
XZ(1) XZ Utils XZ(1)

NAME
xz, unxz, xzcat, lzma, unlzma, lzcat − Compress or decompress .xz and .lzma files

SYNOPSIS
xz [option...] [file...]

COMMAND ALIASES
unxz is equivalent toxz −−decompress.
xzcat is equivalent toxz −−decompress −−stdout.
lzma is equivalent toxz −−format=lzma.
unlzma is equivalent toxz −−format=lzma −−decompress.
lzcat is equivalent toxz −−format=lzma −−decompress −−stdout.

When writing scripts that need to decompress files, it is recommended to always use the namexz
with appropriate arguments (xz −d or xz −dc) instead of the namesunxz andxzcat.

DESCRIPTION
xz is a general-purpose data compression tool with command line syntax similar togzip(1) and
bzip2(1). Thenative file format is the.xz format, but the legacy .lzma format used by LZMA
Utils and raw compressed streams with no container format headers are also supported.

xz compresses or decompresses eachfile according to the selected operation mode. If nofiles
are given or file is −, xz reads from standard input and writes the processed data to standard out-
put. xz will refuse (display an error and skip thefile) to write compressed data to standard output
if it is a terminal. Similarly, xz will refuse to read compressed data from standard input if it is a
terminal.

Unless−−stdout is specified,files other than− are written to a new file whose name is derived
from the sourcefile name:

• When compressing, the suffix of the target file format (.xz or .lzma) is appended to the source
filename to get the target filename.

• When decompressing, the.xz or .lzma suffix is removed from the filename to get the target
filename.xz also recognizes the suffixes.txz and.tlz, and replaces them with the.tar suffix.

If the target file already exists, an error is displayed and thefile is skipped.

Unless writing to standard output,xz will display a warning and skip thefile if any of the follow-
ing applies:

• File is not a regular file. Symbolic links are not followed, and thus they are not considered to
be regular files.

• File has more than one hard link.

• File has setuid, setgid, or sticky bit set.

• The operation mode is set to compress and thefile already has a suffix of the target file for-
mat (.xz or .txz when compressing to the.xz format, and.lzma or .tlz when compressing to
the.lzma format).

Tukaani 2013-10-25 1

XZ(1) XZ Utils XZ(1)

• The operation mode is set to decompress and thefile doesn’t hav ea suffix of any of the sup-
ported file formats (.xz, .txz, .lzma, or .tlz).

After successfully compressing or decompressing thefile, xz copies the owner, group, permis-
sions, access time, and modification time from the sourcefile to the target file. If copying the
group fails, the permissions are modified so that the target file doesn’t become accessible to users
who didn’t hav epermission to access the sourcefile. xz doesn’t support copying other metadata
like access control lists or extended attributes yet.

Once the target file has been successfully closed, the sourcefile is removed unless−−keepwas
specified. Thesourcefile is never removed if the output is written to standard output.

SendingSIGINFO or SIGUSR1 to thexz process makes it print progress information to stan-
dard error. This has only limited use since when standard error is a terminal, using−−verbose
will display an automatically updating progress indicator.

Memory usage
The memory usage ofxz varies from a few hundred kilobytes to several gigabytes depending on
the compression settings.The settings used when compressing a file determine the memory
requirements of the decompressor. Typically the decompressor needs 5% to 20 % of the amount
of memory that the compressor needed when creating the file.For example, decompressing a file
created withxz −9currently requires 65 MiB of memory. Still, it is possible to have .xz files that
require several gigabytes of memory to decompress.

Especially users of older systems may find the possibility of very large memory usage annoying.
To prevent uncomfortable surprises,xz has a built-in memory usage limiter, which is disabled by
default. While some operating systems provide ways to limit the memory usage of processes,
relying on it wasn’t deemed to be flexible enough (e.g. usingulimit (1) to limit virtual memory
tends to cripplemmap(2)).

