulas to the entire table.

− If the current buffer is a capture buffer, close the note and file it. With a prefix
argument, file it, without further interaction, to the default location.

− If the cursor is on a <<<target>>>, update radio targets and corresponding links in
this buffer.

− If the cursor is in a property line or at the start or end of a property drawer, offer
property commands.

− If the cursor is at a footnote reference, go to the corresponding definition, and vice
versa.

− If the cursor is on a statistics cookie, update it.

− If the cursor is in a plain list item with a checkbox, toggle the status of the checkbox.

− If the cursor is on a numbered item in a plain list, renumber the ordered list.

Chapter 15: Miscellaneous 230

− If the cursor is on the #+BEGIN line of a dynamic block, the block is updated.

− If the cursor is at a timestamp, fix the day name in the timestamp.

15.8 A cleaner outline view

Some people find it noisy and distracting that the Org headlines start with a potentially
large number of stars, and that text below the headlines is not indented. While this is no
problem when writing a book-like document where the outline headings are really section
headings, in a more list-oriented outline, indented structure is a lot cleaner:

* Top level headline | * Top level headline

** Second level | * Second level

*** 3rd level | * 3rd level

some text | some text

*** 3rd level | * 3rd level

more text | more text

* Another top level headline | * Another top level headline

If you are using at least Emacs 23.22 and version 6.29 of Org, this kind of view can be
achieved dynamically at display time using org-indent-mode. In this minor mode, all lines
are prefixed for display with the necessary amount of space3. Also headlines are prefixed
with additional stars, so that the amount of indentation shifts by two4 spaces per level. All
headline stars but the last one are made invisible using the org-hide face5; see below under
‘2.’ for more information on how this works. You can turn on org-indent-mode for all files
by customizing the variable org-startup-indented, or you can turn it on for individual
files using

#+STARTUP: indent

If you want a similar effect in an earlier version of Emacs and/or Org, or if you want
the indentation to be hard space characters so that the plain text file looks as similar as
possible to the Emacs display, Org supports you in the following way:

1. Indentation of text below headlines
You may indent text below each headline to make the left boundary line up with the
headline, like

*** 3rd level

more text, now indented

Org supports this with paragraph filling, line wrapping, and structure editing6, pre-
serving or adapting the indentation as appropriate.

2. Hiding leading stars
You can modify the display in such a way that all leading stars become invisible. To
do this in a global way, configure the variable org-hide-leading-stars or change this
on a per-file basis with

2 Emacs 23.1 can actually crash with org-indent-mode
3 org-indent-mode also sets the wrap-prefix property, such that visual-line-mode (or purely setting
word-wrap) wraps long lines (including headlines) correctly indented.

4 See the variable org-indent-indentation-per-level.
5 Turning on org-indent-mode sets org-hide-leading-stars to t and org-adapt-indentation to nil.
6 See also the variable org-adapt-indentation.

Chapter 15: Miscellaneous 231

#+STARTUP: hidestars

#+STARTUP: showstars

With hidden stars, the tree becomes:

* Top level headline

* Second level

* 3rd level

...

The leading stars are not truly replaced by whitespace, they are only fontified with the
face org-hide that uses the background color as font color. If you are not using either
white or black background, you may have to customize this face to get the wanted effect.
Another possibility is to set this font such that the extra stars are almost invisible, for
example using the color grey90 on a white background.

3. Things become cleaner still if you skip all the even levels and use only odd levels 1, 3,
5..., effectively adding two stars to go from one outline level to the next7. In this way
we get the outline view shown at the beginning of this section. In order to make the
structure editing and export commands handle this convention correctly, configure the
variable org-odd-levels-only, or set this on a per-file basis with one of the following
lines:

#+STARTUP: odd

#+STARTUP: oddeven

You can convert an Org file from single-star-per-level to the double-star-per-level con-
vention with M-x org-convert-to-odd-levels RET in that file. The reverse operation
is M-x org-convert-to-oddeven-levels.

15.9 Using Org on a tty

Because Org contains a large number of commands, by default many of Org’s core commands
are bound to keys that are generally not accessible on a tty, such as the cursor keys (left,
right, up, down), TAB and RET, in particular when used together with modifiers like Meta

and/or Shift. To access these commands on a tty when special keys are unavailable, the
following alternative bindings can be used. The tty bindings below will likely be more
cumbersome; you may find for some of the bindings below that a customized workaround
suits you better. For example, changing a timestamp is really only fun with S-cursor keys,
whereas on a tty you would rather use C-c . to re-insert the timestamp.

Default Alternative 1 Speed
key

Alternative 2

S-TAB C-u TAB C

M-left C-c C-x l l Esc left

M-S-left C-c C-x L L

M-right C-c C-x r r Esc right

M-S-right C-c C-x R R

M-up C-c C-x u Esc up

M-S-up C-c C-x U U

7 When you need to specify a level for a property search or refile targets, ‘LEVEL=2’ will correspond to 3
stars, etc.

Chapter 15: Miscellaneous 232

M-down C-c C-x d Esc down

M-S-down C-c C-x D D

S-RET C-c C-x c

M-RET C-c C-x m Esc RET

M-S-RET C-c C-x M

S-left C-c left

S-right C-c right

S-up C-c up

S-down C-c down

C-S-left C-c C-x left

C-S-right C-c C-x right

15.10 Interaction with other packages

Org lives in the world of GNU Emacs and interacts in various ways with other code out
there.

15.10.1 Packages that Org cooperates with

calc.el by Dave Gillespie
Org uses the Calc package for implementing spreadsheet functionality in its
tables (see Section 3.5 [The spreadsheet], page 24). Org checks for the avail-
ability of Calc by looking for the function calc-eval which will have been
autoloaded during setup if Calc has been installed properly. As of Emacs 22,
Calc is part of the Emacs distribution. Another possibility for interaction be-
tween the two packages is using Calc for embedded calculations. See Section
“Embedded Mode” in GNU Emacs Calc Manual.

constants.el by Carsten Dominik
In a table formula (see Section 3.5 [The spreadsheet], page 24), it is possible
to use names for natural constants or units. Instead of defining your own con-
stants in the variable org-table-formula-constants, install the constants

package which defines a large number of constants and units, and lets you use
unit prefixes like ‘M’ for ‘Mega’, etc. You will need version 2.0 of this package,
available at http://www.astro.uva.nl/~dominik/Tools. Org checks for the
function constants-get, which has to be autoloaded in your setup. See the
installation instructions in the file constants.el.

cdlatex.el by Carsten Dominik
Org mode can make use of the CDLATEX package to efficiently enter LATEX
fragments into Org files. See Section 11.7.5 [CDLaTeX mode], page 137.

imenu.el by Ake Stenhoff and Lars Lindberg
Imenu allows menu access to an index of items in a file. Org mode supports
Imenu—all you need to do to get the index is the following:

(add-hook 'org-mode-hook

(lambda () (imenu-add-to-menubar "Imenu")))

By default the index is two levels deep—you can modify the depth using the
option org-imenu-depth.

http://www.astro.uva.nl/~dominik/Tools

Chapter 15: Miscellaneous 233

remember.el by John Wiegley
Org used to use this package for capture, but no longer does.

speedbar.el by Eric M. Ludlam
Speedbar is a package that creates a special frame displaying files and index
items in files. Org mode supports Speedbar and allows you to drill into Org files
directly from the Speedbar. It also allows you to restrict the scope of agenda
commands to a file or a subtree by using the command < in the Speedbar frame.

table.el by Takaaki Ota
Complex ASCII tables with automatic line wrapping, column- and
row-spanning, and alignment can be created using the Emacs table package by
Takaaki Ota (http://sourceforge.net/projects/table, and also part of
Emacs 22). Org mode will recognize these tables and export them properly.
Because of interference with other Org mode functionality, you unfortunately
cannot edit these tables directly in the buffer. Instead, you need to use the
command C-c ' to edit them, similar to source code snippets.

C-c ' org-edit-special

Edit a table.el table. Works when the cursor is in a table.el table.

C-c ~ org-table-create-with-table.el

Insert a table.el table. If there is already a table at point,
this command converts it between the table.el format and the
Org mode format. See the documentation string of the command
org-convert-table for the restrictions under which this is possi-
ble.

table.el is part of Emacs since Emacs 22.

footnote.el by Steven L. Baur
Org mode recognizes numerical footnotes as provided by this package. How-
ever, Org mode also has its own footnote support (see Section 2.10 [Footnotes],
page 16), which makes using footnote.el unnecessary.

15.10.2 Packages that lead to conflicts with Org mode

In Emacs 23, shift-selection-mode is on by default, meaning that cursor
motions combined with the shift key should start or enlarge regions. This con-
flicts with the use of S-cursor commands in Org to change timestamps, TODO
keywords, priorities, and item bullet types if the cursor is at such a location. By
default, S-cursor commands outside special contexts don’t do anything, but
you can customize the variable org-support-shift-select. Org mode then
tries to accommodate shift selection by (i) using it outside of the special con-
texts where special commands apply, and by (ii) extending an existing active
region even if the cursor moves across a special context.

CUA.el by Kim. F. Storm
Key bindings in Org conflict with the S-<cursor> keys used by CUA mode (as
well as pc-select-mode and s-region-mode) to select and extend the region.

http://sourceforge.net/projects/table

Chapter 15: Miscellaneous 234

In fact, Emacs 23 has this built-in in the form of shift-selection-mode, see
previous paragraph. If you are using Emacs 23, you probably don’t want to
use another package for this purpose. However, if you prefer to leave these
keys to a different package while working in Org mode, configure the vari-
able org-replace-disputed-keys. When set, Org will move the following key
bindings in Org files, and in the agenda buffer (but not during date selection).

S-UP ⇒ M-p S-DOWN ⇒ M-n

S-LEFT ⇒ M-- S-RIGHT ⇒ M-+

C-S-LEFT ⇒ M-S-- C-S-RIGHT ⇒ M-S-+

Yes, these are unfortunately more difficult to remember. If you want to have
other replacement keys, look at the variable org-disputed-keys.

ecomplete.el by Lars Magne Ingebrigtsen larsi@gnus.org

Ecomplete provides “electric” address completion in address header lines in
message buffers. Sadly Orgtbl mode cuts ecompletes power supply: No com-
pletion happens when Orgtbl mode is enabled in message buffers while entering
text in address header lines. If one wants to use ecomplete one should not fol-
low the advice to automagically turn on Orgtbl mode in message buffers (see
Section 3.4 [Orgtbl mode], page 24), but instead—after filling in the message
headers—turn on Orgtbl mode manually when needed in the messages body.

filladapt.el by Kyle Jones
Org mode tries to do the right thing when filling paragraphs, list items and other
elements. Many users reported they had problems using both filladapt.el

and Org mode, so a safe thing to do is to disable it like this:

(add-hook 'org-mode-hook 'turn-off-filladapt-mode)

yasnippet.el

The way Org mode binds the TAB key (binding to [tab] instead of "\t")
overrules YASnippet’s access to this key. The following code fixed this problem:

(add-hook 'org-mode-hook

(lambda ()

(org-set-local 'yas/trigger-key [tab])

(define-key yas/keymap [tab] 'yas/next-field-or-maybe-expand)))

The latest version of yasnippet doesn’t play well with Org mode. If the above
code does not fix the conflict, start by defining the following function:

(defun yas/org-very-safe-expand ()

(let ((yas/fallback-behavior 'return-nil)) (yas/expand)))

Then, tell Org mode what to do with the new function:

(add-hook 'org-mode-hook

(lambda ()

(make-variable-buffer-local 'yas/trigger-key)

(setq yas/trigger-key [tab])

(add-to-list 'org-tab-first-hook 'yas/org-very-safe-expand)

(define-key yas/keymap [tab] 'yas/next-field)))

mailto:larsi@gnus.org

Chapter 15: Miscellaneous 235

windmove.el by Hovav Shacham
This package also uses the S-<cursor> keys, so everything written in the para-
graph above about CUA mode also applies here. If you want make the wind-
move function active in locations where Org mode does not have special func-
tionality on S-cursor, add this to your configuration:

;; Make windmove work in org-mode:

(add-hook 'org-shiftup-final-hook 'windmove-up)

(add-hook 'org-shiftleft-final-hook 'windmove-left)

(add-hook 'org-shiftdown-final-hook 'windmove-down)

(add-hook 'org-shiftright-final-hook 'windmove-right)

viper.el by Michael Kifer
Viper uses C-c / and therefore makes this key not access the corresponding
Org mode command org-sparse-tree. You need to find another key for this
command, or override the key in viper-vi-global-user-map with

(define-key viper-vi-global-user-map "C-c /" 'org-sparse-tree)

15.11 org-crypt.el

Org-crypt will encrypt the text of an entry, but not the headline, or properties. Org-crypt
uses the Emacs EasyPG library to encrypt and decrypt files.

Any text below a headline that has a ‘:crypt:’ tag will be automatically be encrypted
when the file is saved. If you want to use a different tag just customize the org-crypt-

tag-matcher setting.

To use org-crypt it is suggested that you have the following in your .emacs:

(require 'org-crypt)

(org-crypt-use-before-save-magic)

(setq org-tags-exclude-from-inheritance (quote ("crypt")))

(setq org-crypt-key nil)

;; GPG key to use for encryption

;; Either the Key ID or set to nil to use symmetric encryption.

(setq auto-save-default nil)

;; Auto-saving does not cooperate with org-crypt.el: so you need

;; to turn it off if you plan to use org-crypt.el quite often.

;; Otherwise, you'll get an (annoying) message each time you

;; start Org.

;; To turn it off only locally, you can insert this:

;;

;; # -*- buffer-auto-save-file-name: nil; -*-

Excluding the crypt tag from inheritance prevents already encrypted text being en-
crypted again.

Appendix A: Hacking 236

Appendix A Hacking

This appendix covers some areas where users can extend the functionality of Org.

A.1 Hooks

Org has a large number of hook variables that can be used to add functionality. This
appendix about hacking is going to illustrate the use of some of them. A complete list of all
hooks with documentation is maintained by the Worg project and can be found at http://
orgmode.org/worg/org-configs/org-hooks.php.

A.2 Add-on packages

A large number of add-on packages have been written by various authors.

These packages are not part of Emacs, but they are distributed as contributed packages
with the separate release available at http://orgmode.org. See the contrib/README file
in the source code directory for a list of contributed files. You may also find some more
information on the Worg page: http://orgmode.org/worg/org-contrib/.

A.3 Adding hyperlink types

Org has a large number of hyperlink types built-in (see Chapter 4 [Hyperlinks], page 38). If
you would like to add new link types, Org provides an interface for doing so. Let’s look at an
example file, org-man.el, that will add support for creating links like ‘[[man:printf][The
printf manpage]]’ to show Unix manual pages inside Emacs:

;;; org-man.el - Support for links to manpages in Org

(require 'org)

(org-add-link-type "man" 'org-man-open)

(add-hook 'org-store-link-functions 'org-man-store-link)

(defcustom org-man-command 'man

"The Emacs command to be used to display a man page."

:group 'org-link

:type '(choice (const man) (const woman)))

(defun org-man-open (path)

"Visit the manpage on PATH.

PATH should be a topic that can be thrown at the man command."

(funcall org-man-command path))

(defun org-man-store-link ()

"Store a link to a manpage."

(when (memq major-mode '(Man-mode woman-mode))

;; This is a man page, we do make this link

(let* ((page (org-man-get-page-name))

(link (concat "man:" page))

http://orgmode.org/worg/org-configs/org-hooks.php
http://orgmode.org/worg/org-configs/org-hooks.php
http://orgmode.org
http://orgmode.org/worg/org-contrib/

Appendix A: Hacking 237

(description (format "Manpage for %s" page)))

(org-store-link-props

:type "man"

:link link

:description description))))

(defun org-man-get-page-name ()

"Extract the page name from the buffer name."

;; This works for both `Man-mode' and `woman-mode'.

(if (string-match " \\(\\S-+\\)*" (buffer-name))

(match-string 1 (buffer-name))

(error "Cannot create link to this man page")))

(provide 'org-man)

;;; org-man.el ends here

You would activate this new link type in .emacs with

(require 'org-man)

Let’s go through the file and see what it does.

