% Lilt;cllez

Engine API 2.13

https://www.littlecms.com

Copyright © 2022 Marti Maria Saguer, all rights reserved.

https://www.littlecms.com/

Contents

Y0 LU (=T 0 01T o £ P 5
=T 0= g o 1= o T 1= 5
INSTAIALION ... nnnnee 5
LINUX/UNICES ...ttt ettt ettt e e e e 5
WiNndows® MS VisSUal StUAIOcoueiiiiiieiiieiiecie ettt sse e 6
WiNdows® Borland CH++ 5.5ocouiiieieiecieeeie ettt 6
A o] o)L= 1V F= e SR 6
L@ 13T S PP PP TP OTOPPPPPI 6
(O70] g1 1o [0 =1 i o] g1 (oo o [T TSR 7
DLL COMPILATION and use (WIiNndoWS® ONIY)........ccccueeeeiueeeecreee e e eeeee e 9
ASSEITING ..o 9
Included files (AEPENAENCIES)........couuiiiieiii e 10
GENEIIC LYPES .. 11
Common constants and version retrivalcccuuuieiiiii e 12
CONEEXES .. 13
e 18 o T 0 PSS 17
L e o (o T T T IS 19
[O NANAIETS ... 21
Profile access fUNCHIONSooiiiiii e 24
Predefined virtual Profilesooooi o 30
Obtaining localized info from profiles ... 40
Profile feature deteCtion ... 42
Accessing Profiler NEAETuuuiiiiiii s nnnnnnnnnnnnne 44
Device attribULeSsoooiiiiiiiii 47
Profil@ ClaSSES ...t 48
Profile VEIrSIONINGceii ittt e e e e e e 49
Info on profile IMplementation ... 51
(O70] o] =] o T= To - 52
Containers in floating point format................euuiiiiiiiiii e 55
(070] (0] £] o F= Lot T oTe] g /=Y €] o] 1S 56

Encoding /Decoding 0N PCS ...t 58

LIz T0 LAY 1= TP UURPPPPPRRPIR 60
A0 S e 61
Accessing tags as raw data..........c.iiiiiiiii 67
Profile StrUCIUMES ... 69
PlatfOMIS et a e 70
ReferenCe gamut..........oooviiiiiiiiiii e 70
IMAGE STALE ..o 70
Pipeline Stages (Multi processing elements) ... 71

F O M A S . 73
Macros to build fOrmMatters ... 73
Macros to extract information from formatters..............coooo 73
Color spaces in Little CMS notation...............coeiiiiiiiicc e 74
Translate color space from/to Little CMS notation to ICCccccoooiiiiiiiiiii, 75
Predefined formatters.............uiiiiiii e 76

F N[o g = o3 0 =] 1= S 80
Other 1abDIES. ... 82
(=T TR 83
B RS e 86
COolOr trANSTOMMIS ...t e e e e e 87
Proofing transSfOrmMSoooviiiiiiii 91
MUItiProfile tranSTOrMSo e 95
Dynamically changing the input/output formats...........ooooooii 97
POSESCript QENEIatioN... ... 99
FAN = o 4=y T2 N 101
Temperature <-> Chromaticity (Black body)..........cceuvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 104
CIE CAMOZ....c ettt ettt e e e ettt e e e ekttt e e e e s te e e e e e nea e e e e e nbeeee e e nnneeaeanees 105
Gamut boundary descCription ..o 107
GaMUE MAPPING <o 109
MD5 MeESSAge ISt ... oo 110
CGATS.17-200X NANAING ..ceeeiiiiiie ettt e e e e e e e e e nees 112
11 0] 5T 113

P OIS SIENCE ... e 114

Requirements

Requirements

Little CMS 2 requires a C99 compliant compiler. GCC 3.2 and above, Intel compiler and
Borland 5.5 does support C99 standard. In addition, Microsoft® Visual C++ 2005, 2008,
2010, 2012, 2013, 2015 and 2017 are supported as well.

Dependencies
If you plan to compile the tifficc and jpgicc utilities, you need to have following libraries
installed. Please refer to documentation of each library for installation instructions.

tifficc Lib TIFF http://www.remotesensing.org/libtiff/
jpgicc | Independent JPEG | http://www.ijg.org/

Group
Installation

Linux/unices

Unpack & untar the tarball, cd to the newly created directory and type:

.Jconfigure
make
make check

This latter will run the testbed program as well. If you want to install the package, type:

sudo make install

This does copy API include files into /usr/local/include and libraries into /usr/local/lib. You
can change the installation directory by using the —prefix option

There are additional targets on the Makefile:
install: Does install package
check: Builds and executes testbed program
clean: Deletes object & binary files
distclean: Deletes any file not present in the distribution package

dist: Creates the distribution files

http://www.remotesensing.org/libtiff/
http://www.ijg.org/

Installation [N

Windows® MS Visual Studio

There are projects for most popular environments in the 'Projects’ folder. Just locate which
one you want to use.

Windows® Borland C++ 5.5

BC 5.5 is partially supported. It compiles Little CMS as a DLL with some limitations. There
is a BorlandC_5.5 folder in Projects that contains the necessary scripts. Run mkicmsdll.bat
to get the DLL compiled.

Apple® Mac

There is an X-Code project in the ‘Projects’ folder. In addition, you can use the procedure
described in Linux/unices section.

Other

For Solaris and other, you could try the procedure described Linux/unices section. Autotools
scripts does work in a multitude of different environments. If this doesn’t work, any C99
compliant compiler should be able to deal with the code. | have checked on embedded Linux
kernels like STM32, Cortex-M, Cortex-A and it works ok with gcc. Please let me know if you
experiment issues when porting the code.

Note: Make sure to instruct your compiler to use C99 convention. In gcc, you can add:

\ -std=gnu99

Without that, ULLONG_MAX wouldn’t be defined in some situations.

Installation

Configuration toggles

Icms2.h is coded in a way that tries to automatically detect the better configuration for the
current compiler. However, in some situations (unchecked compilers/environments) it may
need some “manual override”. To do so, comment/uncomment following symbols in
Icms2.h, the test bed program may hint to manually change some of those flags.

CMS_DLL Define this if you are using this
package as a DLL (windows
only)

CMS_DLL_BUILD Define this if you are compiling
this package as a DLL (windows
only)

CMS_USE_BIG_ ENDIAN Uncomment this symbol if you
are using non-supported big
endian machines and the test
bed hints to do so.
CMS_DONT_USE_INT64 Uncomment this symbol if your
compiler/machine does NOT
support the "long long" type.
This is automatically detected
on most cases
CMS_DONT_USE_FAST_FLOOR Uncomment this if your compiler
doesn't work with fast floor
function. The test bed will hint to
do so if necessary.
CMS_USE_PROFILE_BLACK_POINT_TAG Uncomment this line if you want
lcms2 to use the black point tag
in profile, if commented, Icms2
will compute the black point by
its own. Important note: It is
safer to leave it commented out,
as black point detection feature
will work even for missing or
wrong black point tags.
CMS_BASIC _TYPES_ALREADY_DEFINED Define this one if you want to
define the basic types
elsewhere, and want lcms2.h to
reuse those types.
CMS_STRICT_CGATS Define this one if you want strict
CGATS. 13 parsing. By default,
Little CMS is tolerant to some
issues, like missing
‘KEYWORD? definitions. If you
want errors raised on such
situations, define this symbol.
CMS_NO_PTHREADS Uncomment to get rid of
pthreads/windows dependency.
Without pthreads only
cmsDoTransform is reentrant.

Installation RN

CMS_RELY_ON_WINDOWS_STATIC_MUTEX_INIT | For pre Windows XP
compatibility. See

lems2_internal.h
CMS_NO_REGISTER_KEYWORD Uncomment this to remove the

"register” storage class

Table 1

Installation [EHNNNN

DLL COMPILATION and use (Windows® only)

To use Little CMS as DLL, you need to define the symbol CMS_DLL when compiling
lcms2.h, this is easily done by using the toggle -DCMS_DLL on gcc, other compilers may
use different syntax.

Similarly, to compile Little CMS to produce a DLL, you need to define the symbol
CMS_DLL_BUILD. On Visual Studio, you can define this symbol on Properties, C/C++,
Preprocessor, Preprocessor definitions. There is a project that builds such DLL in the
Projects folder.

Asserting

Internally, Little CMS uses an internal assert function to catch run-time errors. This macro is
not exposed to Little CMS API and is enabled only in debug builds. You can disable this
functionality by editing Icms2_internal.h, although is highly recommended to leave
untouched as a checking feature. In Release builds, no code is generated.