The memory usage limiter can be enabled with the command line option−−memlimit= limit.
Often it is more convenient to enable the limiter by default by setting the environment variable
XZ_DEFAULT S, e.g. XZ_DEFAULT S=−−memlimit=150MiB. It is possible to set the limits
separately for compression and decompression by using−−memlimit−compress=limit and
−−memlimit−decompress=limit. Using these two options outsideXZ_DEFAULT S is rarely
useful because a single run ofxz cannot do both compression and decompression and−−mem-
limit= limit (or −M limit) is shorter to type on the command line.

If the specified memory usage limit is exceeded when decompressing,xz will display an error
and decompressing the file will fail. If the limit is exceeded when compressing,xz will try to
scale the settings down so that the limit is no longer exceeded (except when using−−for-
mat=raw or −−no−adjust). Thisway the operation won’t fail unless the limit is very small.The
scaling of the settings is done in steps that don’t match the compression level presets, e.g. if the
limit is only slightly less than the amount required forxz −9, the settings will be scaled down
only a little, not all the way down toxz −8.

Concatenation and padding with .xz files
It is possible to concatenate.xz files as is.xz will decompress such files as if they were a single
.xz file.

Tukaani 2013-10-25 2

XZ(1) XZ Utils XZ(1)

It is possible to insert padding between the concatenated parts or after the last part.The padding
must consist of null bytes and the size of the padding must be a multiple of four bytes. This can
be useful e.g. if the.xz file is stored on a medium that measures file sizes in 512-byte blocks.

Concatenation and padding are not allowed with.lzma files or raw streams.

OPTIONS
Integer suffixes and special values

In most places where an integer argument is expected, an optional suffix is supported to easily
indicate large integers. Theremust be no space between the integer and the suffix.

KiB Multiply the integer by 1,024 (2ˆ10).Ki , k, kB, K , and KB are accepted as synonyms
for KiB .

MiB Multiply the integer by 1,048,576 (2ˆ20).Mi , m, M , and MB are accepted as synonyms
for MiB .

GiB Multiply the integer by 1,073,741,824 (2ˆ30).Gi, g, G, and GB are accepted as syn-
onyms forGiB.

The special value max can be used to indicate the maximum integer value supported by the
option.

Operation mode
If multiple operation mode options are given, the last one takes effect.

−z, −−compress
Compress. Thisis the default operation mode when no operation mode option is speci-
fied and no other operation mode is implied from the command name (for example,
unxz implies−−decompress).

−d, −−decompress, −−uncompress
Decompress.

−t, −−test
Test the integrity of compressedfiles. This option is equivalent to −−decompress
−−stdout except that the decompressed data is discarded instead of being written to
standard output. No files are created or removed.

−l, −−list
Print information about compressedfiles. No uncompressed output is produced, and no
files are created or removed. In list mode, the program cannot read the compressed data
from standard input or from other unseekable sources.

The default listing shows basic information aboutfiles, one file per line.To get more
detailed information, use also the−−verboseoption. For even more information, use
−−verbosetwice, but note that this may be slow, because getting all the extra informa-
tion requires many seeks. Thewidth of verbose output exceeds 80 characters, so piping
the output to e.g.less −Smay be convenient if the terminal isn’t wide enough.

Tukaani 2013-10-25 3

XZ(1) XZ Utils XZ(1)

The exact output may vary betweenxz versions and different locales.For machine-
readable output,−−robot −−list should be used.

Operation modifiers
−k, −−keep

Don’t delete the input files.

−f, −−force
This option has several effects:

• If the target file already exists, delete it before compressing or decompressing.

• Compress or decompress even if the input is a symbolic link to a regular file, has
more than one hard link, or has the setuid, setgid, or sticky bit set. The setuid, set-
gid, and sticky bits are not copied to the target file.

• When used with−−decompress −−stdoutandxz cannot recognize the type of the
source file, copy the source file as is to standard output. This allows xzcat −−force
to be used like cat(1) for files that have not been compressed withxz. Note that in
future,xz might support new compressed file formats, which may make xz decom-
press more types of files instead of copying them as is to standard output.−−for-
mat= formatcan be used to restrictxz to decompress only a single file format.