1. It does (require 'org) to make sure that org.el has been loaded.

2. The next line calls org-add-link-type to define a new link type with prefix ‘man’.
The call also contains the name of a function that will be called to follow such a link.

3. The next line adds a function to org-store-link-functions, in order to allow the
command C-c l to record a useful link in a buffer displaying a man page.

The rest of the file defines the necessary variables and functions. First there is a cus-
tomization variable that determines which Emacs command should be used to display man
pages. There are two options, man and woman. Then the function to follow a link is defined.
It gets the link path as an argument—in this case the link path is just a topic for the manual
command. The function calls the value of org-man-command to display the man page.

Finally the function org-man-store-link is defined. When you try to store a link with
C-c l, this function will be called to try to make a link. The function must first decide if it
is supposed to create the link for this buffer type; we do this by checking the value of the
variable major-mode. If not, the function must exit and return the value nil. If yes, the
link is created by getting the manual topic from the buffer name and prefixing it with the
string ‘man:’. Then it must call the command org-store-link-props and set the :type

and :link properties. Optionally you can also set the :description property to provide a
default for the link description when the link is later inserted into an Org buffer with C-c

C-l.

When it makes sense for your new link type, you may also define a function org-PREFIX-

complete-link that implements special (e.g., completion) support for inserting such a link
with C-c C-l. Such a function should not accept any arguments, and return the full link
with prefix.

Appendix A: Hacking 238

A.4 Adding export back-ends

Org 8.0 comes with a completely rewritten export engine which makes it easy to write new
export back-ends, either from scratch, or by deriving them from existing ones.

Your two entry points are respectively org-export-define-backend and org-export-

define-derived-backend. To grok these functions, you should first have a look at
ox-latex.el (for how to define a new back-end from scratch) and ox-beamer.el (for how
to derive a new back-end from an existing one.

When creating a new back-end from scratch, the basic idea is to set the name of the
back-end (as a symbol) and an alist of elements and export functions. On top of this,
you will need to set additional keywords like :menu-entry (to display the back-end in the
export dispatcher), :export-block (to specify what blocks should not be exported by this
back-end), and :options-alist (to let the user set export options that are specific to this
back-end.)

Deriving a new back-end is similar, except that you need to set :translate-alist to
an alist of export functions that should be used instead of the parent back-end functions.

For a complete reference documentation, see the Org Export Reference on Worg.

A.5 Context-sensitive commands

Org has several commands that act differently depending on context. The most important
example is the C-c C-c (see Section 15.7 [The very busy C-c C-c key], page 229). Also the
M-cursor and M-S-cursor keys have this property.

Add-ons can tap into this functionality by providing a function that detects special
context for that add-on and executes functionality appropriate for the context. Here is an
example from Dan Davison’s org-R.el which allows you to evaluate commands based on
the R programming language1. For this package, special contexts are lines that start with
#+R: or #+RR:.

(defun org-R-apply-maybe ()

"Detect if this is context for org-R and execute R commands."

(if (save-excursion

(beginning-of-line 1)

(looking-at "#\\+RR?:"))

(progn (call-interactively 'org-R-apply)

t) ;; to signal that we took action

nil)) ;; to signal that we did not

(add-hook 'org-ctrl-c-ctrl-c-hook 'org-R-apply-maybe)

The function first checks if the cursor is in such a line. If that is the case, org-R-apply
is called and the function returns t to signal that action was taken, and C-c C-c will stop
looking for other contexts. If the function finds it should do nothing locally, it returns nil
so that other, similar functions can have a try.

1 org-R.el has been replaced by the Org mode functionality described in Chapter 14 [Working with source
code], page 194 and is now obsolete.

http://orgmode.org/worg/dev/org-export-reference.html

Appendix A: Hacking 239

A.6 Tables and lists in arbitrary syntax

Since Orgtbl mode can be used as a minor mode in arbitrary buffers, a frequent feature
request has been to make it work with native tables in specific languages, for example LATEX.
However, this is extremely hard to do in a general way, would lead to a customization
nightmare, and would take away much of the simplicity of the Orgtbl mode table editor.

This appendix describes a different approach. We keep the Orgtbl mode table in its
native format (the source table), and use a custom function to translate the table to the
correct syntax, and to install it in the right location (the target table). This puts the burden
of writing conversion functions on the user, but it allows for a very flexible system.

Bastien added the ability to do the same with lists, in Orgstruct mode. You can use Org’s
facilities to edit and structure lists by turning orgstruct-mode on, then locally exporting
such lists in another format (HTML, LATEX or Texinfo.)

A.6.1 Radio tables

To define the location of the target table, you first need to create two lines that are comments
in the current mode, but contain magic words BEGIN/END RECEIVE ORGTBL for Orgtbl mode
to find. Orgtbl mode will insert the translated table between these lines, replacing whatever
was there before. For example in C mode where comments are between /* ... */:

/* BEGIN RECEIVE ORGTBL table_name */

/* END RECEIVE ORGTBL table_name */

Just above the source table, we put a special line that tells Orgtbl mode how to translate
this table and where to install it. For example:

#+ORGTBL: SEND table_name translation_function arguments...

table_name is the reference name for the table that is also used in the receiver lines.
translation_function is the Lisp function that does the translation. Furthermore, the
line can contain a list of arguments (alternating key and value) at the end. The arguments
will be passed as a property list to the translation function for interpretation. A few
standard parameters are already recognized and acted upon before the translation function
is called:

:skip N Skip the first N lines of the table. Hlines do count as separate lines for this
parameter!

:skipcols (n1 n2 ...)

List of columns that should be skipped. If the table has a column with calcu-
lation marks, that column is automatically discarded as well. Please note that
the translator function sees the table after the removal of these columns, the
function never knows that there have been additional columns.

The one problem remaining is how to keep the source table in the buffer without disturbing
the normal workings of the file, for example during compilation of a C file or processing of
a LATEX file. There are a number of different solutions:

• The table could be placed in a block comment if that is supported by the language.
For example, in C mode you could wrap the table between ‘/*’ and ‘*/’ lines.

• Sometimes it is possible to put the table after some kind of END statement, for example
‘\bye’ in TEX and ‘\end{document}’ in LATEX.

Appendix A: Hacking 240

• You can just comment the table line-by-line whenever you want to process the file,
and uncomment it whenever you need to edit the table. This only sounds tedious—the
command M-x orgtbl-toggle-comment RET makes this comment-toggling very easy,
in particular if you bind it to a key.

A.6.2 A LATEX example of radio tables

The best way to wrap the source table in LATEX is to use the comment environment pro-
vided by comment.sty. It has to be activated by placing \usepackage{comment} into the
document header. Orgtbl mode can insert a radio table skeleton2 with the command M-x

orgtbl-insert-radio-table RET. You will be prompted for a table name, let’s say we use
‘salesfigures’. You will then get the following template:

% BEGIN RECEIVE ORGTBL salesfigures

% END RECEIVE ORGTBL salesfigures

\begin{comment}

#+ORGTBL: SEND salesfigures orgtbl-to-latex

| | |

\end{comment}

The #+ORGTBL: SEND line tells Orgtbl mode to use the function orgtbl-to-latex to convert
the table into LATEX and to put it into the receiver location with name salesfigures. You
may now fill in the table—feel free to use the spreadsheet features3:

% BEGIN RECEIVE ORGTBL salesfigures

% END RECEIVE ORGTBL salesfigures

\begin{comment}

#+ORGTBL: SEND salesfigures orgtbl-to-latex

| Month | Days | Nr sold | per day |

|-------+------+---------+---------|

| Jan | 23 | 55 | 2.4 |

| Feb | 21 | 16 | 0.8 |

| March | 22 | 278 | 12.6 |

#+TBLFM: $4=$3/$2;%.1f

% $ (optional extra dollar to keep font-lock happy, see footnote)

\end{comment}

When you are done, press C-c C-c in the table to get the converted table inserted between
the two marker lines.

Now let’s assume you want to make the table header by hand, because you want to
control how columns are aligned, etc. In this case we make sure that the table translator
skips the first 2 lines of the source table, and tell the command to work as a splice, i.e., to
not produce header and footer commands of the target table:

2 By default this works only for LATEX, HTML, and Texinfo. Configure the variable orgtbl-radio-table-
templates to install templates for other modes.

3 If the ‘#+TBLFM’ line contains an odd number of dollar characters, this may cause problems with font-lock
in LATEX mode. As shown in the example you can fix this by adding an extra line inside the comment

environment that is used to balance the dollar expressions. If you are using AUCTEX with the font-latex
library, a much better solution is to add the comment environment to the variable LaTeX-verbatim-

environments.

Appendix A: Hacking 241

\begin{tabular}{lrrr}

Month & \multicolumn{1}{c}{Days} & Nr.\ sold & per day\\

% BEGIN RECEIVE ORGTBL salesfigures

% END RECEIVE ORGTBL salesfigures

\end{tabular}

%

\begin{comment}

#+ORGTBL: SEND salesfigures orgtbl-to-latex :splice t :skip 2

| Month | Days | Nr sold | per day |

|-------+------+---------+---------|

| Jan | 23 | 55 | 2.4 |

| Feb | 21 | 16 | 0.8 |

| March | 22 | 278 | 12.6 |

#+TBLFM: $4=$3/$2;%.1f

\end{comment}

The LATEX translator function orgtbl-to-latex is already part of Orgtbl mode. By
default, it uses a tabular environment to typeset the table and marks horizontal lines with
\hline. You can control the output through several parameters (see also see Section A.6.3
[Translator functions], page 241), including the following ones :

:splice nil/t

When non-nil, return only table body lines, don’t wrap them into a tabular
environment. Default is nil.

:fmt fmt A format to be used to wrap each field, it should contain %s for the original
field value. For example, to wrap each field value in dollars, you could use :fmt
"$%s$". This may also be a property list with column numbers and formats,
for example :fmt (2 "$%s$" 4 "%s\\%%"). A function of one argument can be
used in place of the strings; the function must return a formatted string.

:efmt efmt

Use this format to print numbers with exponentials. The format should have %s
twice for inserting mantissa and exponent, for example "%s\\times10^{%s}".
This may also be a property list with column numbers and formats, for example
:efmt (2 "$%s\\times10^{%s}$" 4 "$%s\\cdot10^{%s}$"). After efmt has
been applied to a value, fmt will also be applied. Similar to fmt, functions
of two arguments can be supplied instead of strings. By default, no special
formatting is applied.

A.6.3 Translator functions

Orgtbl mode has several translator functions built-in: orgtbl-to-csv (comma-separated
values), orgtbl-to-tsv (TAB-separated values) orgtbl-to-latex, orgtbl-to-html,
orgtbl-to-texinfo, orgtbl-to-unicode and orgtbl-to-orgtbl. These all use a generic
translator, orgtbl-to-generic, which, in turn, can delegate translations to various export
back-ends (see Section 12.2 [Export back-ends], page 140).

In particular, properties passed into the function (i.e., the ones set by the ‘ORGTBL SEND’
line) take precedence over translations defined in the function. So if you would like to use

Appendix A: Hacking 242

the LATEX translator, but wanted the line endings to be ‘\\[2mm]’ instead of the default
‘\\’, you could just overrule the default with

#+ORGTBL: SEND test orgtbl-to-latex :lend " \\\\[2mm]"

For a new language, you can use the generic function to write your own converter func-
tion. For example, if you have a language where a table is started with ‘!BTBL!’, ended
with ‘!ETBL!’, and where table lines are started with ‘!BL!’, ended with ‘!EL!’, and where
the field separator is a TAB, you could define your generic translator like this:

(defun orgtbl-to-language (table params)

"Convert the orgtbl-mode TABLE to language."

(orgtbl-to-generic

table

(org-combine-plists

'(:tstart "!BTBL!" :tend "!ETBL!" :lstart "!BL!" :lend "!EL!" :sep "\t")

params)))

Please check the documentation string of the function orgtbl-to-generic for a full list of
parameters understood by that function, and remember that you can pass each of them into
orgtbl-to-latex, orgtbl-to-texinfo, and any other function using the generic function.

Of course you can also write a completely new function doing complicated things the
generic translator cannot do. A translator function takes two arguments. The first argument
is the table, a list of lines, each line either the symbol hline or a list of fields. The second
argument is the property list containing all parameters specified in the ‘#+ORGTBL: SEND’
line. The function must return a single string containing the formatted table. If you write
a generally useful translator, please post it on emacs-orgmode@gnu.org so that others can
benefit from your work.

A.6.4 Radio lists

Sending and receiving radio lists works exactly the same way as sending and receiving radio
tables (see Section A.6.1 [Radio tables], page 239). As for radio tables, you can insert radio
list templates in HTML, LATEX and Texinfo modes by calling org-list-insert-radio-

list.

Here are the differences with radio tables:

− Orgstruct mode must be active.

− Use the ORGLST keyword instead of ORGTBL.

− The available translation functions for radio lists don’t take parameters.

− C-c C-c will work when pressed on the first item of the list.

Here is a LATEX example. Let’s say that you have this in your LATEX file:

% BEGIN RECEIVE ORGLST to-buy

% END RECEIVE ORGLST to-buy

\begin{comment}

#+ORGLST: SEND to-buy org-list-to-latex

- a new house

- a new computer

+ a new keyboard

+ a new mouse

mailto:emacs-orgmode@gnu.org

Appendix A: Hacking 243

- a new life

\end{comment}

Pressing C-c C-c on a new house and will insert the converted LATEX list between the
two marker lines.

A.7 Dynamic blocks

Org documents can contain dynamic blocks. These are specially marked regions that are
updated by some user-written function. A good example for such a block is the clock table
inserted by the command C-c C-x C-r (see Section 8.4 [Clocking work time], page 80).

Dynamic blocks are enclosed by a BEGIN-END structure that assigns a name to the
block and can also specify parameters for the function producing the content of the block.

#+BEGIN: myblock :parameter1 value1 :parameter2 value2 ...

#+END:

Dynamic blocks are updated with the following commands

C-c C-x C-u org-dblock-update

Update dynamic block at point.

C-u C-c C-x C-u

Update all dynamic blocks in the current file.

Updating a dynamic block means to remove all the text between BEGIN and END, parse
the BEGIN line for parameters and then call the specific writer function for this block to
insert the new content. If you want to use the original content in the writer function, you
can use the extra parameter :content.

For a block with name myblock, the writer function is org-dblock-write:myblock with
as only parameter a property list with the parameters given in the begin line. Here is a
trivial example of a block that keeps track of when the block update function was last run:

#+BEGIN: block-update-time :format "on %m/%d/%Y at %H:%M"

#+END:

The corresponding block writer function could look like this:

(defun org-dblock-write:block-update-time (params)

(let ((fmt (or (plist-get params :format) "%d. %m. %Y")))

(insert "Last block update at: "

(format-time-string fmt))))

If you want to make sure that all dynamic blocks are always up-to-date, you could
add the function org-update-all-dblocks to a hook, for example before-save-hook.
org-update-all-dblocks is written in a way such that it does nothing in buffers that are
not in org-mode.

You can narrow the current buffer to the current dynamic block (like any other block)
with org-narrow-to-block.

Appendix A: Hacking 244

A.8 Special agenda views

Org provides a special hook that can be used to narrow down the selection made by these
agenda views: agenda, agenda*4, todo, alltodo, tags, tags-todo, tags-tree. You may
specify a function that is used at each match to verify if the match should indeed be part
of the agenda view, and if not, how much should be skipped. You can specify a global
condition that will be applied to all agenda views, this condition would be stored in the
variable org-agenda-skip-function-global. More commonly, such a definition is applied
only to specific custom searches, using org-agenda-skip-function.

Let’s say you want to produce a list of projects that contain a WAITING tag anywhere
in the project tree. Let’s further assume that you have marked all tree headings that define
a project with the TODO keyword PROJECT. In this case you would run a TODO search
for the keyword PROJECT, but skip the match unless there is a WAITING tag anywhere
in the subtree belonging to the project line.

To achieve this, you must write a function that searches the subtree for the tag. If
the tag is found, the function must return nil to indicate that this match should not be
skipped. If there is no such tag, return the location of the end of the subtree, to indicate
that search should continue from there.