_cmsAssert(a)

Parameters:
a: logical expression

Returns:
None

Included files (dependencies)

Used by lcms2.h

#include <stdio.h>
#include <limits.h>
#include <time.h>
#include <stddef.h>

Used by lcms2_plugin.h
#include <stdlib.h>
#include <math.h>
#include <stdarg.h>
#include <memory.h>
#include <string.h>

Used Internally

#include <ctype.h>

Installation

Generic types

Generic types

Basic types are automatically detected and defined by Icms2.h You can override them by
defining CMS_BASIC_TYPES_ALREADY_DEFINED. In this case, you must define such
types before including Icms2.h

Basic Types Bits Signed Comment
cmsUInt8Number 8 No Byte
cmsint8Number 8 Yes
cmsUInt16Number 16 No Word
cmsint16Number 16 Yes
cmsUInt32Number 32 No Double word
cmsInt32Number 32 Yes Native int on most 32-bit architectures
cmsUInt64Number 64 No
cmsint64Number 64 Yes
cmsFloat32Number 32 Yes IEEE float
cmsFloat64Number 64 Yes IEEE cmsFloat64Number
cmsBool ? No TRUE, FALSE Boolean type, which will
be using the native integer
Table 2
Derivative Types Bits Signed Comment
cmsSignature 32 No Base type for ICC signatures
cmsU8Fixed8Number 8.8 =16 No

cmsS15Fixed16Number | 15.16 = 32 Yes Fixed point
cmsU16Fixed16Number | 16.16 =32 No

Table 3
Handles Comment
cmsHANDLE Generic handle
cmsHPROFILE Handle to a profile
cmsHTRANSFORM Handle to a color transform

Table 4
Opaque typedefs Comment
cmsContext Pointer to undisclosed _cms_context_struct
cmsToneCurve Pointer to undisclosed cms_curve_struct
cmsMLU Pointer to undisclosed cms_MLU_struct
cmsIOHANDLER Pointer to undisclosed cms_io_handler
cmsNAMEDCOLORLIST | Pointer to undisclosed _cms_NAMEDCOLORLIST _struct

Table 5

Common constants and version retrival

Common constants and version retrival

Those are utility constants defined in Icms2.h

Version/release

LCMS_VERSION 2130

Maximum number of chars in a path

cmsMAX_PATH 256

Maximum number of channels in ICC profiles

cmsMAXCHANNELS 16

Magic number to identify an ICC profile

cmsMagicNumber 0x61637370 'acsp'

Little CMS signature

IcmsSignature 0x6¢636d73 'Icms'

2.g]

int cmsGetEncodedCMMversion(void);

Returns the value of LCMS_VERSION. This function is here to help applications to prevent
mixing lcms versions on header and shared objects. A safety check can be used to prevent
unwanted version mixing. i.e. assert(LCMS_VERSION == cmsGetEncodedCMMuversion());

Parameters:
none

Returns:
the value of LCMS_VERSION.

Contexts

Contexts

There are situations where several instances of Little CMS engine have to coexist but on
different conditions. For example, when the library is used as a DLL or a shared object,
diverse applications may want to use different plug-ins. Another example is when multiple
threads are being used in same task and the user wants to pass thread-dependent
information to the memory allocators or the logging system. For all this use, Little CMS 2.6
and above implements context handling functions. The type cmsContext is a pointer to an
internal structure that keeps track of all plug-ins and static data needed by the THR
corresponding function. A context-aware app could allocate a new context by calling
cmsCreateContext() or duplicate a yet-existing one by using cmsDupContext(). Each
context can hold different plug-ins, defined by the Plugin parameter when creating the
context or later by calling cmsPluginTHR(). The context can also hold loggers, defined by
using cmsSetLogErrorHandlerTHR() and other settings. To free context resources,
cmsDeleteContext() does the job. Users may associate private data across a void pointer
when creating the context, and can retrieve this pointer by using cmsGetContextUserData().
Context ID of 0 is a special case that holds the global context, for non-THR functions.

Important Note: Prior to 2.6, cmsContext was just a void pointer to user data. 2.6 redefined
the meaning of contexts and therefore the binary backwards compatibility in the absolute
sense was broken. However, the library tries to guess whatever the context is being used in
the old way, and behave in consequence. Any cmsContext created by cmsCreateContext()
or cmsDupContext() behaves in the new way. Otherwise it is assumed a void pointer to user
data. Users are strongly encouraged to use cmsCreateContext() function instead of passing
raw user data.

2.6

cmsContext cmsCreateContext(void* Plugin, void* UserData);

Creates a new context with optional associated plug-ins. Caller may specify an optional
pointer to user-defined data that will be forwarded to plug-ins and logger.

Parameters:
Plugin: Pointer to plug-in collection. Set to NULL for no plug-ins.

UserData: optional pointer to user-defined data that will be forwarded to plug-ins
and logger. Set to NULL for none.

Returns:
A valid cmsContext on success, or NULL on error.

Note: All memory used by this context is allocated by using the memory plugin, if present,
this includes the block for the context itself.

Contexts

2.6

cmsContext cmsDupContext(cmsContext ContextID, void* NewUserData);

Duplicates a context with all associated plug-ins. Caller may specify an optional pointer to
user-defined data that will be forwarded to plug-ins and logger.

Parameters:
UserData: optional pointer to user-defined data that will be forwarded to plug-ins
and logger. Set to NULL for using user defined pointer from the source context.

Returns:
A valid cmsContext on success, or NULL on error.

[2.6]

void cmsDeleteContext(cmsContext ContextID);

Frees any resources associated with the given context, and destroys the context
placeholder. The ContextID can no longer be used in any THR operation.

Parameters:
ContextID: Handle to user-defined context.

Returns:
None

Notes:
The system context, ContextID = NULL cannot be used, the function does nothing
in this case.

Contexts

2.6

void* cmsGetContextUserData(cmsContext ContextID);

Returns the user data associated to the given ContextID, or NULL if no user data was
attached on context creation

Parameters:
ContextID: Handle to user-defined context.

Returns:
Pointer to a user-defined data or NULL if no data.

Notes:
The system context, ContextlID = NULL cannot be used in this function.

cmsContext cmsGetProfileContextID(cmsHPROFILE hProfile);

Returns the ContextID associated with a given profile.
Parameters:
hProfile: Handle to a profile object

Returns:
Pointer to a user-defined context cargo or NULL if no context

cmsContext cmsGetTransformContextID(cmsHTRANSFORM hTransform);

Returns the ContextID associated with a given transform.
Parameters:
hTransform: Handle to a color transform object.

Returns:
Pointer to a user-defined context cargo or NULL if no context.

Contexts

2.13

cmsContext cmsGetStageContextlD(const cmsStage* mpe);

Returns the ContextID associated with a given stage object
Parameters:

mpe: a pointer to a stage object.

Returns:
The context of a given stage object

Plug-Ins

Plug-Ins

By using plug-ins you can use the normal API to access customized functionality. Licensing
is another compelling reason; you can move all your intellectual property into plug-ins and
still be able to upgrade the core Little CMS library and still stay in the open source side. See
the Plug-in APl documentation for further information. The suggested way to use plug-ins is
across contexts, but you can first allocate a context with no plug-ins and then invoke the
cmsPluginTHR function. The easiest one works on the global context.

2.0

cmsBool cmsPlugin(void* Plugin);

Declares external extensions to the core engine in the global context. The "Plugin”
parameter may hold one or several plug-ins, as defined by the plug-in developer.

Parameters:
Plugin: Pointer to plug-in collection.

Returns:
TRUE on success FALSE on error.

2.9

void cmsUnregisterPlugins(void);

This function returns Little CMS global context to its default pristine state, as no plug-ins
were declared. There is no way to unregister a single plug-in, as a single call to cmsPlugin()
function may register many different plug-ins simultaneously, then there is no way to identify
which plug-in to unregister.

Parameters:
None

Returns:
None

Plug-Ins

[2.6]

cmsBool cmsPluginTHR(cmsContext ContextlD, void* Plugin);

Installs a plug-in bundle in the given context.

Parameters:
ContextID: Handle to user-defined context.

Plugin: Pointer to plug-in bundle.

Returns:
TRUE on success FALSE on error.

[2.6]

void cmsUnregisterPluginsTHR(cmsContext ContextID);

This function returns the given context its default pristine state, as no plug-ins were declared.
There is no way to unregister a single plug-in, as a single call to cmsPluginTHR() function
may register many different plug-ins simultaneously, then there is no way to identify which
plug-in to unregister.

Parameters:
ContextID: Handle to user-defined context.

Returns:
None

Error logging

Error logging

When a function fails, it returns proper value. For example, all create functions does return
NULL on failure. Other may return FALSE. It may be interesting, for the developer, to know
why the function is failing, for that reason, Little CMS offers a logging function. This function
will get an english string with some clues on what is going wrong. You can show this info to
the end user if you wish so, or just create some sort of log on disk.

The logging function should NOT terminate the program, as this obviously can leave leaked
resources. It is the programmer's responsability to check each function return code to make
sure it didn't fail. The default logger does nothing.

Error family Defined as
cmsERROR_UNDEFINED

cmsERROR FILE
cmsERROR_RANGE
cmsERROR_INTERNAL
cmsERROR_NULL

cmsERROR_READ
cmsERROR_SEEK
cmsERROR_WRITE
cmsERROR_UNKNOWN EXTENSION
cmsERROR_COLORSPACE CHECK
cmsERROR_ALREADY_DEFINED 10
cmsERROR_BAD_SIGNATURE 11
cmsERROR_CORRUPTION DETECTED | 12

cmsERROR_NOT_SUITABLE 13
Table 6

OO N WINI=~|O

Error logger is called with the ContextID when a message is raised. This gives the chance
to know which thread is responsible of the warning and any environment associated with it.
Non-contexted applications may ignore this parameter. Please note that by default
ContextID is 0 (the global context).

typedef void (* cmsLogErrorHandlerFunction)(cmsContext ContextID,
cmsUInt32Number ErrorCode,
const char *Text);

Definition of error logging callback.