−c, −−stdout, −−to−stdout
Write the compressed or decompressed data to standard output instead of a file.This
implies−−keep.

−−single−stream
Decompress only the first.xz stream, and silently ignore possible remaining input data
following the stream. Normally such trailing garbage makesxz display an error.

xz never decompresses more than one stream from.lzma files or raw streams, but this
option still makesxz ignore the possible trailing data after the.lzma file or raw stream.

This option has no effect if the operation mode is not−−decompressor −−test.

−−no−sparse
Disable creation of sparse files. By default, if decompressing into a regular file,xz tries
to make the file sparse if the decompressed data contains long sequences of binary zeros.
It also works when writing to standard output as long as standard output is connected to
a regular file and certain additional conditions are met to make it safe. Creatingsparse
files may save disk space and speed up the decompression by reducing the amount of
disk I/O.

−S .suf, −−suffix=.suf
When compressing, use.suf as the suffix for the target file instead of.xz or .lzma. If
not writing to standard output and the source file already has the suffix .suf, a warning is
displayed and the file is skipped.

When decompressing, recognize files with the suffix .suf in addition to files with the.xz,
.txz, .lzma, or .tlz suffix. If the source file has the suffix .suf, the suffix is removed to

Tukaani 2013-10-25 4

XZ(1) XZ Utils XZ(1)

get the target filename.

When compressing or decompressing raw streams (−−format=raw), the suffix must
always be specified unless writing to standard output, because there is no default suffix
for raw streams.

−−files[=file]
Read the filenames to process fromfile; if file is omitted, filenames are read from stan-
dard input. Filenames must be terminated with the newline character. A dash (−) is
taken as a regular filename; it doesn’t mean standard input.If filenames are given also
as command line arguments, they are processed before the filenames read fromfile.

−−files0[=file]
This is identical to−−files[=file] except that each filename must be terminated with the
null character.

Basic file format and compression options
−F format, −−format=format

Specify the fileformat to compress or decompress:

auto This is the default. Whencompressing,auto is equivalent toxz. When decom-
pressing, the format of the input file is automatically detected. Note that raw
streams (created with−−format=raw) cannot be auto-detected.

xz Compress to the.xz file format, or accept only.xz files when decompressing.

lzma, alone
Compress to the legacy .lzma file format, or accept only.lzma files when
decompressing. Thealternative namealone is provided for backwards compat-
ibility with LZMA Utils.

raw Compress or uncompress a raw stream (no headers). This is meant for
advanced users only. To decode raw streams, you need use−−format=raw and
explicitly specify the filter chain, which normally would have been stored in the
container headers.

−C check, −−check=check
Specify the type of the integrity check.The check is calculated from the uncompressed
data and stored in the.xz file. Thisoption has an effect only when compressing into the
.xz format; the.lzma format doesn’t support integrity checks. The integrity check (if
any) is verified when the.xz file is decompressed.

Supportedcheck types:

none Don’t calculate an integrity check at all.This is usually a bad idea. This can
be useful when integrity of the data is verified by other means anyway.

crc32 Calculate CRC32 using the polynomial from IEEE-802.3 (Ethernet).

crc64 Calculate CRC64 using the polynomial from ECMA-182.This is the default,
since it is slightly better than CRC32 at detecting damaged files and the speed

Tukaani 2013-10-25 5

XZ(1) XZ Utils XZ(1)

difference is negligible.

sha256 Calculate SHA-256. This is somewhat slower than CRC32 and CRC64.

Integrity of the.xz headers is always verified with CRC32. It is not possible to change
or disable it.

−0 ... −9
Select a compression preset level. Thedefault is−6. If multiple preset levels are speci-
fied, the last one takes effect. If a custom filter chain was already specified, setting a
compression preset level clears the custom filter chain.

The differences between the presets are more significant than withgzip(1) andbzip2(1).
The selected compression settings determine the memory requirements of the decom-
pressor, thus using a too high preset level might make it painful to decompress the file
on an old system with little RAM.Specifically,it’ s not a good idea to blindly use −9
for everything like it often is withgzip(1) andbzip2(1).