(defun my-skip-unless-waiting ()

"Skip trees that are not waiting"

(let ((subtree-end (save-excursion (org-end-of-subtree t))))

(if (re-search-forward ":waiting:" subtree-end t)

nil ; tag found, do not skip

subtree-end))) ; tag not found, continue after end of subtree

Now you may use this function in an agenda custom command, for example like this:

(org-add-agenda-custom-command

'("b" todo "PROJECT"

((org-agenda-skip-function 'my-skip-unless-waiting)

(org-agenda-overriding-header "Projects waiting for something: "))))

Note that this also binds org-agenda-overriding-header to get a meaningful header
in the agenda view.

A general way to create custom searches is to base them on a search for entries with a
certain level limit. If you want to study all entries with your custom search function, simply
do a search for ‘LEVEL>0’5, and then use org-agenda-skip-function to select the entries
you really want to have.

You may also put a Lisp form into org-agenda-skip-function. In particular, you may
use the functions org-agenda-skip-entry-if and org-agenda-skip-subtree-if in this
form, for example:

(org-agenda-skip-entry-if 'scheduled)

Skip current entry if it has been scheduled.

4 The agenda* view is the same as agenda except that it only considers appointments, i.e., scheduled and
deadline items that have a time specification [h]h:mm in their time-stamps.

5 Note that, when using org-odd-levels-only, a level number corresponds to order in the hierarchy, not
to the number of stars.

Appendix A: Hacking 245

(org-agenda-skip-entry-if 'notscheduled)

Skip current entry if it has not been scheduled.

(org-agenda-skip-entry-if 'deadline)

Skip current entry if it has a deadline.

(org-agenda-skip-entry-if 'scheduled 'deadline)

Skip current entry if it has a deadline, or if it is scheduled.

(org-agenda-skip-entry-if 'todo '("TODO" "WAITING"))

Skip current entry if the TODO keyword is TODO or WAITING.

(org-agenda-skip-entry-if 'todo 'done)

Skip current entry if the TODO keyword marks a DONE state.

(org-agenda-skip-entry-if 'timestamp)

Skip current entry if it has any timestamp, may also be deadline or scheduled.

(org-agenda-skip-entry-if 'regexp "regular expression")

Skip current entry if the regular expression matches in the entry.

(org-agenda-skip-entry-if 'notregexp "regular expression")

Skip current entry unless the regular expression matches.

(org-agenda-skip-subtree-if 'regexp "regular expression")

Same as above, but check and skip the entire subtree.

Therefore we could also have written the search for WAITING projects like this, even
without defining a special function:

(org-add-agenda-custom-command

'("b" todo "PROJECT"

((org-agenda-skip-function '(org-agenda-skip-subtree-if

'regexp ":waiting:"))

(org-agenda-overriding-header "Projects waiting for something: "))))

A.9 Speeding up your agendas

When your Org files grow in both number and size, agenda commands may start to become
slow. Below are some tips on how to speed up the agenda commands.

1. Reduce the number of Org agenda files: this will reduce the slowdown caused by
accessing a hard drive.

2. Reduce the number of DONE and archived headlines: this way the agenda does not
need to skip them.

3. Inhibit the dimming of blocked tasks:

(setq org-agenda-dim-blocked-tasks nil)

4. Inhibit agenda files startup options:

(setq org-agenda-inhibit-startup nil)

5. Disable tag inheritance in agenda:

(setq org-agenda-use-tag-inheritance nil)

You can set these options for specific agenda views only. See the docstrings of these
variables for details on why they affect the agenda generation, and this dedicated Worg
page for further explanations.

http://orgmode.org/worg/agenda-optimization.html
http://orgmode.org/worg/agenda-optimization.html

Appendix A: Hacking 246

A.10 Extracting agenda information

Org provides commands to access agenda information for the command line in Emacs batch
mode. This extracted information can be sent directly to a printer, or it can be read by
a program that does further processing of the data. The first of these commands is the
function org-batch-agenda, that produces an agenda view and sends it as ASCII text to
STDOUT. The command takes a single string as parameter. If the string has length 1,
it is used as a key to one of the commands you have configured in org-agenda-custom-

commands, basically any key you can use after C-c a. For example, to directly print the
current TODO list, you could use

emacs -batch -l ~/.emacs -eval '(org-batch-agenda "t")' | lpr

If the parameter is a string with 2 or more characters, it is used as a tags/TODO match
string. For example, to print your local shopping list (all items with the tag ‘shop’, but
excluding the tag ‘NewYork’), you could use

emacs -batch -l ~/.emacs \

-eval '(org-batch-agenda "+shop-NewYork")' | lpr

You may also modify parameters on the fly like this:

emacs -batch -l ~/.emacs \

-eval '(org-batch-agenda "a" \

org-agenda-span (quote month) \

org-agenda-include-diary nil \

org-agenda-files (quote ("~/org/project.org")))' \

| lpr

which will produce a 30-day agenda, fully restricted to the Org file ~/org/projects.org,
not even including the diary.

If you want to process the agenda data in more sophisticated ways, you can use the
command org-batch-agenda-csv to get a comma-separated list of values for each agenda
item. Each line in the output will contain a number of fields separated by commas. The
fields in a line are:

category The category of the item
head The headline, without TODO keyword, TAGS and PRIORITY
type The type of the agenda entry, can be

todo selected in TODO match
tagsmatch selected in tags match
diary imported from diary
deadline a deadline
scheduled scheduled
timestamp appointment, selected by timestamp
closed entry was closed on date
upcoming-deadline warning about nearing deadline
past-scheduled forwarded scheduled item
block entry has date block including date

todo The TODO keyword, if any
tags All tags including inherited ones, separated by colons
date The relevant date, like 2007-2-14
time The time, like 15:00-16:50

Appendix A: Hacking 247

extra String with extra planning info
priority-l The priority letter if any was given
priority-n The computed numerical priority

Time and date will only be given if a timestamp (or deadline/scheduled) led to the selection
of the item.

A CSV list like this is very easy to use in a post-processing script. For example, here is a
Perl program that gets the TODO list from Emacs/Org and prints all the items, preceded
by a checkbox:

#!/usr/bin/perl

define the Emacs command to run

$cmd = "emacs -batch -l ~/.emacs -eval '(org-batch-agenda-csv \"t\")'";

run it and capture the output

$agenda = qx{$cmd 2>/dev/null};

loop over all lines

foreach $line (split(/\n/,$agenda)) {

get the individual values

($category,$head,$type,$todo,$tags,$date,$time,$extra,

$priority_l,$priority_n) = split(/,/,$line);

process and print

print "[] $head\n";

}

A.11 Using the property API

Here is a description of the functions that can be used to work with properties.

[Function]org-entry-properties &optional pom which
Get all properties of the entry at point-or-marker POM.
This includes the TODO keyword, the tags, time strings for deadline, scheduled, and
clocking, and any additional properties defined in the entry. The return value is an
alist. Keys may occur multiple times if the property key was used several times.
POM may also be nil, in which case the current entry is used. If WHICH is nil or
all, get all properties. If WHICH is special or standard, only get that subclass.

[Function]org-entry-get pom property &optional inherit
Get value of PROPERTY for entry at point-or-marker POM. By default, this only looks
at properties defined locally in the entry. If INHERIT is non-nil and the entry does
not have the property, then also check higher levels of the hierarchy. If INHERIT is the
symbol selective, use inheritance if and only if the setting of org-use-property-
inheritance selects PROPERTY for inheritance.

[Function]org-entry-delete pom property
Delete the property PROPERTY from entry at point-or-marker POM.

[Function]org-entry-put pom property value
Set PROPERTY to VALUE for entry at point-or-marker POM.

Appendix A: Hacking 248

[Function]org-buffer-property-keys &optional include-specials
Get all property keys in the current buffer.

[Function]org-insert-property-drawer
Insert a property drawer for the current entry.

[Function]org-entry-put-multivalued-property pom property &rest values
Set PROPERTY at point-or-marker POM to VALUES. VALUES should be a list of strings.
They will be concatenated, with spaces as separators.

[Function]org-entry-get-multivalued-property pom property
Treat the value of the property PROPERTY as a whitespace-separated list of values and
return the values as a list of strings.

[Function]org-entry-add-to-multivalued-property pom property value
Treat the value of the property PROPERTY as a whitespace-separated list of values and
make sure that VALUE is in this list.

[Function]org-entry-remove-from-multivalued-property pom property value
Treat the value of the property PROPERTY as a whitespace-separated list of values and
make sure that VALUE is not in this list.

[Function]org-entry-member-in-multivalued-property pom property value
Treat the value of the property PROPERTY as a whitespace-separated list of values and
check if VALUE is in this list.

[User Option]org-property-allowed-value-functions
Hook for functions supplying allowed values for a specific property. The functions
must take a single argument, the name of the property, and return a flat list of
allowed values. If ‘:ETC’ is one of the values, use the values as completion help, but
allow also other values to be entered. The functions must return nil if they are not
responsible for this property.

A.12 Using the mapping API

Org has sophisticated mapping capabilities to find all entries satisfying certain criteria.
Internally, this functionality is used to produce agenda views, but there is also an API that
can be used to execute arbitrary functions for each or selected entries. The main entry
point for this API is:

[Function]org-map-entries func &optional match scope &rest skip
Call FUNC at each headline selected by MATCH in SCOPE.

FUNC is a function or a Lisp form. The function will be called without arguments,
with the cursor positioned at the beginning of the headline. The return values of all
calls to the function will be collected and returned as a list.

The call to FUNC will be wrapped into a save-excursion form, so FUNC does not need
to preserve point. After evaluation, the cursor will be moved to the end of the line
(presumably of the headline of the processed entry) and search continues from there.
Under some circumstances, this may not produce the wanted results. For example, if
you have removed (e.g., archived) the current (sub)tree it could mean that the next

Appendix A: Hacking 249

entry will be skipped entirely. In such cases, you can specify the position from where
search should continue by making FUNC set the variable org-map-continue-from to
the desired buffer position.

MATCH is a tags/property/todo match as it is used in the agenda match view. Only
headlines that are matched by this query will be considered during the iteration.
When MATCH is nil or t, all headlines will be visited by the iteration.

SCOPE determines the scope of this command. It can be any of:

nil the current buffer, respecting the restriction if any
tree the subtree started with the entry at point
region The entries within the active region, if any
file the current buffer, without restriction
file-with-archives

the current buffer, and any archives associated with it
agenda all agenda files
agenda-with-archives

all agenda files with any archive files associated with them
(file1 file2 ...)

if this is a list, all files in the list will be scanned

The remaining args are treated as settings for the skipping facilities of the scanner.
The following items can be given here:

archive skip trees with the archive tag
comment skip trees with the COMMENT keyword
function or Lisp form

will be used as value for org-agenda-skip-function,
so whenever the function returns t, FUNC
will not be called for that entry and search will
continue from the point where the function leaves it

The function given to that mapping routine can really do anything you like. It can use
the property API (see Section A.11 [Using the property API], page 247) to gather more
information about the entry, or in order to change metadata in the entry. Here are a couple
of functions that might be handy:

[Function]org-todo &optional arg
Change the TODO state of the entry. See the docstring of the functions for the many
possible values for the argument ARG.

[Function]org-priority &optional action
Change the priority of the entry. See the docstring of this function for the possible
values for ACTION.

[Function]org-toggle-tag tag &optional onoff
Toggle the tag TAG in the current entry. Setting ONOFF to either on or off will not
toggle tag, but ensure that it is either on or off.

[Function]org-promote
Promote the current entry.

Appendix A: Hacking 250

[Function]org-demote
Demote the current entry.

Here is a simple example that will turn all entries in the current file with a tag TOMORROW

into TODO entries with the keyword UPCOMING. Entries in comment trees and in archive
trees will be ignored.

(org-map-entries

'(org-todo "UPCOMING")

"+TOMORROW" 'file 'archive 'comment)

The following example counts the number of entries with TODO keyword WAITING, in
all agenda files.

(length (org-map-entries t "/+WAITING" 'agenda))

Appendix B: MobileOrg 251

Appendix B MobileOrg

MobileOrg is the name of the mobile companion app for Org mode, currently available for
iOS and for Android. MobileOrg offers offline viewing and capture support for an Org mode
system rooted on a “real” computer. It also allows you to record changes to existing entries.
The iOS implementation for the iPhone/iPod Touch/iPad series of devices, was started by
Richard Moreland and is now in the hands Sean Escriva. Android users should check out
MobileOrg Android by Matt Jones. The two implementations are not identical but offer
similar features.

This appendix describes the support Org has for creating agenda views in a format that
can be displayed by MobileOrg, and for integrating notes captured and changes made by
MobileOrg into the main system.

For changing tags and TODO states in MobileOrg, you should have set up the cus-
tomization variables org-todo-keywords and org-tag-alist to cover all important tags
and TODO keywords, even if individual files use only part of these. MobileOrg will also
offer you states and tags set up with in-buffer settings, but it will understand the logistics
of TODO state sets (see Section 5.2.5 [Per-file keywords], page 49) and mutually exclusive
tags (see Section 6.2 [Setting tags], page 59) only for those set in these variables.

B.1 Setting up the staging area

MobileOrg needs to interact with Emacs through a directory on a server. If you are using
a public server, you should consider encrypting the files that are uploaded to the server.
This can be done with Org mode 7.02 and with MobileOrg 1.5 (iPhone version), and you
need an openssl installation on your system. To turn on encryption, set a password in
MobileOrg and, on the Emacs side, configure the variable org-mobile-use-encryption1.

The easiest way to create that directory is to use a free Dropbox.com account2. When
MobileOrg first connects to your Dropbox, it will create a directory MobileOrg inside the
Dropbox. After the directory has been created, tell Emacs about it:

(setq org-mobile-directory "~/Dropbox/MobileOrg")

Org mode has commands to put files for MobileOrg into that directory, and to read
captured notes from there.

B.2 Pushing to MobileOrg

This operation copies all files currently listed in org-mobile-files to the directory
org-mobile-directory. By default this list contains all agenda files (as listed in
org-agenda-files), but additional files can be included by customizing org-mobile-

files. File names will be staged with paths relative to org-directory, so all files should
be inside this directory3.

1 If you can safely store the password in your Emacs setup, you might also want to configure org-mobile-
encryption-password. Please read the docstring of that variable. Note that encryption will apply only
to the contents of the .org files. The file names themselves will remain visible.

2 If you cannot use Dropbox, or if your version of MobileOrg does not support it, you can use a webdav
server. For more information, check out the documentation of MobileOrg and also this FAQ entry.

3 Symbolic links in org-directory need to have the same name as their targets.

https://github.com/MobileOrg/
http://wiki.github.com/matburt/mobileorg-android/
http://dropbox.com
http://orgmode.org/worg/org-faq.html#mobileorg_webdav

Appendix B: MobileOrg 252

The push operation also creates a special Org file agendas.org with all custom agenda
view defined by the user4.

Finally, Org writes the file index.org, containing links to all other files. MobileOrg first
reads this file from the server, and then downloads all agendas and Org files listed in it. To
speed up the download, MobileOrg will only read files whose checksums5 have changed.

B.3 Pulling from MobileOrg

When MobileOrg synchronizes with the server, it not only pulls the Org files for viewing.
It also appends captured entries and pointers to flagged and changed entries to the file
mobileorg.org on the server. Org has a pull operation that integrates this information
into an inbox file and operates on the pointers to flagged entries. Here is how it works:

1. Org moves all entries found in mobileorg.org6 and appends them to the file pointed to
by the variable org-mobile-inbox-for-pull. Each captured entry and each editing
event will be a top-level entry in the inbox file.

2. After moving the entries, Org will attempt to implement the changes made in Mobile-
Org. Some changes are applied directly and without user interaction. Examples are
all changes to tags, TODO state, headline and body text that can be cleanly applied.
Entries that have been flagged for further action will receive a tag :FLAGGED:, so that
they can be easily found again. When there is a problem finding an entry or applying
the change, the pointer entry will remain in the inbox and will be marked with an error
message. You need to later resolve these issues by hand.