Error logging

2.0

void cmsSetLogErrorHandler(cmsLogErrorHandlerFunction Fn);

Allows user to set any specific logger on global context. Each time this function is called, the
previous logger is replaced. Calling this functin with NULL as parameter, does reset the
logger to the default Little CMS logger. The default Little CMS logger does nothing.

Parameters:
Fn: Callback to the logger (user defined function), or NULL to reset Little CMS to its
default logger.

Returns:
None

void cmsSetLogErrorHandlerTHR(cmsContext ContextID,
cmsLogErrorHandlerFunction Fn);

Allows user to set any specific logger for the given context. Each time this function is called,
the previous logger is replaced. Calling this functin with NULL as parameter, does reset the
logger to the default Little CMS logger. The default Little CMS logger does nothing.

Parameters:
ContextID: Handle to user-defined context, or NULL for the global context

Fn: Callback to the logger (user defined function), or NULL to reset Little CMS to its
default logger.

Returns:
None

IO handlers

10 handlers

IO handlers are abstractions used to deal with files or streams. All reading/writing of ICC
profiles and PostScript resources are done by using 10 handlers. IO handlers do support
random access. Advanced users may want to write their own IO handlers, see the plug-in
API documentation for further details.

2.0

cmsIOHANDLER* cmsOpenlOhandlerFromFile(cmsContext ContextID,
const char* FileName,
const char* AccessMode);

Creates an 10 handler object from a disk-based file. Note filename is limited to UTF-8 in
this function.

Parameters:
ContextID: Pointer to a user-defined context cargo.

FileName: Full path of file resource
AccessMode: “r’ to read, “w” to write.

Returns:
A pointer to an iohandler object on success, NULL on error.

2.0

cmsIOHANDLER* cmsOpenlOhandlerFromStream(cmsContext ContextID,
FILE* Stream);

Creates an IO handler object from an already open stream.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A pointer to an iohandler object on success, NULL on error.

IO handlers

2.9

cmslOHANDLER* cmsOpenlOhandlerFromMem(cmsContext ContextID,
void *Buffer,
cmsUInt32Number size,
const char* AccessMode);

Creates an 10 handler object from a memory block. Limited to 4Gb.

Parameters:
ContextID: Pointer to a user-defined context cargo.
Buffer: Points to a block of contiguous memory containing the data
size: Buffer's size measured in bytes.

[”

AccessMode: “r’ to read, “w” to write.

Returns:
A pointer to an iohandler object on success, NULL on error.

2.9

cmslOHANDLER* cmsOpenlOhandlerFromNULL(cmsContext ContextID);

Creates a void iohandler object (similar to a file iohandler on /dev/null). All read operations
returns 0 bytes and sets the EOF flag. All write operations discards the given data.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A pointer to an iohandler object on success, NULL on error.

cmsBool cmsCloselOhandler(cmslIOHANDLER* io);

Closes the iohandler object, freeing any associated resources.
Parameters:
io: A pointer to an iohandler object.

Returns:
TRUE on success, FALSE on error. Note that on file write operations, the real

flushing to disk may happen on closing the iohandler, so it is important to check the
return code.

IO handlers

2.g

cmslOHANDLER* cmsGetProfilelOhandler(cmsHPROFILE hProfile);

Returns the iohandler used by a given profile object.
Parameters:
hProfile: Handle to a profile object

Returns:
On success, a pointer to the iohandler object used by the profile. NULL on error.

Profile access functions

Profile access functions

These are the basic functions on opening profiles. For simpler operation, you must open two
profiles using cmsOpenProfileFromFile, and then create a transform with these open profiles
with cmsCreateTransform. Using this transform you can color correct your bitmaps by
cmsDoTransform. When you are done you must free the transform AND the profiles by
cmsDelete Transform and cmsCloseProfile.

2.9

cmsHPROFILE cmsOpenProfileFromFile(const char *ICCProfile,
const char *sAccess);

Opens a file-based ICC profile returning a handle to it.

Parameters:
ICCProfile: File name w/ full path.

SAccess: "r" for normal operation, "w" for profile creation

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsOpenProfileFromFileTHR(cmsContext ContextID,
const char *ICCProfile,
const char *sAccess);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

ICCProfile: File name w/ full path.
sAccess: "r"for normal operation, "w" for profile creation

Returns:
A handle to an ICC profile object on success, NULL on error.

Profile access functions

2.9

cmsHPROFILE cmsOpenProfileFromStream(FILE* ICCProfile, const char* sAccess);

Opens a stream-based ICC profile returning a handle to it.

Parameters:
ICCProfile: stream holding the ICC profile.

sAccess: "r"for normal operation, "w" for profile creation

Returns:
A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsOpenProfileFromStreamTHR(cmsContext ContextID,
FILE* ICCProfile,
const char* sAccess);

Same as anterior, but allowing a ContextlD to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsOpenProfileFromMem(const void * MemPtr,
cmsUInt32Number dwSize);

Opens an ICC profile which is entirely contained in a memory block. Useful for accessing
embedded profiles. MemPtr must point to a buffer of at least dwSize bytes. This buffer must
hold a full profile image. Memory must be contiguous.

Parameters:
MempPtr: Points to a block of contiguous memory containing the profile
dwsSize: Profile's size measured in bytes.

Returns:
A handle to an ICC profile object on success, NULL on error.

Profile access functions

2.9

cmsHPROFILE cmsOpenProfileFromMemTHR(cmsContext ContextID,
const void * MemPtr, cmsUInt32Number dwSize);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.
MemPtr: Points to a block of contiguous memory containing the profile
dwSize: Profile's size measured in bytes.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.9

cmsHPROFILE cmsOpenProfileFromlOhandlerTHR(cmsContext ContextID,
cmsIOHANDLER* io);

Opens a profile, returning a handle to it. The profile access is described by an IOHANDLER.
See 10 handlers section for further details.

Parameters:
ContextID: Pointer to a user-defined context cargo.

lo: Pointer to a serialization object.

Returns:
A handle to an ICC profile object on success, NULL on error.

Profile access functions

[2.6]

cmsHPROFILE cmsOpenProfileFromlOhandler2THR(cmsContext ContextlID,
cms|OHANDLER* io
cmsBool write);

Opens a profile, returning a handle to it. The profile access is described by an IOHANDLER.
See 10 handlers section for further details. This function allows to specify write access as
well

Parameters:
ContextID: Pointer to a user-defined context cargo.

lo: Pointer to a serialization object.
write: TRUE to grant write access, FALSE to open the IOHANDLER as read only

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsBool cmsCloseProfile(cmsHPROFILE hProfile);

Closes a profile handle and frees any associated resource. Can return error when creating
disk profiles, as this function flushes the data to disk.

Parameters:
hProfile: Handle to a profile object.

Returns:
TRUE on success, FALSE on error

cmsBool cmsSaveProfileToFile(cmsHPROFILE hProfile, const char* FileName);

Saves the contents of a profile to a given filename.

Parameters:
hProfile: Handle to a profile object

ICCProfile: File name w/ full path.

Returns:
TRUE on success, FALSE on error.

Profile access functions

2.9

cmsBool cmsSaveProfileToStream(cmsHPROFILE hProfile, FILE* Stream);

Saves the contents of a profile to a given stream.
Parameters:

hProfile: Handle to a profile object

Returns:
TRUE on success, FALSE on error.

2.0

cmsBool cmsSaveProfileToMem(cmsHPROFILE hProfile,
void *MemPtr, cmsUInt32Number* BytesNeeded);

Same as anterior, but for memory blocks. In this case, a NULL as MemPtr means to
calculate needed space only.

Parameters:
hProfile: Handle to a profile object.
MemPtr: Points to a block of contiguous memory with enough space to contain the
profile
BytesNeeded: points to a cmsUInt32Number, where the function will store profile’s
Size measured in bytes.

Returns:
TRUE on success, FALSE on error.

Profile access functions

2.0

cmsUInt32Number cmsSaveProfileTolOhandler(cmsHPROFILE hProfile,
cmsIOHANDLER* io);

Low-level save to IOHANDLER. It returns the number of bytes used to store the profile, or
zero on error. io may be NULL and in this case no data is written--only sizes are
calculated.

Parameters:
hProfile: Handle to a profile object

lo: Pointer to a serialization object.

Returns:
The number of bytes used to store the profile, or zero on error.

Predefined virtual profiles

Predefined virtual profiles

2.0

cmsHPROFILE cmsCreateProfilePlaceholder(cmsContext ContextID);

Creates an empty profile object, ready to be populated by the programmer.

WARNING: The obtained profile without adding any information is not directly useable.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsCreateRGBProfile(const cmsCIExyY* WhitePoint,
const cmsCIExyYTRIPLE* Primaries,
cmsToneCurve* const TransferFunction[3]);

This function creates a display RGB profile based on White point, primaries and transfer
functions. It populates following tags; this conform a standard RGB Display Profile, and then
adds (As per addendum Il of ICC spec) chromaticity tag.

cmsSigProfileDescriptionTag
cmsSigMediaWhitePointTag
cmsSigRedColorantTag
cmsSigGreenColorantTag
cmsSigBlueColorantTag
cmsSigRedTRCTag
cmsSigGreenTRCTag
cmsSigBlueTRCTag
Chromatic adaptation Tag

0 | cmsSigChromaticityTag

2O N WIN|—

Parameters:
WhitePoint: The white point of the RGB device or space.