−0 ... −3
These are somewhat fast presets.−0 is sometimes faster thangzip −9 while
compressing much better. The higher ones often have speed comparable to
bzip2(1) with comparable or better compression ratio, although the results
depend a lot on the type of data being compressed.

−4 ... −6
Good to very good compression while keeping decompressor memory usage
reasonable even for old systems.−6 is the default, which is usually a good
choice e.g. for distributing files that need to be decompressible even on systems
with only 16 MiB RAM. (−5e or −6e may be worth considering too.See
−−extreme.)

−7 ... −9
These are like −6 but with higher compressor and decompressor memory
requirements. Theseare useful only when compressing files bigger than
8 MiB, 16 MiB, and 32 MiB, respectively.

On the same hardware, the decompression speed is approximately a constant number of
bytes of compressed data per second. In other words, the better the compression, the
faster the decompression will usually be. This also means that the amount of uncom-
pressed output produced per second can vary a lot.

The following table summarises the features of the presets:

Preset DictSize CompCPU CompMem DecMem
−0 256KiB 0 3 MiB 1 MiB
−1 1MiB 1 9 MiB 2 MiB
−2 2MiB 2 17 MiB 3 MiB
−3 4MiB 3 32 MiB 5 MiB
−4 4MiB 4 48 MiB 5 MiB

Tukaani 2013-10-25 6

XZ(1) XZ Utils XZ(1)

−5 8MiB 5 94 MiB 9 MiB
−6 8MiB 6 94 MiB 9 MiB
−7 16MiB 6 186 MiB 17 MiB
−8 32MiB 6 370 MiB 33 MiB
−9 64MiB 6 674 MiB 65 MiB

Column descriptions:

• DictSize is the LZMA2 dictionary size.It is waste of memory to use a dictionary
bigger than the size of the uncompressed file. This is why it is good to avoid using
the presets−7 ... −9 when there’s no real need for them.At −6 and lower, the
amount of memory wasted is usually low enough to not matter.

• CompCPU is a simplified representation of the LZMA2 settings that affect compres-
sion speed. The dictionary size affects speed too, so while CompCPU is the same
for levels −6 ... −9, higher levels still tend to be a little slower. To get even slower
and thus possibly better compression, see−−extreme.

• CompMem contains the compressor memory requirements in the single-threaded
mode. Itmay vary slightly betweenxz versions. Memoryrequirements of some of
the future multithreaded modes may be dramatically higher than that of the single-
threaded mode.

• DecMem contains the decompressor memory requirements.That is, the compres-
sion settings determine the memory requirements of the decompressor. The exact
decompressor memory usage is slightly more than the LZMA2 dictionary size, but
the values in the table have been rounded up to the next full MiB.

−e, −−extreme
Use a slower variant of the selected compression preset level (−0 ... −9) to hopefully get
a little bit better compression ratio, but with bad luck this can also make it worse.
Decompressor memory usage is not affected, but compressor memory usage increases a
little at preset levels −0 ... −3.

Since there are two presets with dictionary sizes 4 MiB and 8MiB, the presets−3eand
−5euse slightly faster settings (lower CompCPU) than−4eand−6e, respectively. That
way no two presets are identical.

Preset DictSize CompCPU CompMem DecMem
−0e 256KiB 8 4 MiB 1 MiB
−1e 1MiB 8 13 MiB 2 MiB
−2e 2MiB 8 25 MiB 3 MiB
−3e 4MiB 7 48 MiB 5 MiB
−4e 4MiB 8 48 MiB 5 MiB
−5e 8MiB 7 94 MiB 9 MiB
−6e 8MiB 8 94 MiB 9 MiB
−7e 16MiB 8 186 MiB 17 MiB
−8e 32MiB 8 370 MiB 33 MiB
−9e 64MiB 8 674 MiB 65 MiB

Tukaani 2013-10-25 7

XZ(1) XZ Utils XZ(1)

For example, there are a total of four presets that use 8MiB dictionary, whose order
from the fastest to the slowest is−5, −6, −5e, and−6e.