3. Org will then generate an agenda view with all flagged entries. The user should then go
through these entries and do whatever actions are necessary. If a note has been stored
while flagging an entry in MobileOrg, that note will be displayed in the echo area when
the cursor is on the corresponding agenda line.

? Pressing ? in that special agenda will display the full flagging note in
another window and also push it onto the kill ring. So you could use ?

z C-y C-c C-c to store that flagging note as a normal note in the entry.
Pressing ? twice in succession will offer to remove the :FLAGGED: tag along
with the recorded flagging note (which is stored in a property). In this way
you indicate that the intended processing for this flagged entry is finished.

If you are not able to process all flagged entries directly, you can always return to this
agenda view7 using C-c a ?.

4 While creating the agendas, Org mode will force ID properties on all referenced entries, so that these
entries can be uniquely identified if MobileOrg flags them for further action. If you do not want to get
these properties in so many entries, you can set the variable org-mobile-force-id-on-agenda-items to
nil. Org mode will then rely on outline paths, in the hope that these will be unique enough.

5 Checksums are stored automatically in the file checksums.dat
6 mobileorg.org will be empty after this operation.
7 Note, however, that there is a subtle difference. The view created automatically by M-x org-mobile-

pull RET is guaranteed to search all files that have been addressed by the last pull. This might include
a file that is not currently in your list of agenda files. If you later use C-c a ? to regenerate the view,
only the current agenda files will be searched.

Appendix C: History and acknowledgments 253

Appendix C History and acknowledgments

C.1 From Carsten

Org was born in 2003, out of frustration over the user interface of the Emacs Outline
mode. I was trying to organize my notes and projects, and using Emacs seemed to be
the natural way to go. However, having to remember eleven different commands with two
or three keys per command, only to hide and show parts of the outline tree, that seemed
entirely unacceptable to me. Also, when using outlines to take notes, I constantly wanted
to restructure the tree, organizing it parallel to my thoughts and plans. Visibility cycling
and structure editing were originally implemented in the package outline-magic.el, but
quickly moved to the more general org.el. As this environment became comfortable for
project planning, the next step was adding TODO entries, basic timestamps, and table
support. These areas highlighted the two main goals that Org still has today: to be a
new, outline-based, plain text mode with innovative and intuitive editing features, and to
incorporate project planning functionality directly into a notes file.

Since the first release, literally thousands of emails to me or to emacs-orgmode@gnu.org

have provided a constant stream of bug reports, feedback, new ideas, and sometimes patches
and add-on code. Many thanks to everyone who has helped to improve this package. I am
trying to keep here a list of the people who had significant influence in shaping one or more
aspects of Org. The list may not be complete, if I have forgotten someone, please accept
my apologies and let me know.

Before I get to this list, a few special mentions are in order:

Bastien Guerry
Bastien has written a large number of extensions to Org (most of them inte-
grated into the core by now), including the LATEX exporter and the plain list
parser. His support during the early days was central to the success of this
project. Bastien also invented Worg, helped establishing the Web presence of
Org, and sponsored hosting costs for the orgmode.org website. Bastien stepped
in as maintainer of Org between 2011 and 2013, at a time when I desparately
needed a break.

Eric Schulte and Dan Davison
Eric and Dan are jointly responsible for the Org-babel system, which turns
Org into a multi-language environment for evaluating code and doing literate
programming and reproducible research. This has become one of Org’s killer
features that define what Org is today.

John Wiegley
John has contributed a number of great ideas and patches directly to Org, in-
cluding the attachment system (org-attach.el), integration with Apple Mail
(org-mac-message.el), hierarchical dependencies of TODO items, habit track-
ing (org-habits.el), and encryption (org-crypt.el). Also, the capture sys-
tem is really an extended copy of his great remember.el.

Sebastian Rose
Without Sebastian, the HTML/XHTML publishing of Org would be the pitiful
work of an ignorant amateur. Sebastian has pushed this part of Org onto a

mailto:emacs-orgmode@gnu.org

Appendix C: History and acknowledgments 254

much higher level. He also wrote org-info.js, a Java script for displaying
web pages derived from Org using an Info-like or a folding interface with single-
key navigation.

See below for the full list of contributions! Again, please let me know what I am missing
here!

C.2 From Bastien

I (Bastien) have been maintaining Org between 2011 and 2013. This appendix would not
be complete without adding a few more acknowledgements and thanks.

I am first grateful to Carsten for his trust while handing me over the maintainership of
Org. His unremitting support is what really helped me getting more confident over time,
with both the community and the code.

When I took over maintainership, I knew I would have to make Org more collaborative
than ever, as I would have to rely on people that are more knowledgeable than I am on
many parts of the code. Here is a list of the persons I could rely on, they should really be
considered co-maintainers, either of the code or the community:

Eric Schulte
Eric is maintaining the Babel parts of Org. His reactivity here kept me away
from worrying about possible bugs here and let me focus on other parts.

Nicolas Goaziou
Nicolas is maintaining the consistency of the deepest parts of Org. His work
on org-element.el and ox.el has been outstanding, and it opened the doors
for many new ideas and features. He rewrote many of the old exporters to use
the new export engine, and helped with documenting this major change. More
importantly (if that’s possible), he has been more than reliable during all the
work done for Org 8.0, and always very reactive on the mailing list.

Achim Gratz
Achim rewrote the building process of Org, turning some ad hoc tools into
a flexible and conceptually clean process. He patiently coped with the many
hiccups that such a change can create for users.

Nick Dokos
The Org mode mailing list would not be such a nice place without Nick, who
patiently helped users so many times. It is impossible to overestimate such a
great help, and the list would not be so active without him.

I received support from so many users that it is clearly impossible to be fair when
shortlisting a few of them, but Org’s history would not be complete if the ones above were
not mentioned in this manual.

C.3 List of contributions

• Russel Adams came up with the idea for drawers.

• Suvayu Ali has steadily helped on the mailing list, providing useful feedback on many
features and several patches.

Appendix C: History and acknowledgments 255

• Luis Anaya wrote ox-man.el.

• Thomas Baumann wrote org-bbdb.el and org-mhe.el.

• Michael Brand helped by reporting many bugs and testing many features. He also
implemented the distinction between empty fields and 0-value fields in Org’s spread-
sheets.

• Christophe Bataillon created the great unicorn logo that we use on the Org mode
website.

• Alex Bochannek provided a patch for rounding timestamps.

• Jan Böcker wrote org-docview.el.

• Brad Bozarth showed how to pull RSS feed data into Org mode files.

• Tom Breton wrote org-choose.el.

• Charles Cave’s suggestion sparked the implementation of templates for Remember,
which are now templates for capture.

• Pavel Chalmoviansky influenced the agenda treatment of items with specified time.

• Gregory Chernov patched support for Lisp forms into table calculations and improved
XEmacs compatibility, in particular by porting nouline.el to XEmacs.

• Sacha Chua suggested copying some linking code from Planner, and helped make Org
pupular through her blog.

• Toby S. Cubitt contributed to the code for clock formats.

• Baoqiu Cui contributed the first DocBook exporter. In Org 8.0, we go a different route:
you can now export to Texinfo and export the .texi file to DocBook using makeinfo.

• Eddward DeVilla proposed and tested checkbox statistics. He also came up with the
idea of properties, and that there should be an API for them.

• Nick Dokos tracked down several nasty bugs.

• Kees Dullemond used to edit projects lists directly in HTML and so inspired some of
the early development, including HTML export. He also asked for a way to narrow
wide table columns.

• Jason Dunsmore has been maintaining the Org-Mode server at Rackspace for several
years now. He also sponsored the hosting costs until Rackspace started to host us for
free.

• Thomas S. Dye contributed documentation on Worg and helped integrating the Org-
Babel documentation into the manual.

• Christian Egli converted the documentation into Texinfo format, inspired the agenda,
patched CSS formatting into the HTML exporter, and wrote org-taskjuggler.el,
which has been rewritten by Nicolas Goaziou as ox-taskjuggler.el for Org 8.0.

• David Emery provided a patch for custom CSS support in exported HTML agendas.

• Sean Escriva took over MobileOrg development on the iPhone platform.

• Nic Ferrier contributed mailcap and XOXO support.

• Miguel A. Figueroa-Villanueva implemented hierarchical checkboxes.

• John Foerch figured out how to make incremental search show context around a match
in a hidden outline tree.

Appendix C: History and acknowledgments 256

• Raimar Finken wrote org-git-line.el.

• Mikael Fornius works as a mailing list moderator.

• Austin Frank works as a mailing list moderator.

• Eric Fraga drove the development of BEAMER export with ideas and testing.

• Barry Gidden did proofreading the manual in preparation for the book publication
through Network Theory Ltd.

• Niels Giesen had the idea to automatically archive DONE trees.

• Nicolas Goaziou rewrote much of the plain list code. He also wrote org-element.el

and org-export.el, which was a huge step forward in implementing a clean framework
for Org exporters.

• Kai Grossjohann pointed out key-binding conflicts with other packages.

• Brian Gough of Network Theory Ltd publishes the Org mode manual as a book.

• Bernt Hansen has driven much of the support for auto-repeating tasks, task state
change logging, and the clocktable. His clear explanations have been critical when we
started to adopt the Git version control system.

• Manuel Hermenegildo has contributed various ideas, small fixes and patches.

• Phil Jackson wrote org-irc.el.

• Scott Jaderholm proposed footnotes, control over whitespace between folded entries,
and column view for properties.

• Matt Jones wrote MobileOrg Android.

• Tokuya Kameshima wrote org-wl.el and org-mew.el.

• Jonathan Leech-Pepin wrote ox-texinfo.el.

• Shidai Liu ("Leo") asked for embedded LATEX and tested it. He also provided frequent
feedback and some patches.

• Matt Lundin has proposed last-row references for table formulas and named invisible
anchors. He has also worked a lot on the FAQ.

• David Maus wrote org-atom.el, maintains the issues file for Org, and is a prolific
contributor on the mailing list with competent replies, small fixes and patches.

• Jason F. McBrayer suggested agenda export to CSV format.

• Max Mikhanosha came up with the idea of refiling and sticky agendas.

• Dmitri Minaev sent a patch to set priority limits on a per-file basis.

• Stefan Monnier provided a patch to keep the Emacs-Lisp compiler happy.

• Richard Moreland wrote MobileOrg for the iPhone.

• Rick Moynihan proposed allowing multiple TODO sequences in a file and being able
to quickly restrict the agenda to a subtree.

• Todd Neal provided patches for links to Info files and Elisp forms.

• Greg Newman refreshed the unicorn logo into its current form.

• Tim O’Callaghan suggested in-file links, search options for general file links, and TAGS.

• Osamu Okano wrote orgcard2ref.pl, a Perl program to create a text version of the
reference card.

• Takeshi Okano translated the manual and David O’Toole’s tutorial into Japanese.

Appendix C: History and acknowledgments 257

• Oliver Oppitz suggested multi-state TODO items.

• Scott Otterson sparked the introduction of descriptive text for links, among other
things.

• Pete Phillips helped during the development of the TAGS feature, and provided fre-
quent feedback.

• Francesco Pizzolante provided patches that helped speeding up the agenda generation.

• Martin Pohlack provided the code snippet to bundle character insertion into bundles
of 20 for undo.

• Rackspace.com is hosting our website for free. Thank you Rackspace!

• T.V. Raman reported bugs and suggested improvements.

• Matthias Rempe (Oelde) provided ideas, Windows support, and quality control.

• Paul Rivier provided the basic implementation of named footnotes. He also acted as
mailing list moderator for some time.

• Kevin Rogers contributed code to access VM files on remote hosts.

• Frank Ruell solved the mystery of the keymapp nil bug, a conflict with allout.el.

• Jason Riedy generalized the send-receive mechanism for Orgtbl tables with extensive
patches.

• Philip Rooke created the Org reference card, provided lots of feedback, developed and
applied standards to the Org documentation.

• Christian Schlauer proposed angular brackets around links, among other things.

• Christopher Schmidt reworked orgstruct-mode so that users can enjoy folding in non-
org buffers by using Org headlines in comments.

• Paul Sexton wrote org-ctags.el.

• Linking to VM/BBDB/Gnus was first inspired by Tom Shannon’s organizer-mode.el.

• Ilya Shlyakhter proposed the Archive Sibling, line numbering in literal examples, and
remote highlighting for referenced code lines.

• Stathis Sideris wrote the ditaa.jar ASCII to PNG converter that is now packaged
into Org’s contrib directory.

• Daniel Sinder came up with the idea of internal archiving by locking subtrees.

• Dale Smith proposed link abbreviations.

• James TD Smith has contributed a large number of patches for useful tweaks and
features.

• Adam Spiers asked for global linking commands, inspired the link extension system,
added support for mairix, and proposed the mapping API.

• Ulf Stegemann created the table to translate special symbols to HTML, LATEX, UTF-8,
Latin-1 and ASCII.

• Andy Stewart contributed code to org-w3m.el, to copy HTML content with links
transformation to Org syntax.

• David O’Toole wrote org-publish.el and drafted the manual chapter about publish-
ing.

• Jambunathan K contributed the ODT exporter and rewrote the HTML exporter.

Appendix C: History and acknowledgments 258

• Sebastien Vauban reported many issues with LATEX and BEAMER export and enabled
source code highlighting in Gnus.

• Stefan Vollmar organized a video-recorded talk at the Max-Planck-Institute for Neu-
rology. He also inspired the creation of a concept index for HTML export.

• Jürgen Vollmer contributed code generating the table of contents in HTML output.

• Samuel Wales has provided important feedback and bug reports.

• Chris Wallace provided a patch implementing the ‘QUOTE’ keyword.

• David Wainberg suggested archiving, and improvements to the linking system.

• Carsten Wimmer suggested some changes and helped fix a bug in linking to Gnus.

• Roland Winkler requested additional key bindings to make Org work on a tty.

• Piotr Zielinski wrote org-mouse.el, proposed agenda blocks and contributed various
ideas and code snippets.