Primaries: The primaries in xyY of the device or space.
TransferFunction[]: 3 tone curves describing the device or space gamma.

Returns:
A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.9

cmsHPROFILE cmsCreateRGBProfileTHR(cmsContext ContextlD,
const cmsCIExyY* WhitePoint,
const cmsCIExyYTRIPLE* Primaries,
cmsToneCurve* const TransferFunction[3]);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

WhitePoint: The white point of the RGB device or space.
Primaries: The primaries in xyY of the device or space.
TransferFunction[]: 3 tone curves describing the device or space gamma.

Returns:
A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsCreateGrayProfile(const cmsCIExyY* WhitePoint,
const cmsToneCurve* TransferFunction);

This function creates a gray profile based on White point and transfer function. It populates
following tags; this conform a standard gray display profile.

1 | cmsSigProfileDescriptionTag
2 | cmsSigMediaWhitePointTag
3 | cmsSigGrayTRCTag

Parameters:
WhitePoint: The white point of the gray device or space.

TransferFunction: tone curve describing the device or space gamma.

Returns:
A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.9

cmsHPROFILE cmsCreateGrayProfileTHR(cmsContext ContextlD,
const cmsCIExyY* WhitePoint,
const cmsToneCurve* TransferFunction);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

WhitePoint: The white point of the gray device or space.
TransferFunction: tone curve describing the device or space gamma.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.9

cmsHPROFILE cmsCreatelinearizationDevicelLink(cmsColorSpaceSignature Space,
cmsToneCurve* const TransferFunctions]]);

This is a devicelink operating in the target colorspace with as many transfer functions as
components.

Parameters:

Space: any cmsColorSpaceSignature from Table 10

TransferFunction[]: tone curves describing the device or space linearization.
Returns:

A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsCreatelLinearizationDeviceLinkTHR(cmsContext ContextID,
cmsColorSpaceSignature ColorSpace,
cmsToneCurve* const TransferFunctionsl]);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.
ColorSpace: any cmsColorSpaceSignature from Table 10
TransferFunction[]: tone curves describing the device or space linearization.
Returns:
A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.9

cmsHPROFILE cmsCreatelnkLimitingDeviceLink(cmsColorSpaceSignature Space,
cmsFloat64Number Limit);

This is a devicelink operating in CMYK for ink-limiting.

Ink-limiting algorithm:

Sum=C+M+Y +K
If Sum > InkLimit
Ratio= 1 - (Sum - InkLimit) / (C + M +Y)

if Ratio <0
Ratio=0
endif
Else
Ratio=1
endif
C=Ratio*C
M = Ratio * M
Y = Ratio*Y

K: Does not change

Parameters:

Space: any cmsColorSpaceSignature from Table 10. Currently only

cmsSigCmykData is supported.

Limit: Amount of ink limiting in % (0..400%)

Returns:

A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.0

cmsHPROFILE cmsCreatelnkLimitingDeviceLink THR(cmsContext ContextID,
cmsColorSpaceSignature Space,
cmsFloat64Number Limit);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Space: any cmsColorSpaceSignature from Table 10. Currently only
cmsSigCmykData is supported.
Limit: Amount of ink limiting in % (0..400%)

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsCreatelLab2Profile(const cmsCIExyY* WhitePoint);

Creates a Lab - Lab identity, marking it as v2 ICC profile. Adjustments for accomodating
PCS endoing shall be done by Little CMS when using this profile.

Parameters:
WhitePoint: Lab reference white. NULL for D50.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsCreateLab2ProfileTHR(cmsContext ContextID,
const cmsCIExyY* WhitePoint);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

WhitePoint: Lab reference white. NULL for D50.

Returns:
A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.9

cmsHPROFILE cmsCreatelLab4Profile(const cmsCIExyY* WhitePoint);

Creates a Lab > Lab identity, marking it as v4 ICC profile.

Parameters:
WhitePoint: Lab reference white. NULL for D50.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.9

cmsHPROFILE cmsCreatelLab4ProfileTHR(cmsContext ContextID,
const cmsCIExyY* WhitePoint);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

WhitePoint: Lab reference white. NULL for D50.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsCreateXYZProfile(void);

Creates a XYZ > XYZ identity, marking it as v4 ICC profile. WhitePoint used in Absolute
colorimetric intent is D50.

Parameters:
None

Returns:
A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.9

cmsHPROFILE cmsCreateXYZProfileTHR(cmsContext ContextID);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsCreate sRGBProfile(void);

Create an ICC virtual profile for sSRGB space. sRGB is a standard RGB color space
created cooperatively by HP and Microsoft in 1996 for use on monitors, printers, and the
Internet.

sRGB white point is D65.
xyY | 0.3127, 0.3291, 1.0

Primaries are ITU-R BT.709-5 (xYY)

R | 0.6400, 0.3300, 1.0
G | 0.3000, 0.6000, 1.0
B | 0.1500, 0.0600, 1.0

SRGB transfer functions are defined by:

If R’sres,G’sreB, B'sras < 0.04045

R = R’sres/ 12.92
G = Gsrea/ 12.92
B = B'sres/ 12.92

else if R'skes,G'sree, B'sras >= 0.04045
R = ((R'sree + 0.055) / 1.055)%4

G = ((Gsree + 0.055) / 1.055)2*
B = ((B'sres + 0.055) / 1.055)2*

http://en.wikipedia.org/wiki/Rec._709

Predefined virtual profiles

Parameters:
None

Returns:
A handle to an ICC profile object on success, NULL on error.

2.0

cmsHPROFILE cmsCreate_sRGBProfileTHR(cmsContext ContextID);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A handle to an ICC profile object on success, NULL on error.

2.9

cmsHPROFILE cmsCreateNULLProfile(void);

Creates a fake NULL profile. This profile returns 1 channel as always 0. Is useful only for
gamut checking tricks.

Parameters:
None

Returns:
A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsCreateNULLProfileTHR(cmsContext ContextID);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.

Returns:
A handle to an ICC profile object on success, NULL on error.

Predefined virtual profiles

2.9

cmsHPROFILE cmsCreateBCHSWabstractProfile(int nLUTPoints,
cmsFloat64Number Bright,
cmsFloat64Number Contrast,
cmsFloat64Number Hue,
cmsFloat64Number Saturation,
int TempSrc,
int TempDest);

Creates an abstract devicelink operating in Lab for Bright/Contrast/Hue/Saturation and
white point translation. White points are specified as temperatures °K

Parameters:
nLUTPoints : Resulting color map resolution

Bright: Bright increment. May be negative

Contrast : Contrast increment. May be negative.
Hue : Hue displacement in degree.

Saturation: Saturation increment. May be negative
TempSrc: Source white point temperature
TempDest: Destination white point temperature.

Returns:
A handle to an ICC profile object on success, NULL on error.

Notes:
To prevent white point adjustment, set TempSrc = TempDest = 0

cmsHPROFILE cmsCreateBCHSWabstractProfileTHR(cmsContext ContextID,
int nLUTPoints,
cmsFloat64Number Bright,
cmsFloat64Number Contrast,
cmsFloat64Number Hue,
cmsFloat64Number Saturation,
int TempSrc,
int TempDest);

Same as anterior, but allowing a ContextID to be passed through.

Parameters:
ContextID: Pointer to a user-defined context cargo.
nLUTPoints : Resulting colormap resolution
Bright: Bright increment. May be negative

Predefined virtual profiles

Contrast : Contrast increment. May be negative.

Hue : Hue displacement in degree.

Saturation: Saturation increment. May be negative

TempSrc, TempDest: Source, Destination white point temperatures

Returns:
A handle to an ICC profile object on success, NULL on error.

cmsHPROFILE cmsTransform2DeviceLink(cmsHTRANSFORM hTransform,
cmsFloat64Number Version,
cmsUInt32Number dwFlags);

Generates a device-link profile from a given color transform. This profile can then be used
by any other function accepting profile handle. Depending on the specified version number,
the implementation of the devicelink may vary. Accepted versions are in range 1.0...4.3

Parameters:
hTransform: Handle to a color transform object.

Version: The target devicelink version number.
dwFlags: A combination of bit-field constants described in Table 42.

Returns:
A handle to an ICC profile object on success, NULL on error.

Obtaining localized info from profiles

Obtaining localized info from profiles

In versions prior to 4.0, the ICC format defined a required tag 'desc' which stored ASCII,
Unicode, and Script Code versions of the profile description for display purposes. However,
this structure allowed the profile to be localized for one language only through Unicode or
Script Code. Profile vendors had to ship many localized versions to different countries. It
also created problems when a document with localized profiles embedded in it was shipped
to a system using a different language. With the adoption of V4 spec as basis, Little CMS
solves all those issues honoring a new tag type: ‘mluc’ and multi localized Unicode. There
is a full part of the API to deal with this stuff, but if you don’t care about the details and all
you want is to display the right string, Little CMS provides a simplified interface for that
purpose.