−−fast
−−best These are somewhat misleading aliases for−0 and−9, respectively. These are provided

only for backwards compatibility with LZMA Utils.Av oid using these options.

−−block−size=size
When compressing to the.xz format, split the input data into blocks ofsizebytes. The
blocks are compressed independently from each other.

−−block−list=sizes
When compressing to the.xz format, start a new block after the given intervals of
uncompressed data.

The uncompressedsizesof the blocks are specified as a comma-separated list.Omitting
a size (two or more consecutive commas) is a shorthand to use the size of the previous
block.

If the input file is bigger than the sum ofsizes, the last value insizesis repeated until the
end of the file.A special value of0 may be used as the last value to indicate that the rest
of the file should be encoded as a single block.

If this option is used in threaded mode and one specifiessizesthat exceed the encoder’s
block size (either the default value or the value specified with−−block−size=size), the
encoder will create additional blocks while keeping the boundaries specified insizes.
For example, if one specifies −−threads=2 −−block−size=10MiB
−−block−list=5MiB,10MiB,8MiB,12MiB,24MiB and the input file is 80 MiB, one will
get 11 blocks: 5, 10, 8, 10, 2, 10, 10, 4, 10, 10, and 1 MiB.

In single-threaded mode −−block−size is ignored if −−block−list is also specified.
This might change before 5.2.0 is released.

−−flush−timeout=timeout
When compressing, if more thantimeout milliseconds (a positive integer) has passed
since the previous flush and reading more input would block, all the pending input data
is flushed from the encoder and made available in the output stream. This can be useful
if xz is used to compress data that is streamed over a network. Small timeout values
make the data available at the receiving end with a small delay, but large timeoutvalues
give better compression ratio.

This feature is disabled by default. If this option is specified more than once, the last
one takes effect. Thespecialtimeout value of 0 can be used to explicitly disable this
feature.

This feature is not available on non-POSIX systems.

This feature is still experimental. Currently xz is unsuitable for decompressing the
stream in real time due to howxz does buffering.

Tukaani 2013-10-25 8

XZ(1) XZ Utils XZ(1)

−−memlimit−compress=limit
Set a memory usage limit for compression. If this option is specified multiple times, the
last one takes effect.

If the compression settings exceed thelimit , xz will adjust the settings downwards so
that the limit is no longer exceeded and display a notice that automatic adjustment was
done. Suchadjustments are not made when compressing with−−format=raw or if
−−no−adjust has been specified. In those cases, an error is displayed andxz will exit
with exit status 1.

The limit can be specified in multiple ways:

• The limit can be an absolute value in bytes. Using an integer suffix like MiB can be
useful. Example:−−memlimit−compress=80MiB

• The limit can be specified as a percentage of total physical memory (RAM).This
can be useful especially when setting theXZ_DEFAULT S environment variable in a
shell initialization script that is shared between different computers. That way the
limit is automatically bigger on systems with more memory. Example: −−mem-
limit−compress=70%

• The limit can be reset back to its default value by setting it to0. This is currently
equivalent to setting thelimit to max (no memory usage limit).Once multithreading
support has been implemented, there may be a difference between0 andmax for the
multithreaded case, so it is recommended to use0 instead ofmax until the details
have been decided.

See also the sectionMemory usage.

−−memlimit−decompress=limit
Set a memory usage limit for decompression. This also affects the−−list mode. If the
operation is not possible without exceeding thelimit , xz will display an error and
decompressing the file will fail. See−−memlimit−compress=limit for possible ways to
specify thelimit .

−M limit, −−memlimit= limit, −−memory=limit
This is equivalent to specifying−−memlimit−compress=limit −−memlimit−decom-
press=limit.

−−no−adjust
Display an error and exit if the compression settings exceed the memory usage limit.
The default is to adjust the settings downwards so that the memory usage limit is not
exceeded. Automaticadjusting is always disabled when creating raw streams (−−for-
mat=raw).