Appendix D: GNU Free Documentation License 259

Appendix D GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008, 2013, 2014 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix D: GNU Free Documentation License 260

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix D: GNU Free Documentation License 261

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix D: GNU Free Documentation License 262

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix D: GNU Free Documentation License 263

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix D: GNU Free Documentation License 264

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix D: GNU Free Documentation License 265

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix D: GNU Free Documentation License 266

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Concept index 267

Concept index

#
#+ARCHIVE . 98
#+ASCII . 143
#+ATTR ASCII . 144
#+ATTR BEAMER . 147
#+ATTR HTML . 151, 152
#+ATTR LATEX . 157
#+ATTR ODT . 165, 166, 171
#+ATTR TEXINFO . 177
#+AUTHOR . 140
#+BEAMER . 146
#+BEAMER FONT THEME 145
#+BEAMER HEADER . 145
#+BEAMER INNER THEME 145
#+BEAMER OUTER THEME 145
#+BEAMER THEME . 145
#+BEGIN, clocktable . 83
#+BEGIN, columnview . 71
#+BEGIN:dynamic block . 243
#+BEGIN ASCII . 143
#+BEGIN BEAMER . 146
#+BEGIN CENTER . 129
#+BEGIN COMMENT . 130
#+BEGIN EXAMPLE . 131
#+BEGIN HTML . 150
#+BEGIN JUSTIFYLEFT 144
#+BEGIN JUSTIFYRIGHT 144
#+BEGIN LATEX . 157
#+BEGIN QUOTE . 129
#+BEGIN SRC . 131, 194
#+BEGIN TEXINFO . 177
#+BEGIN VERSE . 129
#+BIND . 142
#+CALL . 197
#+CAPTION . 130, 151, 152
#+CATEGORY . 109
#+CINDEX . 176
#+COLUMNS . 68
#+CONSTANTS . 26
#+CREATOR . 140
#+DATE . 140
#+DESCRIPTION (Beamer) 145
#+DESCRIPTION (HTML) 148
#+DESCRIPTION (LATEX) 156
#+DESCRIPTION (ODT) 163
#+EMAIL . 141
#+EXCLUDE TAGS . 141
#+FILETAGS . 59
#+FINDEX . 176
#+HEADER: . 202
#+HEADERS: . 202
#+HTML . 150
#+HTML CONTAINER . 148
#+HTML DOCTYPE . 148

#+HTML HEAD . 148, 154
#+HTML HEAD EXTRA 148, 154
#+HTML INCLUDE STYLE 154
#+HTML LINK HOME . 148
#+HTML LINK UP . 148
#+HTML MATHJAX . 148
#+INCLUDE . 132
#+INFOJS OPT . 154
#+KEYWORDS (Beamer) 145
#+KEYWORDS (HTML) . 149
#+KEYWORDS (LATEX) . 156
#+KEYWORDS (ODT) . 163
#+KINDEX . 176
#+LANGUAGE . 141
#+LATEX . 157
#+LATEX CLASS . 156
#+LATEX CLASS OPTIONS 156
#+LATEX HEADER . 156, 157
#+LATEX HEADER (HTML) 149
#+LATEX HEADER EXTRA 156, 157
#+LINK . 44
#+MACRO . 134
#+NAME . 38, 130, 194
#+NAME, for table . 26
#+ODT STYLES FILE . 164
#+OPTIONS . 128, 140
#+ORGLST . 242
#+ORGTBL . 239
#+ORGTBL, SEND . 240
#+PINDEX . 176
#+PLOT . 36
#+PRIORITIES . 55
#+PROPERTY . 65
#+RESULTS . 197
#+SELECT TAGS . 141
#+SEQ TODO . 49
#+SETUPFILE . 140, 226
#+STARTUP . 226
#+SUBAUTHOR . 174, 175
#+SUBTILE (HTML) . 149
#+SUBTITLE (ASCII) . 143
#+SUBTITLE (Beamer) . 145
#+SUBTITLE (LATEX) . 156
#+SUBTITLE (Texinfo) . 174
#+TAGS . 60
#+TBLFM . 29, 33, 229
#+TBLFM line, multiple . 33
#+TBLFM, switching . 33
#+TEXINFO . 177
#+TEXINFO CLASS 174, 175, 176
#+TEXINFO DIR CATEGORY 174, 176
#+TEXINFO DIR DESC 174, 176
#+TEXINFO DIR TITLE 174, 176
#+TEXINFO FILENAME 174, 175

Concept index 268

#+TEXINFO HEADER 174, 175
#+TEXINFO POST HEADER 174
#+TEXINFO PRINTED TITLE 174, 175
#+TINDEX . 176
#+TITLE . 128, 141
#+TOC . 128
#+TODO . 49
#+TYP TODO . 49
#+VINDEX . 176

:
:cache, src header argument 200, 213
:colnames, src header argument 215
:comments, src header argument 211
:dir, src header argument . 209
:epilogue, src header argument 218
:eval, src header argument 217
:exports, src header argument 196, 200, 210
:file, src header argument 208
:file-ext, src header argument 209
:hlines, src header argument 214
:mkdirp, src header argument 210
:no-expand, src header argument 211
:noweb, src header argument 200, 212
:noweb-ref, src header argument 212
:noweb-sep, src header argument 213
:output-dir, src header argument 209
:padline, src header argument 211
:post, src header argument 217
:prologue, src header argument 218
:results, src header argument 200, 207, 219
:rownames, src header argument 216
:sep, src header argument . 214
:session, src header argument 200, 211
:shebang, src header argument 216
:tangle, src header argument 196, 210
:tangle-mode, src header argument 216
:var, src header argument . 202
:wrap, src header argument 217

A
abbreviation, links . 44
abstract, in LATEX export . 161
acknowledgments . 253
action, for publishing . 185
activation . 3
active region . 11, 21, 162
add-on packages . 236
add-ons, context-sensitive commands 238
agenda . 102
agenda dispatcher . 101
agenda files . 100
agenda files, removing buffers 121
agenda views . 100
agenda views, custom . 121
agenda views, exporting 121, 124, 125

agenda views, main example 122
agenda views, optimization 245
agenda views, user-defined . 244
agenda*, as an agenda views 122
agenda, as an agenda views 122
agenda, column view . 126
agenda, pipe . 246
agenda, sticky . 102
agenda, with block views . 123
align, STARTUP keyword 227
alignment in tables . 22
anniversaries, from BBDB . 104
API, for mapping . 248
API, for properties . 72, 247
appointment . 73, 104
appointment reminders . 104
appt.el . 104
archive locations . 98
archiving . 97
ASCII export . 143
Atom feeds . 96
attachments . 94
author . 3
author, macro . 134
autoload . 3

B
babel, languages . 199
babel, library of . 198
backtrace of an error . 4
Baur, Steven L. 233
BBDB links . 39
BBDB, anniversaries . 104
Beamer export . 144
block agenda . 123
blocking, of checkboxes . 57
blocks, folding . 16
bold text, markup rules . 130
Boolean logic, for tag/property searches 106
bug reports . 3

C
C-c C-c, overview . 229
calc package . 24
calc.el . 232
calculations, in tables . 21, 24
calendar commands, from agenda 120
calendar integration . 103
calendar, for selecting date . 76
capture . 89
capturing, from agenda . 119
category . 109
category filtering, in agenda 111
category, require for tags/property match 106
cdlatex.el . 232
CDLATEX . 137

Concept index 269

checkbox blocking . 57
checkbox statistics . 57
checkboxes . 56
checkboxes and TODO dependencies 51
children, subtree visibility state 6
clean outline view . 230
clocking time . 80
clocktable, dynamic block . 82
code block, batch execution 221
code block, editing . 195
code block, evaluating . 197
code block, exporting . 195
code block, extracting source code 196
code block, header arguments 200
code block, key bindings . 221
code block, languages . 199
code block, library . 198
code block, noweb reference 220
code block, results of evaluation 219
code block, structure . 194
code line references, markup rules 131
code text, markup rules . 130
column formula . 30
column view, for properties . 68
column view, in agenda . 126
column, of field coordinates . 26
commands, in agenda buffer 113
comment lines . 130
completion, of dictionary words 223
completion, of file names . 42
completion, of link abbreviations 223
completion, of links . 42
completion, of option keywords 49, 223
completion, of property keys 223
completion, of tags . 59, 223
completion, of TEX symbols 223
completion, of TODO keywords 47, 223
constants, in calculations . 26
constants.el . 232
constcgs, STARTUP keyword 228
constSI, STARTUP keyword 228
content, STARTUP keyword 8, 226
contents, global visibility state 7
context-sensitive commands, hooks 238
continuous clocking . 86
convert . 168
converter . 168
coordinates, of field . 26
copying notes . 96
copying, of subtrees . 9
countdown timer . 87
creating timestamps . 74
CSS, for HTML export . 153
CUA.el . 233
custom agenda views . 121
custom date/time format . 77
custom search strings . 45
customization . 225

customtime, STARTUP keyword 228
cutting, of subtrees . 9
cycling, in plain lists . 14
cycling, of agenda files . 100
cycling, of TODO states . 46
cycling, visibility . 6

D
daily agenda . 102
date format, custom . 77
date range . 74
date stamp . 73
date stamps . 73
date tree . 89
date, macro . 134
date, reading in minibuffer . 75
dates . 73
Davison, Dan . 194
DEADLINE keyword . 77
deadlines . 73
debugging, of table formulas 33
demotion, of subtrees . 9
dependencies, of TODO states 50
diary entries, creating from agenda 120
diary integration . 103
dictionary word completion 223
directories, for publishing . 184
dispatching agenda commands 101
display changing, in agenda 114
doc, docx, rtf . 168
document structure . 6
document title, markup rules 128
Dominik, Carsten . 232
DONE, final TODO keyword 49
dragging, agenda lines . 119
drawer, for properties . 64
drawer, for state change recording 52
drawers . 15
Duration, computing . 29
dvipng . 152, 167
dynamic blocks . 243
dynamic indentation . 230

E
ecomplete.el . 234
editing tables . 19
editing, of table formulas . 31
edits, catching invisible . 8
effort estimates . 86
effort filtering, in agenda . 111
Elisp links . 39
ELPA . 3
emacsserver . 96
email, macro . 134
embedding images in ODT 165
entitiesplain, STARTUP keyword 228

Concept index 270

entitiespretty, STARTUP keyword 135, 228
evaluate time range . 75
even, STARTUP keyword . 228
example blocks, in LATEX export 160
export back-ends, built-in . 180
Export, back-ends . 140
Export, dispatcher . 139
export, OpenDocument . 162
Export, settings . 140
Export, writing back-ends . 238
exporting . 139
exporting agenda views 121, 125
exporting, not . 130
extended TODO keywords . 47
external archiving . 98
external links . 39
external links, in HTML export 151

F
faces, for TODO keywords . 50
FAQ . 1
feedback . 3
field coordinates . 26
field formula . 29
field references . 24
file links . 39
file links, searching . 45
file name completion . 42
files for agenda . 100
files, adding to agenda list . 100
files, selecting for publishing 185
filladapt.el . 234
filtering, by tag, category, top headline and effort,

in agenda . 111
Filters, exporting . 181
fnadjust, STARTUP keyword 228
fnauto, STARTUP keyword 228
fnconfirm, STARTUP keyword 228
fninline, STARTUP keyword 228
fnlocal, STARTUP keyword 228
fnplain, STARTUP keyword 228
fnprompt, STARTUP keyword 228
folded, subtree visibility state 6
folding, sparse trees . 11
following links . 42
footnote.el . 129, 233
footnotes . 16
footnotes, markup rules . 129
format specifier . 27
format, of links . 38
formatting source code, markup rules 131
formula debugging . 33
formula editing . 31
formula syntax, Calc . 27
formula, for individual table field 29
formula, for range of fields . 29
formula, for table column . 30

formula, in tables . 21

G
Gillespie, Dave . 232
global cycling . 7
global key bindings . 3
global TODO list . 104
global visibility states . 7
Gnus links . 39
graph, in tables . 36
group tags . 62
group tags, as regular expressions 106
grouping columns in tables . 23

H
habits . 53
hacking . 236
header, for LATEX files . 156
headings and sections, markup rules 128
headline navigation . 8
headline tagging . 59
headline, promotion and demotion 9
headlines . 6
hide text . 6
hideblocks, STARTUP keyword 16, 228
hidestars, STARTUP keyword 228
hiding leading stars . 230
history . 253
hooks . 236
horizontal rules, in ASCII export 144
horizontal rules, in LATEX export 161
horizontal rules, markup rules 130
HTML entities . 135
HTML export . 148
HTML export, CSS . 153
HTML, and Orgtbl mode . 241
hyperlinks . 38
hyperlinks, adding new types 236

I
iCalendar export . 179
identify, ImageMagick . 165
idle, resolve, dangling . 85
imagemagick . 152, 167
images, embedding in ODT 165
images, inline in HTML . 152
images, inline in LATEX . 159
images, inlining . 43
imenu.el . 232
in-buffer settings . 225
inactive timestamp . 74
include files, markup rules . 132
indent, STARTUP keyword 227
indentation, in source blocks 132, 195
index entries, for publishing 133

Concept index 271

index, in a publishing project 191
Info links . 39
inheritance, of properties . 67
inheritance, of tags . 59
inlined images, markup rules 130
inlineimages, STARTUP keyword 43, 227
inlining images . 43
inlining images in HTML . 152
inlining images in LATEX . 159
input file, macro . 134
inserting links . 42
insertion, of templates . 223
installation . 2
internal links . 38
internal links, in HTML export 151
introduction . 1
iPhone . 251
IRC links . 39
italic text, markup rules . 130

J
jumping, to headlines . 8

K
key bindings, global . 3
keyword options . 49

L
LATEX class . 156
LATEX entities . 135
LATEX export . 155
LATEX fragments . 136
LATEX fragments, markup rules 135
LATEX fragments, preview . 136
LATEX header . 156
LATEX interpretation . 134
LATEX sectioning structure . 156
LATEX, and Orgtbl mode . 240
latexpreview, STARTUP keyword 227
Latin-1 export . 143
level, require for tags/property match 106
LibreOffice . 162, 163
limits, in agenda . 112
link abbreviations . 44
link abbreviations, completion of 223
link completion . 42
link format . 38
links, external . 39
links, finding next/previous . 43
links, handling . 41
links, in HTML export . 151
links, in ODT export . 164
links, internal . 38
links, publishing . 190
links, radio targets . 39

links, returning to . 43
Lisp forms, as table formulas 29
lists, in other modes . 239
lists, markup rules . 129
lists, ordered . 12
lists, plain . 12
literal examples, markup rules 131
logdone, STARTUP keyword 227
logdrawer, STARTUP keyword 227
logging, of progress . 52
lognoteclock-out, STARTUP keyword 227
lognotedone, STARTUP keyword 227
lognoteredeadline, STARTUP keyword 227
lognoterefile, STARTUP keyword 227
lognoterepeat, STARTUP keyword 227
lognotereschedule, STARTUP keyword 227
logredeadline, STARTUP keyword 227
logrefile, STARTUP keyword 227
logrepeat, STARTUP keyword 227
logreschedule, STARTUP keyword 227
logstatesreversed, STARTUP keyword 227
lookup functions in tables . 31
Ludlam, Eric M. 233

M
macro replacement, during export 134
maintainer . 3
mapping entries, API . 248
mark ring . 43
Markdown export . 161
marking characters, tables . 35
match view . 105
matching, of properties . 105
matching, of tags . 105
matching, tags . 59
math symbols . 135
MathJax . 152
MathML . 166
MH-E links . 39
minor mode for structure editing 18
minor mode for tables . 24
MobileOrg . 251
mode, for calc . 27
modification time, macro . 134
motion commands in agenda 113
motion, between headlines . 8

N
name, of column or field . 26
named references . 26
names as TODO keywords . 48
narrow columns in tables . 22
noalign, STARTUP keyword 227
nofnadjust, STARTUP keyword 228
nofninline, STARTUP keyword 228
nohideblocks, STARTUP keyword 16, 228

Concept index 272

noindent, STARTUP keyword 227
noinlineimages, STARTUP keyword 43, 227
nolatexpreview, STARTUP keyword 227
nologdone, STARTUP keyword 227
nologdrawer, STARTUP keyword 227
nolognoteclock-out, STARTUP keyword 227
nologredeadline, STARTUP keyword 227
nologrefile, STARTUP keyword 227
nologrepeat, STARTUP keyword 227
nologreschedule, STARTUP keyword 227
nologstatesreversed, STARTUP keyword . . . 227

O
occur, command . 11
occur-tree . 122
odd, STARTUP keyword . 228
odd-levels-only outlines . 230
ODT . 162
ODT STYLES FILE . 163
OpenDocument . 162
option keyword completion 223
options, for custom agenda views 123
options, for customization . 225
options, for publishing . 186
ordered lists . 12
Org export . 173
Org mode, turning on . 3
Org syntax . 18
org-agenda, command . 102
org-capture-last-stored . 90
org-crypt.el . 235
org-decrypt-entry . 235
org-hide-block-startup . 228
org-insert-drawer . 15, 65
org-list-insert-radio-list . 242
org-pretty-entities . 228
org-publish-project-alist . 184
Orgstruct mode . 18
Orgtbl mode . 24, 239
Ota, Takaaki . 233
Outline mode . 6
outline tree . 6
outlines . 6
overview, global visibility state 7
overview, STARTUP keyword 8, 226

P
packages, interaction with other 232
paragraphs, markup rules . 129
pasting, of subtrees . 9
PDF export . 155
per-file keywords . 49
plain lists . 12
plain lists, in LATEX export 160
plain text external links . 40
plot tables using Gnuplot . 36

presentation, of agenda items 109
print edition . 1
printing sparse trees . 12
priorities . 55
priorities, of agenda items . 110
progress logging . 52
projects, for publishing . 184
promotion, of subtrees . 9
proof, in LATEX export . 161
properties . 64
properties, API . 72, 247
properties, column view . 68
properties, inheritance . 67
properties, searching . 66
properties, special . 66
property EXPORT FILE NAME 162
property syntax . 64
property, + . 65
property, ALL . 65
property, ALT TITLE . 129
property, APPENDIX . 176
property, ARCHIVE . 67, 98
property, ATTACH DIR . 96
property, ATTACH DIR INHERIT 96
property, BEAMER ACT . 146
property, BEAMER COL . 146
property, BEAMER ENV . 145
property, BEAMER OPT . 146
property, BEAMER REF . 146
property, CATEGORY . 67, 109
property, COLUMNS . 67, 226
property, COOKIE DATA 56, 57
property, COPYING . 175
property, CUSTOM ID . 38, 41
property, DESCRIPTION 176, 180
property, Effort . 86
property, EXPORT FILE NAME 143
property, EXPORT LATEX CLASS 156
property, EXPORT LATEX CLASS OPTIONS