Note that ASCII is strictly 7 bits, so you need to use wide chars if you want to preserve the
information in the profile. The localization trick is done by using the lenguage and country
codes, which you are supposed to supply. Those are two or three ASCII letters. A list of
codes may be found here:

Language Code: http://lcweb.loc.gov/standards/iso639-2/iso639jac.html

Country Codes: http://www.iso.ch/iso/en/prods-services/iso3166ma/index.html

In practice, “en” for “english” and “US” for “united states” are implemented in most profiles.
It is Ok to set a language and a country even if the profile does not implement such specific
language and country. Little CMS will search for a proper match.

If you don’t care and want just to take the first string in the profile, you can use:

For the language:

cmsNolLanguage |

For the country:

cmsNoCountry |

This will force to get the very first string, without any searching. A note of warning on that:
you will get an string, but the language would be any, and probably that is not what you
want. It is better to specify a default for language, and let LittleCMS to choose any other
country (or language!) if what you ask for is not available.

typedef enum {
cmslinfoDescription =0,
cmslinfoManufacturer= 1,
cmslinfoModel =2,
cmsinfoCopyright =3
} cmsinfoType;

http://lcweb.loc.gov/standards/iso639-2/iso639jac.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/index.html

Obtaining localized info from profiles

2.9

cmsUInt32Number cmsGetProfileInfo(cmsHPROFILE hProfile,
cmsinfoType Info,
const char LanguageCode[3],
const char CountryCode[3],
wchar_t* Buffer,
cmsUInt32Number BufferSize);

Gets several information strings from the profile, dealing with localization. Strings are
returned as wide chars.

Parameters:
hProfile: Handle to a profile object
Info: A selector of which info to return
Language Code: first name language code from ISO-639/2.
Country Code: first name region code from ISO-3166.
Buffer: pointer to a memory block to get the result. NULL to calculate size only
BufferSize: Amount of byes allocated in Buffer, or 0 to calculate size only.

Returns:
Number of required bytes to hold the result. 0 on error.

cmsUInt32Number cmsGetProfileInfoASCll(cmsHPROFILE hProfile,
cmsinfoType Info,
const char LanguageCode([3],
const char CountryCodel[3],
char* Buffer,
cmsUInt32Number BufferSize);

Gets several information strings from the profile, dealing with localization. Strings are
returned as ASCII.

Parameters:
hProfile: Handle to a profile object
Info: A selector of which info to return
Language Code: first name language code from ISO-639/2.
Country Code: first name region code from ISO-3166.
Buffer: pointer to a memory block to get the result. NULL to calculate size only
BufferSize: Amount of byes allocated in Buffer, or 0 to calculate size only.

Returns:
Number of required bytes to hold the result. 0 on error.

Profile feature detection

Profile feature detection

2.0

cmsBool cmsDetectBlackPoint(cmsCIEXYZ* BlackPoint,
cmsHPROFILE hProfile,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags);

Estimate the black point of a given profile. Used by black point compensation algorithm.

Parameters:
BlackPoint: Pointer to cmsCIEXYZ object to receive the detected black point.
hProfile: Handle to a profile object
Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.
dwFlags: reserved (unused). Set it to 0

Returns:
TRUE on success, FALSE on error

cmsBool cmsDetectDestinationBlackPoint(cmsCIEXYZ* BlackPoint,
cmsHPROFILE hProfile,
cmsUInt32Number Intent,
cmsUInt32Number dwFlags);

Estimate the black point of a given destination profile by using the Black point
compensation ICC algorithm.

Parameters:
BlackPoint: Pointer to cmsCIEXYZ object to receive the detected black point.
hProfile: Handle to a profile object
Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.
dwFlags: reserved (unused). Set it to 0

Returns:
TRUE on success, FALSE on error

Profile feature detection

2.9

cmsFloat64Number cmsDetectTAC(cmsHPROFILE hProfile);

When several colors are printed on top of each other, there is a limit to the amount of ink
that can be put on paper. This maximum total dot percentage is referred to as either TIC
(Total Ink Coverage) or TAC (Total Area Coverage). This function does estimate total area
coverage for a given profile in %. Only works on output profiles. On RGB profiles, 400% is
returned. TAC is detected by subsampling Lab color space on 6x74x74 points.

Parameters:

hProfile: Handle to a profile object

Returns:
Estimated area coverage in % on success, 0 on error.

2.13

cmsFloat64Number cmsDetectRGBProfileGamma (cmsHPROFILE hProfile,
cmsFloat64Number thereshold);

Detect whatever a given ICC profile works in linear (gamma 1.0) space. Actually, doing that
"well" is quite hard, since every component may behave completely different. Since the true
point of this function is to detect suitable optimizations, | am imposing some requirements
that simplifies things: only RGB, and only profiles that can got in both directions. The
algorithm obtains Y from a syntactical gray R=G=B. Then least squares fitting is used to
estimate gamma. For gamma close to 1.0, RGB is linear. On profiles not supported, -1 is
returned.

Parameters:
hProfile: Handle to a profile object

threshold: The standard deviation above that gamma is returned.

Returns:
Estimated gamma of the RGB space on success, -1 on error.

Accessing profiler header

Accessing profiler header

2.0

cmsBool cmsGetHeaderCreationDateTime(cmsHPROFILE hProfile, struct tm *Dest);

Returns the date and time when profile was created. This is a field stored in profile header.

Parameters:
hProfile: Handle to a profile object

Dest: pointer to struct tm object to hold the result.

Returns:
TRUE on success, FALSE on error

2.0

cmsUInt32Number cmsGetHeaderFlags(cmsHPROFILE hProfile);

Get header flags of given ICC profile object. The profile flags field does contain flags to
indicate various hints for the CMM such as distributed processing and caching options. The
least-significant 16 bits are reserved for the ICC. Flags in bit positions 0 and 1 shall be used
as indicated in Table 7.

Position Field Field Contents
Length
(bits)

0 1 Embedded Profile (cmsEmbeddedProfileFalse if not embedded,
cmsEmbeddedProfileTrue if embedded in file)

1 1 Profile cannot be used independently from the embedded color data
(set to cmsUseWithEmbeddedDataOnly if true, cmsUseAnywhere if
false)

Table 7
Parameters:

hProfile: Handle to a profile object

Returns:
Flags field of profile header.

Accessing profiler header

2.9

void cmsSetHeaderFlags(cmsHPROFILE hProfile, cmsUInt32Number Flags);

Sets header flags of given ICC profile object. Valid flags are defined in Table 7.

Parameters:
hProfile: Handle to a profile object.

Flags: Flags field of profile header.

Returns:
None

2.9

cmsUInt32Number cmsGetHeaderManufacturer(cmsHPROFILE hProfile);

Returns the manufacturer signature as described in the header. This funcionality is widely
superseded by the manufaturer tag. Of use only in elder profiles.

Parameters:
hProfile: Handle to a profile object

Returns:
The profile manufacturer signature stored in the header.

void cmsSetHeaderManufacturer(cmsHPROFILE hProfile,
cmsUInt32Number manufacturer);

Sets the manufacturer signature in the header. This funcionality is widely superseded by
the manufaturer tag. Of use only in elder profiles.

Parameters:
hProfile: Handle to a profile object.

Manufacturer: The profile manufacturer signature to store in the header.

Returns:
None

Accessing profiler header

2.9

cmsUInt32Number cmsGetHeaderModel(cmsHPROFILE hProfile);

Returns the model signature as described in the header. This funcionality is widely
superseded by the model tag. Of use only in elder profiles.

Parameters:
hProfile: Handle to a profile object

Returns:
The profile model signature stored in the header.

2.0

void cmsSetHeaderModel(cmsHPROFILE hProfile, cmsUInt32Number model);

Sets the model signature in the profile header. This funcionality is widely superseded by
the model tag. Of use only in elder profiles.

Parameters:
hProfile: Handle to a profile object
model: The profile model signature to store in the header.

Returns:
None

Accessing profiler header

Device attributes
currently defined values correspond to the low 4 bytes of the 8 byte attribute quantity.

cmsReflective cmsTransparency

cmsGlossy cmsMatte
Table 8

2.0

void cmsGetHeaderAttributes(cmsHPROFILE hProfile , cmsUInt64Number* Flags);

Gets the attribute flags as described in Table 8.

Parameters:
hProfile: Handle to a profile object

Flags: a pointer to a cmsUInt64Number to receive the flags.

Returns:
None

2.0

void cmsSetHeaderAttributes(cmsHPROFILE hProfile, cmsUInt64Number Flags);

Sets the attribute flags in the profile header. Flags are enumerated in Table 8.

Parameters:
hProfile: Handle to a profile object

Flags: The flags to be set.

Returns:
None

Accessing profiler header

Profile classes

Device Class (cmsProfileClassSignature)
cmsSiglnputClass 0x73636E72 'scnr'
cmsSigDisplayClass 0x6D6E7472 'mntr'
cmsSigOutputClass 0x70727472 'prir'
cmsSigLinkClass 0x6C696EGB 'link'
cmsSigAbstractClass 0x61627374 'abst'
cmsSigColorSpaceClass 0x73706163 'spac’
cmsSigNamedColorClass 0x6e6d636¢ 'nmcl'

Table 9

2.0

cmsProfileClassSignature cmsGetDeviceClass(cmsHPROFILE hProfile);

Gets the device class signature from profile header.