−T threads, −−threads=threads
Specify the number of worker threads to use.Settingthreadsto a special value0 makes
xz use as many threads as there are CPU cores on the system.The actual number of
threads can be less thanthreadsif the input file is not big enough for threading with the
given settings or if using more threads would exceed the memory usage limit.

Tukaani 2013-10-25 9

XZ(1) XZ Utils XZ(1)

Currently the only threading method is to split the input into blocks and compress them
independently from each other. The default block size depends on the compression level
and can be overriden with the−−block−size=sizeoption.

It is possible that the details of this option change before the next stable XZ Utils
release. Thismay include the meaning of the special value 0.

Custom compressor filter chains
A custom filter chain allows specifying the compression settings in detail instead of relying on
the settings associated to the presets. When a custom filter chain is specified, preset options (−0
... −9 and−−extreme) earlier on the command line are forgotten. Ifa preset option is specified
after one or more custom filter chain options, the new preset takes effect and the custom filter
chain options specified earlier are forgotten.

A fi lter chain is comparable to piping on the command line. When compressing, the uncom-
pressed input goes to the first filter, whose output goes to the next filter (if any). Theoutput of
the last filter gets written to the compressed file.The maximum number of filters in the chain is
four, but typically a filter chain has only one or two filters.

Many filters have limitations on where they can be in the filter chain: some filters can work only
as the last filter in the chain, some only as a non-last filter, and some work in any position in the
chain. Dependingon the filter, this limitation is either inherent to the filter design or exists to
prevent security issues.

A custom filter chain is specified by using one or more filter options in the order they are wanted
in the filter chain.That is, the order of filter options is significant! When decoding raw streams
(−−format=raw), the filter chain is specified in the same order as it was specified when com-
pressing.

Filters take filter-specific options as a comma-separated list. Extra commas inoptions are
ignored. Every option has a default value, so you need to specify only those you want to change.

To see the whole filter chain andoptions, usexz −vv (that is, use−−verbosetwice). Thisworks
also for viewing the filter chain options used by presets.

−−lzma1[=options]
−−lzma2[=options]

Add LZMA1 or LZMA2 filter to the filter chain. These filters can be used only as the
last filter in the chain.

LZMA1 is a legacy filter, which is supported almost solely due to the legacy .lzma file
format, which supports only LZMA1. LZMA2 is an updated version of LZMA1 to fix
some practical issues of LZMA1.The .xz format uses LZMA2 and doesn’t support
LZMA1 at all. Compression speed and ratios of LZMA1 and LZMA2 are practically
the same.

LZMA1 and LZMA2 share the same set ofoptions:

Tukaani 2013-10-25 10

XZ(1) XZ Utils XZ(1)

preset=preset
Reset all LZMA1 or LZMA2options to preset. Presetconsist of an integer,
which may be followed by single-letter preset modifiers.The integer can be
from 0 to 9, matching the command line options−0 ... −9. The only supported
modifier is currentlye, which matches−−extreme. If no preset is specified,
the default values of LZMA1 or LZMA2optionsare taken from the preset6.

dict=size
Dictionary (history buffer) size indicates how many bytes of the recently pro-
cessed uncompressed data is kept in memory. The algorithm tries to find
repeating byte sequences (matches) in the uncompressed data, and replace them
with references to the data currently in the dictionary. The bigger the dictio-
nary, the higher is the chance to find a match. Thus, increasing dictionarysize
usually improves compression ratio, but a dictionary bigger than the uncom-
pressed file is waste of memory.

Typical dictionarysize is from 64 KiB to 64MiB. The minimum is 4KiB.
The maximum for compression is currently 1.5 GiB (1536MiB). The decom-
pressor already supports dictionaries up to one byte less than 4 GiB, which is
the maximum for the LZMA1 and LZMA2 stream formats.