. 156
property, EXPORT TITLE 128
property, ID . 41, 71, 179
property, INDEX . 176
property, LOCATION . 180
property, LOG INTO DRAWER 52, 81
property, LOGGING . 53, 67
property, macro . 134
property, ORDERED 50, 57, 58
property, special, ALLTAGS 66
property, special, BLOCKED 66
property, special, CLOCKSUM 66, 127
property, special, CLOCKSUM T 66, 127
property, special, CLOSED . 66
property, special, DEADLINE 66
property, special, FILE . 66
property, special, ITEM . 66
property, special, PRIORITY 66
property, special, SCHEDULED 66

Concept index 273

property, special, TAGS . 66
property, special, TIMESTAMP 66
property, special, TIMESTAMP IA 66
property, special, TODO . 66
property, SUMMARY . 180
property, UNNUMBERED 142
property, VISIBILITY . 8
property: CLOCK MODELINE TOTAL 81
property: LAST REPEAT . 81
protocols, for external access 96
publishing . 184

Q
query editing, in agenda . 111

R
radio lists . 242
radio tables . 239
radio targets . 39
range formula . 29
range references . 25
ranges, time . 73
recomputing table fields . 34
references . 24
references, named . 26
references, remote . 26
references, to a different table 26
references, to fields . 24
references, to ranges . 25
refiling notes . 96
region, active . 11, 21, 162
regular expressions, with tags search 106
relative timer . 87
remember.el . 233
reminders . 104
remote editing, bulk, from agenda 119
remote editing, from agenda 117
remote editing, undo . 117
remote references . 26
repeated tasks . 79
report, of clocked time . 82
resolve idle time . 85
revealing context . 7
RMAIL links . 39
Rose, Sebastian . 154
row, of field coordinates . 26
RSS feeds . 96
rsync . 191

S
SCHEDULED keyword . 77
scheduling . 73
Schulte, Eric . 194
Scripts, for agenda processing 246
search option in file links . 45

search strings, custom . 45
search view . 108
searching for tags . 63
searching, for text . 108
searching, of properties . 66
sectioning structure, for LATEX export 156
set startup visibility, command 7
setting tags . 59
SHELL links . 39
shift-selection-mode . 14
shift-selection-mode . 233
show all, command . 7
show all, global visibility state 7
show branches, command . 7
show children, command . 7
show hidden text . 6
showall, STARTUP keyword 8, 226
showeverything, STARTUP keyword 8, 226
showstars, STARTUP keyword 228
sitemap, of published pages 190
sorting, of agenda items . 110
sorting, of plain list . 15
sorting, of subtrees . 9
source blocks, in LATEX export 160
source code, batch execution 221
source code, block header arguments 200
source code, block structure 194
source code, editing . 195
source code, evaluating . 197
source code, exporting . 195
source code, extracting . 196
source code, inline . 194
source code, language . 194
source code, languages . 199
source code, library . 198
source code, noweb reference 220
source code, results of evaluation 219
source code, switches . 194
source code, working with . 194
sparse tree, for deadlines . 79
sparse tree, for TODO . 46
sparse tree, tag based . 59
sparse trees . 11
Special blocks . 138
special blocks, in ASCII export 144
special blocks, in LATEX export 161
special keywords . 225
special symbols . 135
speed keys . 224
speedbar.el . 233
spreadsheet capabilities . 24
square brackets, around links 40
statistics, for checkboxes . 57
statistics, for TODO items . 56
storing links . 41
Storm, Kim. F. 233
strike-through text, markup rules 130
structure editing . 9

Concept index 274

structure of document . 6
styles, custom . 163, 169
sublevels, inclusion into tags match 59
sublevels, inclusion into TODO list 105
subscript . 135
SUBTITLE (ODT) . 163
subtree cycling . 6
subtree visibility states . 6
subtree, cut and paste . 9
subtree, subtree visibility state 6
subtrees, cut and paste . 9
summary . 1
superscript . 135
syntax, noweb . 220
syntax, of formulas . 27

T
table editor, built-in . 19
table editor, table.el . 233
table lookup functions . 31
table of contents, markup rules 128
table.el . 233
tables . 19
tables, in HTML . 151
tables, in LATEX export . 157
tables, in ODT export 164, 171
tables, in other modes . 239
tables, markup rules . 130
tag completion . 223
tag filtering, in agenda . 111
tag hierarchy . 62
tag inheritance . 59
tag searches . 63
tags . 59
tags view . 105
tags, as an agenda view . 122
tags, groups . 62
tags, setting . 59
tags-todo . 122
tags-tree . 122
tangling . 196
targets, for links . 38
targets, radio . 39
tasks, breaking down . 56
tasks, repeated . 79
template insertion . 223
template, custom . 163, 169
templates, for Capture . 90
TEX interpretation . 134
TEX macros . 135
TEX symbol completion . 223
Texinfo export . 174
text areas, in HTML . 152
text search . 108
thanks . 253
time clocking . 80
time format, custom . 77

time grid . 110
Time, computing . 29
time, macro . 134
time, reading in minibuffer . 75
time-of-day specification . 109
time-sorted view . 107
timeline, single file . 107
timerange . 74
times . 73
timestamp . 73
timestamp, inactive . 74
timestamp, with repeater interval 73
timestamps . 73
timestamps, creating . 74
title, macro . 134
TODO dependencies . 50
TODO dependencies, NOBLOCKING 50
TODO items . 46
TODO keyword matching . 104
TODO keyword matching, with tags search . . . 106
TODO keyword sets . 48
TODO keywords completion 223
TODO list, global . 104
TODO types . 48
TODO workflow . 47
todo, as an agenda view . 122
todo-tree . 122
top headline filtering, in agenda 111
transient mark mode . 11, 21
transient-mark-mode . 162
translator function . 241
trees, sparse . 11
trees, visibility . 6
tty key bindings . 231
types as TODO keywords . 48

U
underlined text, markup rules 130
undoing remote-editing events 117
unison . 191
unoconv . 163
updating, table . 34
URL links . 39
USENET links . 39
UTF-8 export . 143

V
variables, for customization 225
vectors, in table calculations 27
verbatim blocks, in LATEX export 160
verbatim text, markup rules 130
viper.el . 235
visibility cycling . 6
visibility cycling, drawers . 15
visibility, initialize . 8
visible text, printing . 12

Concept index 275

VM links . 40

W
WANDERLUST links . 40
weekly agenda . 102
Wiegley, John . 233
windmove.el . 235
workflow states as TODO keywords 47

X
XEmacs . 2

Y
yasnippet.el . 234

Z
zip . 162

Key index 276

Key index

$
$. 117

%
% . 119

’
' . 138

*
* . 119

+
+ . 118

,
, . 118

-
- . 118

.

. 115

/
/ . 111, 116

:
: . 117

;
; . 87

<
< . 71, 76, 101, 112, 116
<TAB> . 20

=
= . 112, 116

>
> . 71, 76, 101, 118

?
? . 252

[
[. 111, 115

]
] . 111

^
^ . 112, 116, 137

_ . 112, 137

‘
` . 137

\
\ . 111, 116

|
| . 112, 117
{ . 111
} . 111

~
~ . 113

A
a . 70, 117
A . 114

B
b . 114
B . 119

Key index 277

C
c . 120
C . 121
C-# . 34
C-' . 100
C-, . 100
C-_ . 117
C-0 C-c C-w . 97
C-c ! . 74
C-c # . 58
C-c $. 98
C-c % . 43
C-c & . 43
C-c ' 18, 32, 132, 133, 195, 233
C-c * . 11, 15, 34
C-c + . 21
C-c , . 55
C-c - . 15, 20
C-c . 74
C-c / . 12, 235
C-c / a . 79
C-c / b . 79
C-c / d . 79
C-c / m . 63, 66
C-c / p . 67
C-c / r . 12
C-c / t . 46
C-c ; . 130
C-c < . 74
C-c = . 31
C-c > . 74
C-c ? . 32
C-c @ . 10
C-c [. 100
C-c] . 100
C-c ^ . 11, 15, 20
C-c ` . 21
C-c \ . 63, 66
C-c | . 19, 22
C-c { . 32, 137
C-c } . 32, 33
C-c ~ . 233
C-c a . 5
C-c a ! . 108
C-c a # . 108
C-c a ? . 252
C-c a a . 102
C-c a C . 122
C-c a e . 126
C-c a L . 108
C-c a m . 63, 66, 105
C-c a M . 63, 66, 105
C-c a s . 108
C-c a t . 47, 104
C-c a T . 104
C-c c . 5, 89
C-c c C . 90
C-c C-* . 15

C-c C-a . 95, 118
C-c C-a a . 95
C-c C-a c . 95
C-c C-a d . 95
C-c C-a D . 95
C-c C-a f . 95
C-c C-a F . 95
C-c C-a i . 96
C-c C-a l . 95
C-c C-a m . 95
C-c C-a n . 95
C-c C-a o . 95
C-c C-a O . 95
C-c C-a s . 95
C-c C-a z . 95
C-c C-b . 8, 147
C-c C-c . . . 15, 17, 19, 32, 33, 57, 60, 65, 70, 72, 74,

82, 83, 89, 137, 197, 221, 229, 233
C-c C-c c . 66
C-c C-c d . 66
C-c C-c D . 66
C-c C-c s . 65
C-c C-d . 78, 118
C-c C-e . 139
C-c C-e c a . 179
C-c C-e c c . 179
C-c C-e c f . 179
C-c C-e C-v . 12
C-c C-e h h . 148
C-c C-e h H . 148
C-c C-e i i . 174
C-c C-e i t . 174
C-c C-e l b . 144
C-c C-e l B . 144
C-c C-e l l . 155
C-c C-e l L . 155
C-c C-e l p . 155
C-c C-e l P . 144
C-c C-e m m . 162
C-c C-e m M . 162
C-c C-e o o . 162
C-c C-e O o . 173
C-c C-e O O . 173
C-c C-e P a . 193
C-c C-e P f . 193
C-c C-e P p . 193
C-c C-e P x . 193
C-c C-e t a/l/u . 143
C-c C-e t A/L/U . 143
C-c C-f . 8
C-c C-j . 8
C-c C-k . 7, 90
C-c C-l . 42
C-c C-n . 8
C-c C-o . 17, 42, 74, 114, 221
C-c C-p . 8
C-c C-q . 32, 59
C-c C-r . 7, 32

Key index 278

C-c C-s . 78, 118
C-c C-t . 46, 82
C-c C-u . 8
C-c C-v a . 221
C-c C-v b . 221
C-c C-v c . 221
C-c C-v C-a . 221
C-c C-v C-b . 221
C-c C-v C-c . 221
C-c C-v C-d . 221
C-c C-v C-e . 221
C-c C-v C-f . 221
C-c C-v C-g . 221
C-c C-v C-h . 221
C-c C-v C-i . 221
C-c C-v C-I . 221
C-c C-v C-j . 221
C-c C-v C-l . 221
C-c C-v C-n . 221
C-c C-v C-o . 221
C-c C-v C-p . 221
C-c C-v C-r . 221
C-c C-v C-s . 221
C-c C-v C-t . 221
C-c C-v C-u . 221
C-c C-v C-v . 221
C-c C-v C-x . 221
C-c C-v C-z . 221
C-c C-v d . 221
C-c C-v e . 221
C-c C-v f . 221
C-c C-v g . 221
C-c C-v h . 221
C-c C-v i . 199, 221
C-c C-v I . 221
C-c C-v j . 221
C-c C-v l . 221
C-c C-v n . 221
C-c C-v o . 221
C-c C-v p . 221
C-c C-v r . 221
C-c C-v s . 221
C-c C-v t . 196, 221
C-c C-v u . 221
C-c C-v v . 221
C-c C-v x . 221
C-c C-v z . 221
C-c C-w . 11, 89, 97, 117
C-c C-x - . 88
C-c C-x . 88
C-c C-x ; . 87
C-c C-x < . 101
C-c C-x > . 101, 116
C-c C-x _ . 88
C-c C-x \ . 88, 135
C-c C-x 0 . 87
C-c C-x a . 99, 117
C-c C-x A . 99, 117

C-c C-x b . 7, 114
C-c C-x c . 11
C-c C-x C-a . 97, 117
C-c C-x C-b . 57
C-c C-x C-c . 70, 116, 127
C-c C-x C-d . 82
C-c C-x C-e . 81, 86
C-c C-x C-i . 81
C-c C-x C-j . 82
C-c C-x C-l . 137
C-c C-x C-n . 43
C-c C-x C-o . 81
C-c C-x C-p . 43
C-c C-x C-q . 82
C-c C-x C-r . 82
C-c C-x C-s . 98, 117
C-c C-x C-t . 77
C-c C-x C-u . 72, 83, 243
C-c C-x C-v . 43
C-c C-x C-w . 10, 21
C-c C-x C-x . 81
C-c C-x C-y . 10, 21
C-c C-x d . 15
C-c C-x e . 86
C-c C-x f . 17
C-c C-x g . 96
C-c C-x G . 96
C-c C-x i . 72
C-c C-x M-w . 10, 21
C-c C-x o . 50, 58
C-c C-x p . 65, 201
C-c C-x q . 63
C-c C-x v . 7
C-c C-y . 75, 82
C-c C-z . 16, 118
C-c l . 41, 132
C-c M-w . 97
C-c RET . 20
C-c SPC . 19
C-c TAB . 7
C-k . 117
C-RET . 9
C-S-left . 48, 117
C-S-RET . 9
C-S-right . 48, 117
C-S-up/down . 82
C-TAB . 99
C-u C-c ! . 74
C-u C-c * . 34
C-u C-c . 74
C-u C-c = . 30, 31
C-u C-c c . 90
C-u C-c C-c . 34
C-u C-c C-l . 42
C-u C-c C-t . 46
C-u C-c C-w . 97
C-u C-c C-x a . 99
C-u C-c C-x C-s . 98

Key index 279

C-u C-c C-x C-u . 72, 83, 243
C-u C-u C-c * . 34
C-u C-u C-c = . 31
C-u C-u C-c c . 90
C-u C-u C-c C-c . 34
C-u C-u C-c C-t . 48
C-u C-u C-c C-w . 97
C-u C-u C-c C-x C-s . 98
C-u C-u C-u C-c C-t . 50
C-u C-u C-u TAB . 7
C-u C-u TAB . 7, 8
C-v . 76
C-x C-s . 32, 116
C-x C-w . 121, 125
C-x n b . 11
C-x n s . 11
C-x n w . 11
C-y . 10

D
d . 114
D . 115

E
e . 70
E . 115

F
f . 114
F . 114

G
g . 70, 116
G . 116

H
H . 121

I
i . 120
I . 118

J
j . 115
J . 115, 119

K
k . 119

L
l . 115
L . 113

M
m . 119
M . 121
M-* . 119
M-<down> . 119
M-<up> . 119
M-a . 20
M-down . 14, 20, 32
M-down . 221
M-e . 20
M-g M-n . 12
M-g M-p . 12
M-g n . 12
M-g p . 12
M-h . 10
M-left . 10, 14, 20
M-m . 119
M-RET . 9, 14, 21, 88
M-right . 10, 14, 20
M-S-down . 10, 20, 32, 76
M-S-left . 10, 14, 20, 76
M-S-RET . 9, 14, 58
M-S-right . 10, 14, 20, 76
M-S-up . 10, 20, 32, 76
M-TAB . 32, 49, 59, 65, 223
M-up . 14, 20, 32
M-up . 221
M-v . 76
M-x org-iswitchb . 101
mouse-1 . 17, 43, 76
mouse-2 . 17, 43, 114
mouse-3 . 43, 113