Parameters:
hProfile: Handle to a profile object

Returns:
Device class of profile as described in Table 9

2.0

void cmsSetDeviceClass(cmsHPROFILE hProfile, cmsProfileClassSignature sig);

Sets the device class signature in profile header.

Parameters:
hProfile: Handle to a profile object
sig: Device class of profile as described in Table 9

Returns:
None

Accessing profiler header

Profile versioning

2.9

void cmsSetProfileVersion(cmsHPROFILE hProfile, cmsFloat64Number Version);

Sets the ICC version in profile header. The version is given to this function as a float n.m

Parameters:
hProfile: Handle to a profile object

Version: Profile version in readable floating point format.

Returns:
None

2.9

cmsFloat64Number cmsGetProfileVersion(cmsHPROFILE hProfile);

Returns the profile ICC version. The version is decoded to readable floating point format.
Parameters:

hProfile: Handle to a profile object

Returns:
The profile ICC version, in readable floating point format.

cmsUInt32Number cmsGetEncodedICCversion(cmsHPROFILE hProfile);

Returns the profile ICC version in the same format as it is stored in the header.
Parameters:
hProfile: Handle to a profile object

Returns:
The encoded ICC profile version.

Accessing profiler header

2.9

void cmsSetEncodedICCversion(cmsHPROFILE hProfile,
cmsUInt32Number Version);

Sets the ICC version in profile header, without any decoding.

Parameters:
hProfile: Handle to a profile object

Version: Profile version in the same format as it will be stored in profile header.

Returns:
None

Info on profile implementation

Info on profile implementation

2.0

cmsBool cmslsMatrixShaper(cmsHPROFILE hProfile);

Returns whatever a matrix-shaper is present in the profile. Note that a profile may hold
matrix-shaper and CLUT as well.

Parameters:

hProfile: Handle to a profile object

Returns:
TRUE if the profile holds a matrix-shaper, FALSE otherwise.

cmsBool cmslsCLUT(cmsHPROFILE hProfile,
cmsUInt32Number Intent,
cmsUInt32Number UsedDirection);

Returns whatever a CLUT is present in the profile for the given intent and direction.

Parameters:

hProfile: Handle to a profile object

Intent: A cmsUInt32Number holding the intent code, as described in Intents
section.

Direction: any of following values:

#define LCMS_USED_AS_INPUT 0
#define LCMS_USED_AS_OUTPUT 1
#define LCMS_USED_AS_PROOF 2

Returns:
TRUE if a CLUT is present for given intent and direction, FALSE otherwise.

Color spaces

Color spaces

cmsColorSpaceSignature

cmsSigXYZData 0x58595A20 'XYZ'
cmsSigLabData 0x4C616220 'Lab’
cmsSigLuvData 0x4C757620 'Luv'
cmsSigYCbCrData 0x59436272 'YCbr'
cmsSigYxyData 0x59787920 'Yxy '
cmsSigRgbData 0x52474220 'RGB '
cmsSigGrayData 0x47524159 'GRAY'
cmsSigHsvData 0x48535620 'HSV '
cmsSigHIsData 0x484C5320 'HLS '
cmsSigCmykData 0x434D594B 'CMYK'
cmsSigCmyData 0x434D5920 'CMY '
cmsSigMCH1Data 0x4D434831 'MCH1'
cmsSigMCH2Data 0x4D434832 'MCH2'
cmsSigMCH3Data 0x4D434833 'MCH3!'
cmsSigMCH4Data 0x4D434834 'MCH4'
cmsSigMCH5Data 0x4D434835 'MCH5'
cmsSigMCH6Data 0x4D434836 'MCH6'
cmsSigMCH7Data 0x4D434837 'MCHT'
cmsSigMCH8Data 0x4D434838 'MCHS'
cmsSigMCH9Data 0x4D434839 'MCH9'
cmsSigMCHAData 0x4D43483A 'MCHA'
cmsSigMCHBData 0x4D43483B 'MCHB'
cmsSigMCHCData 0x4D43483C 'MCHC'
cmsSigMCHDData 0x4D43483D 'MCHD'
cmsSigMCHEData 0x4D43483E 'MCHE'
cmsSigMCHFData 0x4D43483F 'MCHF'

cmsSigNamedData

0x6e6d636¢ 'nmcl'

cmsSig1colorData

0x31434C52 "1CLR'

cmsSig2colorData

0x32434C52 '2CLR'

cmsSig3colorData

0x33434C52 '3CLR'

cmsSig4colorData

0x34434C52 'ACLR'

cmsSigScolorData

0x35434C52 '5CLR'

cmsSig6colorData

0x36434C52 '6CLR'

cmsSig7colorData

0x37434C52 "7CLR'

cmsSig8colorData

0x38434C52 '8CLR'

cmsSig9colorData

0x39434C52 'OCLR'

cmsSig10colorData

0x41434C52 'ACLR'

cmsSig11colorData

0x42434C52 'BCLR

cmsSig12colorData

0x43434C52 'CCLR

cmsSig13colorData

0x44434C52 'DCLR

cmsSig14colorData

0x45434C52 'ECLR'

cmsSig15colorData

0x46434C52 'FCLR'

cmsSigLuvKData

0x4C75764B 'LuvK'

Table 10

Color spaces

2.9

cmsUInt32Number cmsChannelsOf(cmsColorSpaceSignature ColorSpace);

Returns channel count for a given color space.
Parameters:

ColorSpace: any cmsColorSpaceSignature from Table 10

Returns:
Number of channels, or 3 on error.

2.0

cmsColorSpaceSignature cmsGetPCS(cmsHPROFILE hProfile);

Gets the profile connection space used by the given profile, using the ICC convention.
Parameters:

hProfile: Handle to a profile object

Returns:
Obtained cmsColorSpaceSignature (Table 10).

void cmsSetPCS(cmsHPROFILE hProfile, cmsColorSpaceSignature pcs);

Sets the profile connection space signature in profile header, using ICC convention.

Parameters:
hProfile: Handle to a profile object
pcs: any cmsColorSpaceSignature from Table 10

Returns:
None

Color spaces

2.9

cmsColorSpaceSignature cmsGetColorSpace(cmsHPROFILE hProfile);

Gets the color space used by the given profile, using the ICC convention.

Parameters:
hProfile: Handle to a profile object

Returns:
Obtained cmsColorSpaceSignature (Table 10).

2.0

void cmsSetColorSpace(cmsHPROFILE hProfile, cmsColorSpaceSignature sig);

Sets the color space signature in profile header, using ICC convention.

Parameters:

hProfile: Handle to a profile object
sig: any cmsColorSpaceSignature from Table 10

Returns:
None

Containers in floating point format

cmsFloat64Number

Color spaces

cmsFloat64Number

cmsFloat64Number

Table 11

cmsFloat64Number

cmsFloat64Number | x;
\2
cmsFloat64Number
Y;

Table 12

cmsFloat64Number

|

cmsFloat64Number

cmsFloat64Number

Table 13

cmsFloat64Number

|

cmsFloat64Number

cmsFloat64Number

Table 14

cmsFloat64Number

|

cmsFloat64Number

cmsFloat64Number

Table 15

cmsCIEXYZ Red;

cmsCIEXYZ Green;

cmsCIEXYZ Blue;
Table 16

cmsCIExyY Red;
cmsCIExyY Green;
cmsCIExyY Blue;

Table 17

Colorspace conversions

Color spaces

D50 XYZ normalized to Y=1.0

cmsD50X 0.9642

cmsD50Y 1.0

cmsD50Z 0.8249
Table 18

V4 perceptual black

cmsPERCEPTUAL_BLACK_X | 0.00336

cmsPERCEPTUAL_BLACK_Y | 0.0034731

cmsPERCEPTUAL_BLACK_Z | 0.00287

Table 19

2.0

const cmsCIEXYZ* cmsD50_XYZ(void);
const cmsCIExyY* cmsD50_xyY (void);

Returns pointer to constant structures.

Parameters:
None

Returns:
Pointers to constant D50 white point in XYZ and xyY spaces.

void cmsXYZ2xyY(cmsCIExyY* Dest, const cmsCIEXYZ* Source);
void cmsxyY2XYZ(cmsCIEXYZ* Dest, const cmsCIExyY* Source);

Colorimetric space conversions.

Parameters:
Source, Dest: Source and destination values.

Returns:
None

Color spaces

2.9

void cmsXYZ2Lab(const cmsCIEXYZ* WhitePoint,
cmsCIELab* Lab,
const cmsCIEXYZ* xyz);

void cmsLab2XYZ(const cmsCIEXYZ* WhitePoint,
cmsCIEXYZ* xyz,
const cmsCIELab* Lab);

Colorimetric space conversions. Setting WhitePoint to NULL forces D50 as white point.

Parameters:
Lab: Pointer to a cmsCIELab value as described in Table 13
xyz: Pointer to a cmsCIEXYZ value as described in Table 11

Returns:
None

void cmsLab2L.Ch(cmsCIELCh*LCh, const cmsCIELab* Lab);
void cmsLCh2Lab(cmsCIELab* Lab, const cmsCIELCh* LCh);

Colorimetric space conversions.