N
n . 70, 113
N . 113

O
o . 114
O . 118

P
p . 70, 113
P . 113, 118

Q
q . 70, 121

Key index 280

R
r . 70, 105, 116
R . 115
RET . 20, 43, 61, 76, 114

S
s . 116
S . 121
S-down . 14, 32, 55, 74, 76, 118
S-left 15, 32, 46, 48, 65, 70, 74, 76, 83, 118
S-M-left . 71
S-M-RET . 47
S-M-right . 71
S-M-up/down . 82
S-RET . 21
S-right 15, 32, 46, 48, 65, 70, 74, 76, 83, 118
S-TAB . 7, 20
S-up . 32, 55, 74, 76, 118
SPC . 61, 113

T
t . 117
T . 117
TAB . 7, 9, 14, 32, 61, 114, 137

U
u . 119
U . 119

V
v . 70
v [. 115
v a . 115
v A . 115
v c . 115
v d . 114
v E . 115
v l . 115
v L . 115
v m . 114
v R . 115
v SPC . 114
v t . 114
v w . 114
v y . 114

W
w . 114

X
x . 121
X . 119

Z
z . 118

Command and function index 281

Command and function index

L
lisp-complete-symbol . 32

N
next-error . 12

O
org-agenda . 3, 5
org-agenda-add-note . 118
org-agenda-archive . 117
org-agenda-archive-default-with-

confirmation . 117
org-agenda-archive-to-archive-sibling . . . 117
org-agenda-archives-mode 115
org-agenda-archives-mode 'files 115
org-agenda-bulk-action . 119
org-agenda-bulk-mark . 119
org-agenda-bulk-mark-all 119
org-agenda-bulk-mark-regexp 119
org-agenda-bulk-remove-all-marks 119
org-agenda-bulk-toggle . 119
org-agenda-bulk-toggle-all 119
org-agenda-bulk-unmark . 119
org-agenda-capture . 119
org-agenda-clock-cancel 119
org-agenda-clock-goto 115, 119
org-agenda-clock-in . 118
org-agenda-clock-out . 118
org-agenda-clockreport-mode 115
org-agenda-columns . 116, 127
org-agenda-convert-date 121
org-agenda-date-prompt . 118
org-agenda-day-view . 114
org-agenda-deadline . 118
org-agenda-diary-entry . 120
org-agenda-do-date-earlier 118
org-agenda-do-date-later 118
org-agenda-drag-line-backward 119
org-agenda-drag-line-forward 119
org-agenda-earlier . 114
org-agenda-entry-text-mode 115
org-agenda-exit . 121
org-agenda-file-to-front 100
org-agenda-filter-by-category 112, 116
org-agenda-filter-by-effort 112
org-agenda-filter-by-regexp 112, 116
org-agenda-filter-by-tag 111, 116
org-agenda-filter-by-tag-refine 111, 116
org-agenda-filter-by-top-headline . . . 112, 116
org-agenda-filter-remove-all 112, 117
org-agenda-follow-mode . 114
org-agenda-fortnight-view 114

org-agenda-goto . 114
org-agenda-goto-calendar 120
org-agenda-goto-date . 115
org-agenda-goto-today . 115
org-agenda-holidays . 121
org-agenda-kill . 117
org-agenda-later . 114
org-agenda-limit-interactively 113
org-agenda-list . 102
org-agenda-list-stuck-projects 108
org-agenda-log-mode . 115
org-agenda-manipulate-query-add 115
org-agenda-month-view . 114
org-agenda-next-item . 113
org-agenda-next-line . 113
org-agenda-open-link . 114
org-agenda-phases-of-moon 121
org-agenda-previous-item 113
org-agenda-previous-line 113
org-agenda-priority-down 118
org-agenda-priority-up . 118
org-agenda-quit . 121
org-agenda-recenter . 113
org-agenda-redo . 116
org-agenda-refile . 117
org-agenda-remove-restriction-lock . . 101, 116
org-agenda-reset-view . 114
org-agenda-schedule . 118
org-agenda-set-restriction-lock 101
org-agenda-set-tags . 117
org-agenda-show-and-scroll-up 113
org-agenda-show-priority 118
org-agenda-show-tags . 117
org-agenda-sunrise-sunset 121
org-agenda-switch-to . 114
org-agenda-todo . 117
org-agenda-todo-nextset 117
org-agenda-todo-previousset 117
org-agenda-toggle-archive-tag 117
org-agenda-toggle-diary 115
org-agenda-toggle-time-grid 116
org-agenda-tree-to-indirect-buffer 114
org-agenda-undo . 117
org-agenda-week-view . 114
org-agenda-write . 121, 125
org-agenda-year-view . 114
org-archive-subtree . 98
org-archive-subtree-default 97
org-archive-to-archive-sibling 99
org-ascii-export-as-ascii 143
org-ascii-export-to-ascii 143
org-attach . 95, 118
org-attach-attach . 95
org-attach-delete-all . 95
org-attach-delete-one . 95

Command and function index 282

org-attach-new . 95
org-attach-open . 95
org-attach-open-in-emacs 95
org-attach-reveal . 95
org-attach-reveal-in-emacs 95
org-attach-set-directory 95
org-attach-set-inherit . 96
org-attach-sync . 95
org-backward-same-level . 8
org-beamer-export-as-latex 144
org-beamer-export-to-latex 144
org-beamer-export-to-pdf 144
org-beamer-select-environment 147
org-buffer-property-keys 248
org-calendar-goto-agenda 120
org-capture . 3, 5, 89
org-capture-finalize . 89
org-capture-kill . 90
org-capture-refile . 89
org-check-after-date . 79
org-check-before-date . 79
org-check-deadlines . 79
org-clock-cancel . 82
org-clock-display . 82
org-clock-goto . 82
org-clock-in . 81
org-clock-in-last . 81
org-clock-modify-effort-estimate 81, 86
org-clock-out . 81
org-clock-report . 82
org-clock-timestamps-up/down 82
org-clocktable-try-shift 83
org-clone-subtree-with-time-shift 11
org-columns . 70
org-columns-delete . 71
org-columns-edit-allowed 70
org-columns-edit-value . 70
org-columns-narrow . 71
org-columns-new . 71
org-columns-next-allowed-value 70
org-columns-previous-allowed-value 70
org-columns-quit . 70
org-columns-redo . 70
org-columns-set-tags-or-toggle 70
org-columns-show-value . 70
org-columns-widen . 71
org-compute-property-at-point 66
org-copy . 97
org-copy-subtree . 10
org-copy-visible . 7
org-cut-subtree . 10
org-cycle . 7, 9, 14
org-cycle-agenda-files . 100
org-date-from-calendar . 74
org-dblock-update 72, 83, 243
org-deadline . 78
org-delete-property . 66
org-delete-property-globally 66

org-demote . 250
org-demote-subtree . 10
org-do-demote . 10
org-do-promote . 10
org-edit-special . 233
org-entry-add-to-multivalued-property . . . 248
org-entry-delete . 247
org-entry-get . 247
org-entry-get-multivalued-property 248
org-entry-member-in-multivalued-property

. 248
org-entry-properties . 247
org-entry-put . 247
org-entry-put-multivalued-property 248
org-entry-remove-from-multivalued-property

. 248
org-evaluate-time-range 75, 82
org-export-dispatch . 139
org-feed-goto-inbox . 96
org-feed-update-all . 96
org-force-cycle-archived 99
org-forward-same-level . 8
org-global-cycle . 7
org-goto . 8
org-goto-calendar . 74
org-html-export-as-html 148
org-html-export-to-html 148
org-icalendar-combine-agenda-files 179
org-icalendar-export-agenda-files 179
org-icalendar-export-to-ics 179
org-insert-columns-dblock 72
org-insert-heading . 9, 14, 88
org-insert-heading-respect-content 9
org-insert-link . 42
org-insert-property-drawer 247, 248
org-insert-todo-heading 9, 47, 58
org-insert-todo-heading-respect-content . . . 9
org-iswitchb . 3
org-latex-export-as-latex 155
org-latex-export-to-latex 155
org-latex-export-to-pdf 155
org-lookup-all . 31
org-lookup-first . 31
org-lookup-last . 31
org-map-entries . 248
org-mark-element . 10
org-mark-ring-goto . 43
org-mark-ring-push . 43
org-mark-subtree . 10
org-match-sparse-tree 63, 66
org-md-export-as-markdown 162
org-md-export-to-markdown 162
org-move-subtree-down . 10
org-move-subtree-up . 10
org-narrow-to-block . 11
org-narrow-to-subtree . 11
org-next-link . 43
org-occur . 12

Command and function index 283

org-odt-export-to-odt . 162
org-open-at-point . 42, 74
org-org-export-as-org . 173
org-org-export-to-org . 173
org-paste-subtree . 10
org-previous-link . 43
org-priority . 55, 249
org-priority-down . 55
org-priority-up . 55
org-promote . 249
org-promote-subtree . 10
org-property-action . 65
org-property-next-allowed-value 65
org-property-previous-allowed-value 65
org-publish . 193
org-publish-all . 193
org-publish-current-file 193
org-publish-current-project 193
org-refile . 11, 97
org-refile-cache-clear . 97
org-refile-goto-last-stored 97
org-remove-file . 100
org-reveal . 7
org-save-all-org-buffers 116
org-schedule . 78
org-search-view . 108
org-set-effort . 86
org-set-property . 65
org-set-startup-visibility 7, 8
org-set-tags-command . 59, 60
org-show-todo-tree . 46
org-sort . 11
org-sparse-tree . 12
org-speedbar-set-agenda-restriction 101
org-store-agenda-views . 126
org-store-link . 3, 41
org-table-align . 19
org-table-beginning-of-field 20
org-table-blank-field . 19
org-table-copy-down . 21
org-table-copy-region . 21
org-table-create-or-convert-from-region

. 19, 22
org-table-create-with-table.el 233
org-table-cut-region . 21
org-table-delete-column . 20
org-table-edit-field . 21
org-table-edit-formulas . 32
org-table-end-of-field . 20
org-table-eval-formula 30, 31
org-table-export . 22
org-table-fedit-abort . 32
org-table-fedit-finish . 32
org-table-fedit-line-down 32
org-table-fedit-line-up . 32
org-table-fedit-lisp-indent 32
org-table-fedit-ref-down 32
org-table-fedit-ref-left 32

org-table-fedit-ref-right 32
org-table-fedit-ref-up . 32
org-table-fedit-scroll-down 32
org-table-fedit-scroll-up 32
org-table-fedit-toggle-ref-type 32
org-table-field-info . 32
org-table-hline-and-move 20
org-table-insert-column . 20
org-table-insert-hline . 20
org-table-insert-row . 20
org-table-iterate . 34
org-table-iterate-buffer-tables 34
org-table-kill-row . 20
org-table-move-column-left 20
org-table-move-column-right 20
org-table-move-row-down . 20
org-table-move-row-up . 20
org-table-next-field . 20
org-table-next-row . 20
org-table-paste-rectangle 21
org-table-previous-field 20
org-table-recalculate . 34
org-table-recalculate-buffer-tables 34
org-table-rotate-recalc-marks 34
org-table-sort-lines . 20
org-table-sum . 21
org-table-toggle-coordinate-overlays . . 32, 33
org-table-toggle-formula-debugger 32
org-table-wrap-region . 21
org-tags-view . 63, 66, 105
org-texinfo-export-to-info 174
org-texinfo-export-to-texinfo 174
org-time-stamp . 74
org-time-stamp-inactive . 74
org-timeline . 108
org-timer . 88
org-timer-item . 88
org-timer-pause-or-continue 88
org-timer-set-timer . 87
org-timer-start . 87
org-timer-stop . 88
org-timestamp-down-day . 74
org-timestamp-down-down . 74
org-timestamp-up . 74
org-timestamp-up-day . 74
org-timestamp-up/down . 82
org-todo . 46, 82, 249
org-todo-list . 47, 104
org-toggle-archive-tag . 99
org-toggle-checkbox . 57
org-toggle-heading . 11
org-toggle-inline-images 43
org-toggle-ordered-property 50, 58
org-toggle-tag . 249
org-toggle-time-stamp-overlays 77
org-tree-to-indirect-buffer 7
org-update-all-dblocks . 72
org-update-statistics-cookies 58

Command and function index 284

org-yank . 10
outline-next-visible-heading 8
outline-previous-visible-heading 8
outline-up-heading . 8

P
pcomplete . 65
previous-error . 12

S
show-all . 7

show-branches . 7

show-children . 7

W
widen . 11

Variable index 285

Variable index

This is not a complete index of variables and faces, only the ones that are mentioned in
the manual. For a more complete list, use M-x org-customize RET and then click yourself
through the tree.

C
cdlatex-simplify-sub-super-scripts 137
constants-unit-system 26, 228

H
htmlize-output-type . 125

L
LATEX-verbatim-environments 240

O
org-adapt-indentation . 230
org-agenda-add-entry-text-maxlines 125
org-agenda-bulk-custom-functions 119
org-agenda-category-filter-preset . . . 112, 116
org-agenda-clock-consistency-checks 115
org-agenda-columns-add-appointments-to-

effort-sum . 87
org-agenda-confirm-kill 117
org-agenda-custom-commands . . 12, 122, 123, 124,

246
org-agenda-custom-commands-contexts 124
org-agenda-diary-file . 120
org-agenda-dim-blocked-tasks 51, 245
org-agenda-effort-filter-preset 112
org-agenda-entry-text-maxlines 116
org-agenda-exporter-settings 121, 125
org-agenda-files 100, 110, 179
org-agenda-inhibit-startup 8, 245
org-agenda-log-mode-items 115
org-agenda-max-effort . 112
org-agenda-max-entries . 112
org-agenda-max-tags . 112
org-agenda-max-todos . 112
org-agenda-ndays . 102
org-agenda-overriding-header 244
org-agenda-prefix-format 109
org-agenda-regexp-filter-preset 112, 117
org-agenda-restore-windows-after-quit . . . 100
org-agenda-show-inherited-tags 117, 245
org-agenda-skip-archived-trees 99
org-agenda-skip-deadline-prewarning-if-

scheduled . 77
org-agenda-skip-function 244, 249
org-agenda-skip-function-global 244
org-agenda-skip-scheduled-delay-if-deadline

. 78

org-agenda-skip-scheduled-if-deadline-is-

shown . 80
org-agenda-skip-scheduled-if-done 77
org-agenda-sorting-strategy 110
org-agenda-span . 102, 114
org-agenda-start-day . 102
org-agenda-start-on-weekday 102
org-agenda-start-with-clockreport-mode . . 115
org-agenda-start-with-entry-text-mode . . . 116
org-agenda-start-with-follow-mode 114
org-agenda-sticky . 102
org-agenda-tag-filter-preset 111, 116
org-agenda-tags-column . 109
org-agenda-tags-todo-honor-ignore-options

. 105
org-agenda-text-search-extra-files . . 102, 108
org-agenda-time-grid 110, 116
org-agenda-todo-ignore-deadlines 105
org-agenda-todo-ignore-scheduled 105
org-agenda-todo-ignore-timestamp 105
org-agenda-todo-ignore-with-date 105
org-agenda-todo-list-sublevels 56, 105
org-agenda-use-tag-inheritance 59, 245
org-agenda-use-time-grid 110, 116
org-agenda-window-setup 100
org-archive-default-command 97, 117
org-archive-location 98, 225
org-archive-save-context-info 98
org-ascii-links-to-notes 143
org-ascii-text-width . 143
org-attach-directory . 94
org-attach-method . 95
org-babel-default-header-args 200, 201
org-beamer-environments-default 145
org-beamer-environments-extra 145
org-beamer-frame-level . 145
org-beamer-subtitle-format 145
org-beamer-theme . 145
org-calc-default-modes . 27
org-capture-bookmark . 90
org-capture-templates-contexts 94
org-capture-use-agenda-date 119
org-catch-invisible-edits 8
org-checkbox-hierarchical-statistics 57
org-clock-continuously 81, 86
org-clock-idle-time . 85
org-clock-into-drawer . 81
org-clock-modeline-total 81
org-clock-report-include-clocking-task . . 115
org-clock-x11idle-program-name 85