Parameters:
Lab: Pointer to a cmsCIELab value as described in Table 13

LCh: Pointer to a cmsCIELCh value as described in Table 14

Returns:
None

Color spaces

Encoding /Decoding on PCS

2.9

void cmsLabEncoded2Float(cmsCIELab* Lab, const cmsUInt16Number wLab[3]);

Decodes a Lab value, encoded on ICC v4 convention to a cmsCIELab value as described
in Table 13

Parameters:

Lab: Pointer to a cmsCIELab value as described in Table 13
wLab[] : Array of 3 cmsUInt16Number holding the encoded values.

Returns:
None

2.9

void cmsLabEncoded2FloatV2(cmsCIELab* Lab, const cmsUInt16Number wLab[3]);

Decodes a Lab value, encoded on ICC v2 convention to a cmsCIELab value as described
in Table 13

Parameters:

Lab: Pointer to a cmsCIELab value as described in Table 13
wLab[] : Array of 3 cmsUInt16Number holding the encoded values.

Returns:
None

void cmsFloat2LabEncoded(cmsUInt16Number wLab[3], const cmsCIELab* Lab);

Encodes a Lab value, from a cmsCIELab value as described in Table 13, to ICC v4
convention.

Parameters:
Lab: Pointer to a cmsCIELab value as described in Table 13

wLab(] : Array of 3 cmsUInt16Number to hold the encoded values.

Returns:
None

Color spaces

2.9

void cmsFloat2LabEncodedV2(cmsUInt16Number wlLab[3], const cmsCIELab* Lab);

Encodes a Lab value, from a cmsCIELab value as described in Table 13, to ICC v2
convention.

Parameters:
Lab: Pointer to a cmsCIELab value as described in Table 13

wLab(] : Array of 3 cmsUInt16Number to hold the encoded values.

Returns:
None

2.9

void cmsXYZEncoded2Float(cmsCIEXYZ* fxyz, const cmsUInt16Number XYZ[3]);

Decodes a XYZ value, encoded on ICC convention to a cmsCIEXYZ value as described in
Table 11

Parameters:

fxyz: Pointer to a cmsCIEXYZ value as described in Table 11
XYZ[] : Array of 3 cmsUInt16Number holding the encoded values.

Returns:
None

2.0

void cmsFloat2XYZEncoded(cmsUInt16Number XYZ[3], const cmsCIEXYZ* fXYZ);

Encodes a XYZ value, from a cmsCIELab value as described in Table 11, to ICC
convention.

Parameters:
XYZ[] : Array of 3 cmsUInt16Number to hold the encoded values.

fxyz: Pointer to a cmsCIEXYZ value as described in Table 11

Returns:
None

Accessing tags

Tag types

Those are the predefined tag types. You can add more types by using tag type plug-ins. See
the plug-in API reference for further details.

Accessing tags [N

Base type definitions (cmsTagTypeSignature)

cmsSigChromaticityType 0x6368726D 'chrm'
cmsSigColorantOrderType 0x636C726F 'clro'
cmsSigColorantTableType 0x636C7274 'clrt'
cmsSigCrdinfoType 0x63726469 ‘crdi'
cmsSigCurveType 0x63757276 'curv'
cmsSigDataType 0x64617461 'data’
cmsSigDateTimeType 0x6474696D 'dtim'
cmsSigDeviceSettingsType 0x64657673 'devs'
cmsSigLut16Type 0x6d667432 'mft2'
cmsSigLut8Type 0x6d667431 'mft1'
cmsSigLutAtoBType 0x6d414220 'mAB '
cmsSigLutBtoAType 0x6d424120 'mBA "

cmsSigMeasurementType

0x6D656173 'meas’

cmsSigMultiLocalizedUnicodeType

0x6D6C7563 'mluc’

cmsSigMultiProcessElementType

0x6D706574 'mpet'

cmsSigNamedColorType

0x6E636f6C 'ncol’

cmsSigNamedColor2Type

0x6E636C32 'ncl2'

cmsSigParametricCurveType

0x70617261 'para’

cmsSigProfileSequenceDescType

0x70736571 'pseq'

cmsSigProfileSequenceldType

0x70736964 'psid'

cmsSigResponseCurveSet16Type

0x72637332 'rcs2'

cmsSigS15Fixed16ArrayType

0x73663332 'sf32'

cmsSigScreeningType 0x7363726E 'scrn’
cmsSigSignatureType 0x73696720 'sig '
cmsSigTextType 0x74657874 'text'

cmsSigTextDescriptionType

0x64657363 'desc'

cmsSigU16Fixed16ArrayType

0x75663332 'uf32'

cmsSigUcrBgType

0x62666420 'bfd '

cmsSigUInt16ArrayType

0x75693136 'ui16'

cmsSigUInt32ArrayType

0x75693332 'ui32'

cmsSigUInt64ArrayType

0x75693634 'uic4’

cmsSigUInt8ArrayType

0x75693038 'ui08'

cmsSigViewingConditionsType

0x76696577 'view'

cmsSigXYZType

0x58595A20 'XYZ'

Table 20

Accessing tags

Tags

Those are the predefined tags. You can add more tags by using tag plug-ins. See the plug-
in API reference for further details. On the right there is the Icms type representation for
cmsReadTag and cmsWriteTag.

Base tag definitions (cmsTagSignature) Icms type
cmsSigAToB0Tag 0x41324230 'A2B0' cmsPipeline
cmsSigAToB1Tag 0x41324231 'A2B1' cmsPipeline
cmsSigAToB2Tag 0x41324232 'A2B2' cmsPipeline
cmsSigBlueColorantTag 0x6258595A 'bXYZ' cmsCIEXYZ
cmsSigBlueMatrixColumnTag 0x6258595A 'bXYZ' cmsCIEXYZ
cmsSigBlueTRCTag 0x62545243 'bTRC' cmsToneCurve
cmsSigBToAOTag 0x42324130 'B2A0' cmsPipeline
cmsSigBToA1Tag 0x42324131 'B2A1 cmsPipeline
cmsSigBToA2Tag 0x42324132 'B2A2' cmsPipeline
cmsSigCalibrationDateTimeTag 0x63616C74 ‘calt! struct tm
cmsSigCharTargetTag 0x74617267 'targ' cmsMLU
cmsSigChromaticAdaptationTag 0x63686164 'chad' cmsCIEXYZ [3]
cmsSigChromaticityTag 0x6368726D ‘chrm' cmsCIExyYTRIPLE
cmsSigColorantOrderTag 0x636C726F 'clro’ cmsUInt8Number [16]
cmsSigColorantTableTag 0x636C7274 ‘clrt' cmsNAMEDCOLORLIST
cmsSigColorantTableOutTag 0x636C6F74 'clot' cmsNAMEDCOLORLIST
cmsSigColorimetricintentimageStateTag 0x63696973 'ciis' cmsSignature
cmsSigCopyrightTag 0x63707274 'cprt’ cmsMLU
cmsSigCrdinfoTag’ 0x63726469 'crdi' cmsNAMEDCOLORLIST
cmsSigDataTag 0x64617461 'data’ cmsICCData
cmsSigDateTimeTag 0x6474696D 'dtim' struct tm
cmsSigDeviceMfgDescTag 0x646D6E64 'dmnd' cmsMLU
cmsSigDeviceModelDescTag 0x646D6464 'dmdd' cmsMLU
cmsSigDeviceSettingsTag 0x64657673 'devs' Not supported*
cmsSigDToB0Tag 0x44324230 'D2B0' cmsPipeline
cmsSigDToB1Tag 0x44324231 'D2B1"' cmsPipeline
cmsSigDToB2Tag 0x44324232 'D2B2' cmsPipeline
cmsSigDToB3Tag 0x44324233 'D2B3' cmsPipeline
cmsSigBToDO0Tag 0x42324430 'B2D0' cmsPipeline
cmsSigBToD1Tag 0x42324431 'B2D1' cmsPipeline
cmsSigBToD2Tag 0x42324432 'B2D2' cmsPipeline
cmsSigBToD3Tag 0x42324433 'B2D3' cmsPipeline
cmsSigGamutTag 0x67616D74 'gamt’ cmsPipeline
cmsSigGrayTRCTag 0x6b545243 'kTRC' cmsToneCurve
cmsSigGreenColorantTag 0x6758595A 'gXYZ' cmsCIEXYZ
cmsSigGreenMatrixColumnTag 0x6758595A 'gXYZ' cmsCIEXYZ
cmsSigGreenTRCTag 0x67545243 'gTRC' cmsToneCurve
cmsSigLuminanceTag 0x6C756d69 'lumi' cmsCIEXYZ
cmsSigMeasurementTag 0x6D656173 'meas’ girpizln(;CMeasurementCon
cmsSigMediaBlackPointTag 0x626B7074 'bkpt' cmsCIEXYZ
cmsSigMediaWhitePointTag OX77747074 ‘wtpt' cmsCIEXYZ

Accessing tags

cmsSigNamedColorTag

0x6E636f6C 'ncol'

Not supported*®

cmsSigNamedColor2Tag

0x6E636C32 'ncl2'

cmsNAMEDCOLORLIST

cmsSigOutputResponseTag

0x72657370 'resp’

Not supported*

cmsSigPerceptualRenderinglntentGamutTag

0x72696730 'rig0’

cmsSignature

cmsSigPreview0Tag 0x70726530 'pre0’ cmsPipeline
cmsSigPreview1Tag 0x70726531 'pre1’ cmsPipeline
cmsSigPreview2Tag 0x70726532 'pre2' cmsPipeline
cmsSigProfileDescriptionTag 0x64657363 'desc' cmsMLU
cmsSigProfileSequenceDescTag 0x70736571 'pseq’ cmsSEQ
cmsSigProfileSequenceldTag 0x70736964 'psid' cmsSEQ
cmsSigPs2CRD0Tag 0x70736430 'psd0’ cmsICCData
cmsSigPs2CRD1Tag 0x70736431 'psd 1’ cmsICCData
cmsSigPs2CRD2Tag 0x70736432 'psd2’ cmsICCData
cmsSigPs2CRD3Tag 0x70736433 'psd3' cmsICCData
cmsSigPs2CSATag 0x70733273 'ps2s' cmsICCData
cmsSigPs2RenderinglntentTag 0x70733269 'ps2i' cmsICCData
cmsSigRedColorantTag 0x7258595A 'rXYZ' cmsCIEXYZ
cmsSigRedMatrixColumnTag 0x7258595A 'TXYZ' cmsCIEXYZ
cmsSigRedTRCTag 0x72545243 'rTRC' cmsToneCurve
cmsSigSaturationRenderingIntentGamutTag 0x72696732 'rig2' cmsSignature
cmsSigScreeningDescTag 0x73637264 'scrd' cmsMLU

cmsSigScreeningTag

0x7363726E 'scrn’

cmsScreening

cmsSigTechnologyTag 0x74656368 'tech’ cmsSignature
cmsSigUcrBgTag 0x62666420 'bfd * cmsUcrBg
cmsSigViewingCondDescTag 0x76756564 'vued' cmsMLU

cmsSigViewingConditionsTag

0x76696577 'view'

cmsICCViewingConditi
ons

cmsSigMetaTag

0x6D657461 'meta’

cmsHANDLE (DICT)

Table 21

‘cmsSigCrdinfoTag: This type contains the PostScript product name to which this profile
corresponds and the names of the companion CRDs. A single profile can generate multiple
CRDs. It is implemented as a MLU being the language code "PS" and then country varies
for each element:

nm: PostScript product name

#0: Rendering intent 0 CRD name
#1: Rendering intent 1 CRD name
#2: Rendering intent 2 CRD name
#3: Rendering intent 3 CRD name

Accessing tags

There are several tags not supported, they are listed below with an explanation on why are
not supported.

Not supported Why

cmsSigOutputResponseTag | POSSIBLE PATENT ON THIS SUBJECT!

cmsSigNamedColorTag Deprecated

cmsSigDataTag Ancient, unused

cmsSigDeviceSettingsTag | Deprecated, useless

2.0

cmsint32Number cmsGetTagCount(cmsHPROFILE hProfile);

Returns the number of tags present in a given profile.

Parameters:
hProfile: Handle to a profile object

Returns:
Number of tags on success, -1 on error.

cmsTagSignature cmsGetTagSignature(cmsHPROFILE hProfile,
cmsUInt32Number n);

Returns the signature of a tag located in n position being n a 0-based index: i.e., first tag is
indexed with n=0.

Parameters:
hProfile: Handle to a profile object
n: index to a tag position (0-based)

Returns:
The tag signature on success, 0 on error.

Accessing tags

2.9

cmsBool cmslsTag(cmsHPROFILE hProfile, cmsTagSignature sig);

Returns TRUE if a tag with signature sig is found on the profile. Useful to check if a profile
contains a given tag.

Parameters:
hProfile: Handle to a profile object.
sig: Tag signature, as stated in Table 21

Returns:
TRUE if the tag is found, FALSE otherwise.

2.9

void* cmsReadTag(cmsHPROFILE hProfile, cmsTagSignature sig);

Reads an existing tag with signature sig, parses it and returns a pointer to an object owned
by the profile object holding a representation of tag contents.

Little CMS will return (if found) a pointer to a structure holding the tag. The obtained structure
is not the raw contents of the tag, but the result of parsing the tag. For example, reading a
cmsSigAToBO tag results as a Pipeline structure ready to be used by all the cmsPipeline
functions. The memory belongs to the profile and is set free on closing the profile. In this
way, there are no memory duplicates and you can safely re-use the same tag as many times
as you wish. Anything coming from cmsReadTag should be treated as const. Otherwise
you are modifying structures that are owned by the profile, when the profile is set free, it tries
to free those structures. If you have modified the internal pointers, it can get corrupted.

Parameters:
hProfile: Handle to a profile object.
sig: Tag signature, as stated in Table 21

Returns:
A pointer to a profile-owned object holding tag contents, or NULL if the signature is
not found. Type of object does vary. See Table 21 for a list of returned types.

Accessing tags

2.9

cmsBool cmsWriteTag(cmsHPROFILE hProfile,
cmsTagSignature sig,
const void* data);

Writes an object to an ICC profile tag, doing all necessary serialization. The obtained tag
depends on ICC version number used when creating the profile.

Writing tags is almost the same as read them, you just specify a pointer to the structure and
the tag name and Little CMS will do all serialization for you. Process under the hood may be
very complex, if you realize v2 and v4 of the ICC spec are using different representations of
same structures.

Parameters:
hProfile: Handle to a profile object
sig: Tag signature, as stated in Table 21
data: A pointer to an object holding tag contents. Type of object does vary. See
Table 21 for a list of required types.

Returns:
TRUE on success, FALSE on error

2.0

cmsBool cmsLinkTag(cmsHPROFILE hProfile,
cmsTagSignature sig,
cmsTagSignature dest);

Creates a directory entry on tag sig that points to same location as tag dest. Using this
function you can collapse several tag entries to the same block in the profile. For example,
point perceptual, rel.col and saturation BtoAxx tags to same implementation.

Parameters:
hProfile: Handle to a profile object

sig: Signature of linking tag
dest: Signature of linked tag

Returns:
TRUE on success, FALSE on error

Accessing tags [N

2.1]

cmsTagSignature cmsTaglLinkedTo(cmsHPROFILE hProfile, cmsTagSignature sig);

Returns the tag linked to sig, in the case two tags are sharing same resource, or NULL if the
tag is not linked to any other tag.

Parameters:
hProfile: Handle to a profile object

sig: Signature of linking tag

Returns:
Signature of linked tag, or NULL if no tag is linked

Accessing tags

Accessing tags as raw data

Those functions allows to read/write directly to the ICC profile any data, without checking
anything. As a rule, mixing Raw with cooked doesn't work, so writting a tag as raw and then
reading it as cooked without serializing does result into an error. If that is what you want,
you will need to dump the profile to memory or disk and then reopen it.

2.9

cmsint32Number cmsReadRawTag(cmsHPROFILE hProfile,
cmsTagSignature sig,
void* Buffer, cmsUInt32Number BufferSize);

Similar to cmsReadTag, but different in two important aspects. 1%, the memory is not owned
by the profile, but by you, so you have to allocate the necessary amount of memory. To
know the size in advance, use NULL as buffer and 0 as buffer size. The function then returns
the number of needed bytes without writing them.

The second important point is, this is raw data. No processing is performed, so you can
effectively read wrong or broken profiles with this function. Obviously, it is up to you to
interpret all those bytes!

Parameters:
hProfile: Handle to a profile object

sig: Signature of tag to be read
Buffer: Points to a memory block to hold the result.
BufferSize: Size of memory buffer in bytes

Returns:
Number of bytes read.

cmsBool cmsWriteRawTag(cmsHPROFILE hProfile,
cmsTagSignature sig,
const void* data, cmsUInt32Number Size);

The RAW version does the same as cmsWriteTag but without any interpretation of the data.
Please note it is fair easy to deal with “cooked” structures, since there are primitives for
allocating, deleting and modifying data. For RAW data you are responsible of everything. If
you want to deal with a private tag, you may want to write a plug-in instead of messing up
with raw data.

Parameters:
hProfile: Handle to a profile object

sig: Signature of tag to be written
Buffer: Points to a memory block holding the data.
BufferSize: Size of data in bytes

Returns:
TRUE on success, FALSE on error

Profile structures [IEEID

Profile structures

ICC profile internal base types. Strictly, shouldn't be declared in this header, but maybe
somebody wants to use this info for accessing profile header directly, so here itis. Data is

32-bit aligned.

cmslICCHeader

cmsUInt32Number size; Profile size in bytes
cmsSignature cmmid; CMM for this profile
cmsUInt32Number version; Format version number
cmsProfileClassSignature deviceClass; Type of profile
cmsColorSpaceSignature colorSpace; Color space of data
cmsColorSpaceSignature pcs; PCS, XYZ or Lab only
cmsDateTimeNumber date; Date it was created
cmsSignature magic; Identify ICC profile
cmsPlatformSignature platform; Primary Platform
cmsUInt32Number flags; Various bit settings
cmsSignature manufacturer; Device manufacturer
cmsUInt32Number model; Device m