Variable index 286

org-clocktable-defaults . 83
org-closed-keep-when-no-todo 52
org-coderef-label-format 132
org-columns-default-format 70, 87, 116, 127
org-columns-skip-archived-trees 99
org-confirm-babel-evaluate 225
org-confirm-elisp-link-function 225
org-confirm-shell-link-function 225
org-create-file-search-functions 45
org-ctrl-c-ctrl-c-hook . 238
org-ctrl-k-protect-subtree 6
org-cycle-emulate-tab . 7
org-cycle-global-at-bob . 7
org-cycle-include-plain-lists 14
org-cycle-open-archived-trees 98
org-cycle-separator-lines 6
org-deadline-warning-days 77, 79
org-default-notes-file 89, 91
org-default-priority 55, 226
org-display-custom-times 77
org-display-internal-link-with-indirect-

buffer . 43
org-disputed-keys . 234
org-done (face) . 50
org-edit-footnote-reference 18
org-edit-src-auto-save-idle-delay 195
org-edit-src-turn-on-auto-save 195
org-emphasis-alist . 130
org-emphasis-regexp-components 130
org-enable-table-editor . 19
org-enforce-todo-dependencies 50, 51
org-entities . 135
org-execute-file-search-functions 45
org-export-allow-bind-keywords 142
org-export-async-init-file 139
org-export-backends 140, 180
org-export-before-parsing-hook 180
org-export-before-processing-hook 180
org-export-creator-string 140, 150
org-export-date-timestamp-format 140
org-export-default-language 141
org-export-dispatch-use-expert-ui 139
org-export-exclude-tags 141
org-export-headline-levels 128, 142
org-export-in-background 139
org-export-initial-scope 139
org-export-preserve-breaks 141
org-export-select-tags . 141
org-export-time-stamp-file 142, 150
org-export-with-archived-trees 99, 141
org-export-with-author . 141
org-export-with-clocks . 141
org-export-with-creator 141
org-export-with-date . 141
org-export-with-drawers 16, 141
org-export-with-email . 142
org-export-with-entities 141
org-export-with-fixed-width 141

org-export-with-footnotes 142
org-export-with-inlinetasks 142
org-export-with-latex 136, 142
org-export-with-planning 142
org-export-with-priority 142
org-export-with-properties 16, 142
org-export-with-section-numbers 142
org-export-with-smart-quotes 141
org-export-with-special-strings 141
org-export-with-statistics-cookies 142
org-export-with-sub-superscripts 141
org-export-with-tables . 142
org-export-with-tags . 142
org-export-with-tasks . 142
org-export-with-timestamps 141
org-export-with-title . 142
org-export-with-toc 128, 142
org-export-with-todo-keywords 142
org-fast-tag-selection-include-todo 49
org-fast-tag-selection-single-key 61
org-file-apps . 42, 95
org-fontify-emphasized-text 130
org-footnote-auto-adjust 17, 228
org-footnote-auto-label 17, 228
org-footnote-define-inline 17, 228
org-footnote-section . 6, 17
org-format-latex-header 136
org-format-latex-options 136
org-from-is-user-regexp . 94
org-global-properties 65, 87
org-goto-auto-isearch . 9
org-goto-interface . 9
org-group-tags . 63
org-hide (face) . 231
org-hide-block-startup . 16
org-hide-leading-stars 228, 230
org-hierarchical-todo-statistics 56
org-highest-priority 55, 226
org-html-container-element 148
org-html-doctype . 148, 149
org-html-doctype-alist . 149
org-html-head . 148, 154
org-html-head-extra 148, 154
org-html-head-include-default-style 154
org-html-html5-elements 149
org-html-html5-fancy . 149
org-html-infojs-options 155
org-html-inline-images . 152
org-html-link-home . 148
org-html-link-org-files-as-html 151
org-html-link-up . 148
org-html-mathjax-options 148
org-html-postamble . 150
org-html-postamble-format 150
org-html-preamble . 150
org-html-preamble-format 150
org-html-style-default . 154
org-html-table-align-individual-fields . . 151

Variable index 287

org-html-table-caption-above 151
org-html-table-data-tags 151
org-html-table-default-attributes 151
org-html-table-header-tags 151
org-html-table-row-tags 151
org-html-table-use-header-tags-for-first-

column . 151
org-html-tag-class-prefix 153
org-html-todo-kwd-class-prefix 153
org-html-use-infojs . 155
org-html-validation-link 150
org-icalendar-alarm-time 179
org-icalendar-categories 179
org-icalendar-combined-agenda-file 179
org-icalendar-include-body 180
org-icalendar-include-todo 179
org-icalendar-store-UID 179
org-icalendar-use-deadline 179
org-icalendar-use-scheduled 179
org-id-link-to-org-use-id 41
org-imenu-depth . 232
org-insert-mode-line-in-empty-file 3
org-irc-link-to-logs . 41
org-keep-stored-link-after-insertion 42
org-latex-classes . 156
org-latex-create-formula-image-program . . 136
org-latex-default-class 156
org-latex-default-packages-alist 156
org-latex-default-table-environment 158
org-latex-default-table-mode 157
org-latex-listings . 131
org-latex-listings-options 160
org-latex-minted-options 160
org-latex-packages-alist 156
org-latex-subtitle-format 156
org-latex-subtitle-separate 156
org-latex-tables-booktabs 158
org-latex-tables-centered 158
org-latex-to-mathml-convert-command 167
org-latex-to-mathml-jar-file 167
org-link-abbrev-alist 44, 226
org-link-frame-setup . 42
org-list-allow-alphabetical 13
org-list-automatic-rules 14, 56
org-list-demote-modify-bullet 13
org-list-empty-line-terminates-plain-lists

. 13
org-list-indent-offset . 13
org-list-use-circular-motion 14
org-log-done . 53, 115, 227
org-log-into-drawer . 52, 118
org-log-note-clock-out 81, 227
org-log-refile . 97
org-log-repeat . 79, 227
org-log-states-order-reversed 52
org-lowest-priority . 55, 226
org-M-RET-may-split-line 9, 14
org-md-headline-style . 162

org-odd-levels-only 106, 228, 231, 244
org-odt-category-map-alist 168
org-odt-convert . 163
org-odt-convert-capabilities 169
org-odt-convert-process 169
org-odt-convert-processes 169
org-odt-create-custom-styles-for-srcblocks

. 168
org-odt-fontify-srcblocks 168
org-odt-pixels-per-inch 165
org-odt-preferred-output-format 162, 163
org-odt-schema-dir . 173
org-odt-styles-file 163, 164
org-odt-table-styles 171, 172
org-outline-path-complete-in-steps 97
org-overriding-columns-format 127
org-plain-list-ordered-item-terminator . . . 13,

15
org-popup-calendar-for-date-prompt 76
org-priority-faces . 55
org-priority-start-cycle-with-default 55
org-property-allowed-value-functions 248
org-publish-project-alist 184, 186
org-publish-use-timestamps-flag 193
org-put-time-stamp-overlays 228
org-read-date-display-live 76
org-read-date-force-compatible-dates 76
org-read-date-prefer-future 75
org-refile-allow-creating-parent-nodes . . . 97
org-refile-keep . 97
org-refile-targets . 97
org-refile-use-cache . 97
org-refile-use-outline-path 97
org-remove-highlights-with-change 12, 82
org-replace-disputed-keys 233
org-return-follows-link . 43
org-reverse-note-order . 97
org-scheduled-delay-days 78
org-show-context-detail . 11
org-sort-agenda-noeffort-is-high 112
org-sparse-tree-open-archived-trees 98
org-special-ctrl-a/e . 6
org-special-ctrl-k . 6
org-speed-commands-user 224
org-startup-align-all-tables 23, 227
org-startup-folded 8, 226, 245
org-startup-indented . 227
org-startup-with-inline-images 43, 227
org-startup-with-latex-preview 137, 227
org-store-link-functions 237
org-stuck-projects . 108
org-support-shift-select 14, 15, 233
org-table-auto-blank-field 19
org-table-copy-increment 21
org-table-duration-custom-format 29
org-table-export-default-format 22
org-table-formula . 226
org-table-formula-constants 26, 226, 232

Variable index 288

org-table-use-standard-references 24, 31
org-tag-alist . 60, 229
org-tag-faces . 59
org-tag-persistent-alist 60
org-tags-column . 59
org-tags-exclude-from-inheritance 59
org-tags-match-list-sublevels . . 59, 63, 67, 105
org-texinfo-classes 175, 176
org-texinfo-coding-system 175
org-texinfo-def-table-markup 177
org-texinfo-default-class 174, 176
org-texinfo-info-process 174
org-time-stamp-custom-formats 77
org-time-stamp-overlay-formats 228
org-time-stamp-rounding-minutes 74
org-todo (face) . 50
org-todo-keyword-faces . 50
org-todo-keywords 46, 47, 104, 229
org-todo-repeat-to-state 79
org-todo-state-tags-triggers 47
org-track-ordered-property-with-tag . . . 50, 58
org-treat-insert-todo-heading-as-state-

change . 9

org-treat-S-cursor-todo-selection-as-state-

change . 46
org-use-fast-todo-selection 46
org-use-property-inheritance 67, 180, 200,

247
org-use-speed-commands . 224
org-use-sub-superscripts 135
org-use-tag-inheritance . 59
org-yank-adjusted-subtrees 10
org-yank-folded-subtrees 10
orgstruct-heading-prefix-regexp 18

P
parse-time-months . 76
parse-time-weekdays . 76
ps-landscape-mode . 125
ps-number-of-columns . 125

U
user-full-name . 140
user-mail-address . 141

	Introduction
	Summary
	Installation
	Activation
	Feedback
	Typesetting conventions used in this manual

	Document structure
	Outlines
	Headlines
	Visibility cycling
	Global and local cycling
	Initial visibility
	Catching invisible edits

	Motion
	Structure editing
	Sparse trees
	Plain lists
	Drawers
	Blocks
	Footnotes
	The Orgstruct minor mode
	Org syntax

	Tables
	The built-in table editor
	Column width and alignment
	Column groups
	The Orgtbl minor mode
	The spreadsheet
	References
	Formula syntax for Calc
	Emacs Lisp forms as formulas
	Durations and time values
	Field and range formulas
	Column formulas
	Lookup functions
	Editing and debugging formulas
	Updating the table
	Advanced features

	Org-Plot

	Hyperlinks
	Link format
	Internal links
	Radio targets

	External links
	Handling links
	Using links outside Org
	Link abbreviations
	Search options in file links
	Custom Searches

	TODO items
	Basic TODO functionality
	Extended use of TODO keywords
	TODO keywords as workflow states
	TODO keywords as types
	Multiple keyword sets in one file
	Fast access to TODO states
	Setting up keywords for individual files
	Faces for TODO keywords
	TODO dependencies

	Progress logging
	Closing items
	Tracking TODO state changes
	Tracking your habits

	Priorities
	Breaking tasks down into subtasks
	Checkboxes

	Tags
	Tag inheritance
	Setting tags
	Tag hierarchy
	Tag searches

	Properties and columns
	Property syntax
	Special properties
	Property searches
	Property Inheritance
	Column view
	Defining columns
	Scope of column definitions
	Column attributes

	Using column view
	Capturing column view

	The Property API

	Dates and times
	Timestamps, deadlines, and scheduling
	Creating timestamps
	The date/time prompt
	Custom time format

	Deadlines and scheduling
	Inserting deadlines or schedules
	Repeated tasks

	Clocking work time
	Clocking commands
	The clock table
	Resolving idle time and continuous clocking

	Effort estimates
	Taking notes with a timer

	Capture - Refile - Archive
	Capture
	Setting up capture
	Using capture
	Capture templates
	Template elements
	Template expansion
	Templates in contexts

	Attachments
	RSS feeds
	Protocols for external access
	Refile and copy
	Archiving
	Moving a tree to the archive file
	Internal archiving

	Agenda views
	Agenda files
	The agenda dispatcher
	The built-in agenda views
	The weekly/daily agenda
	The global TODO list
	Matching tags and properties
	Timeline for a single file
	Search view
	Stuck projects

	Presentation and sorting
	Categories
	Time-of-day specifications
	Sorting agenda items
	Filtering/limiting agenda items

	Commands in the agenda buffer
	Custom agenda views
	Storing searches
	Block agenda
	Setting options for custom commands

	Exporting agenda views
	Using column view in the agenda

	Markup for rich export
	Structural markup elements
	Images and Tables
	Literal examples
	Include files
	Index entries
	Macro replacement
	Embedded LaTeX{}
	Special symbols
	Subscripts and superscripts
	LaTeX{} fragments
	Previewing LaTeX{} fragments
	Using CDLaTeX{} to enter math

	Special blocks

	Exporting
	The export dispatcher
	Export back-ends
	Export settings
	ASCII/Latin-1/UTF-8 export
	Beamer export
	Beamer export commands
	Beamer specific export settings
	Sectioning, Frames and Blocks in Beamer
	Beamer specific syntax
	Editing support
	A Beamer example

	HTML export
	HTML export commands
	HTML Specific export settings
	HTML doctypes
	HTML preamble and postamble
	Quoting HTML tags
	Links in HTML export
	Tables in HTML export
	Images in HTML export
	Math formatting in HTML export
	Text areas in HTML export
	CSS support
	JavaScript supported display of web pages

	LaTeX{} and PDF export
	LaTeX{} export commands
	LaTeX{} specific export settings
	Header and sectioning structure
	Quoting LaTeX{} code
	LaTeX{} specific attributes

	Markdown export
	OpenDocument Text export
	Pre-requisites for ODT export
	ODT export commands
	ODT specific export settings
	Extending ODT export
	Applying custom styles
	Links in ODT export
	Tables in ODT export
	Images in ODT export
	Math formatting in ODT export
	Labels and captions in ODT export
	Literal examples in ODT export
	Advanced topics in ODT export

	Org export
	Texinfo export
	Texinfo export commands
	Texinfo specific export settings
	Document preamble
	Headings and sectioning structure
	Indices
	Quoting Texinfo code
	Texinfo specific attributes
	An example

	iCalendar export
	Other built-in back-ends
	Export in foreign buffers
	Advanced configuration

	Publishing
	Configuration
	The variable org-publish-project-alist
	Sources and destinations for files
	Selecting files
	Publishing action
	Options for the exporters
	Links between published files
	Generating a sitemap
	Generating an index

	Uploading files
	Sample configuration
	Example: simple publishing configuration
	Example: complex publishing configuration

	Triggering publication

	Working with source code
	Structure of code blocks
	Editing source code
	Exporting code blocks
	Extracting source code
	Evaluating code blocks
	Library of Babel
	Languages
	Header arguments
	Using header arguments
	Specific header arguments
	:var
	:results
	:file
	:file-desc
	:file-ext
	:output-dir
	:dir and remote execution
	:exports
	:tangle
	:mkdirp
	:comments
	:padline
	:no-expand
	:session
	:noweb
	:noweb-ref
	:noweb-sep
	:cache
	:sep
	:hlines
	:colnames
	:rownames
	:shebang
	:tangle-mode
	:eval
	:wrap
	:post
	:prologue
	:epilogue

	Results of evaluation
	Non-session
	:results value
	:results output

	Session
	:results value
	:results output

	Noweb reference syntax
	Key bindings and useful functions
	Batch execution

	Miscellaneous
	Completion
	Easy templates
	Speed keys
	Code evaluation and security issues
	Customization
	Summary of in-buffer settings
	The very busy C-c C-c key
	A cleaner outline view
	Using Org on a tty
	Interaction with other packages
	Packages that Org cooperates with
	Packages that lead to conflicts with Org mode

	org-crypt.el

	Hacking
	Hooks
	Add-on packages
	Adding hyperlink types
	Adding export back-ends
	Context-sensitive commands
	Tables and lists in arbitrary syntax
	Radio tables
	A LaTeX{} example of radio tables
	Translator functions
	Radio lists

	Dynamic blocks
	Special agenda views
	Speeding up your agendas
	Extracting agenda information
	Using the property API
	Using the mapping API

	MobileOrg
	Setting up the staging area
	Pushing to MobileOrg
	Pulling from MobileOrg

	History and acknowledgments
	From Carsten
	From Bastien
	List of contributions

	GNU Free Documentation License
	Concept index
	Key index
	Command and function index
	Variable index