Dictionary sizeand match finder (mf) together determine the memory usage of
the LZMA1 or LZMA2 encoder. The same (or bigger) dictionarysize is
required for decompressing that was used when compressing, thus the memory
usage of the decoder is determined by the dictionary size used when compress-
ing. The.xz headers store the dictionarysizeeither as 2n̂ or 2 n̂ + 2ˆ(n−1), so
these sizes are somewhat preferred for compression.Other sizes will get
rounded up when stored in the.xz headers.

lc=lc Specify the number of literal context bits. The minimum is 0 and the maxi-
mum is 4; the default is 3. In addition, the sum oflc andlp must not exceed 4.

All bytes that cannot be encoded as matches are encoded as literals.That is,
literals are simply 8-bit bytes that are encoded one at a time.

The literal coding makes an assumption that the highestlc bits of the previous
uncompressed byte correlate with the next byte.E.g. in typical English text, an
upper-case letter is often followed by a lower-case letter, and a lower-case letter
is usually followed by another lower-case letter. In the US-ASCII character set,
the highest three bits are 010 for upper-case letters and 011 for lower-case let-
ters. Whenlc is at least 3, the literal coding can take advantage of this property
in the uncompressed data.

The default value (3) is usually good. If you want maximum compression, test
lc=4. Sometimes it helps a little, and sometimes it makes compression worse.
If it makes it worse, test e.g.lc=2 too.

lp=lp Specify the number of literal position bits.The minimum is 0 and the maxi-
mum is 4; the default is 0.

Tukaani 2013-10-25 11

XZ(1) XZ Utils XZ(1)

Lp affects what kind of alignment in the uncompressed data is assumed when
encoding literals. Seepb below for more information about alignment.

pb=pb Specify the number of position bits. The minimum is 0 and the maximum is 4;
the default is 2.

Pb affects what kind of alignment in the uncompressed data is assumed in gen-
eral. Thedefault means four-byte alignment (2ˆpb=2ˆ2=4), which is often a
good choice when there’s no better guess.

When the aligment is known, settingpb accordingly may reduce the file size a
little. E.g. with text files having one-byte alignment (US-ASCII, ISO-8859-*,
UTF-8), settingpb=0 can improve compression slightly. For UTF-16 text,
pb=1 is a good choice. If the alignment is an odd number like 3 bytes,pb=0
might be the best choice.

Even though the assumed alignment can be adjusted withpb and lp, LZMA1
and LZMA2 still slightly favor 16-byte alignment. It might be worth taking
into account when designing file formats that are likely to be often compressed
with LZMA1 or LZMA2.

mf=mf Match finder has a major effect on encoder speed, memory usage, and com-
pression ratio.Usually Hash Chain match finders are faster than Binary Tree
match finders. The default depends on thepreset: 0 useshc3, 1−3 usehc4, and
the rest usebt4.

The following match finders are supported. The memory usage formulas below
are rough approximations, which are closest to the reality whendict is a power
of two.

hc3 Hash Chain with 2- and 3-byte hashing
Minimum value fornice: 3
Memory usage:
dict * 7.5 (if dict <= 16 MiB);
dict * 5.5 + 64 MiB (if dict > 16 MiB)

hc4 Hash Chain with 2-, 3-, and 4-byte hashing
Minimum value fornice: 4
Memory usage:
dict * 7.5 (if dict <= 32 MiB);
dict * 6.5 (if dict > 32 MiB)

bt2 Binary Tree with 2-byte hashing
Minimum value fornice: 2
Memory usage:dict * 9.5

bt3 Binary Tree with 2- and 3-byte hashing
Minimum value fornice: 3
Memory usage:
dict * 11.5 (if dict <= 16 MiB);

Tukaani 2013-10-25 12

XZ(1) XZ Utils XZ(1)

dict * 9.5 + 64 MiB (if dict > 16 MiB)

bt4 Binary Tree with 2-, 3-, and 4-byte hashing
Minimum value fornice: 4
Memory usage:
dict * 11.5 (if dict <= 32 MiB);
dict * 10.5 (if dict > 32 MiB)

mode=mode
Compressionmodespecifies the method to analyze the data produced by the
match finder. Supportedmodesare fast and normal. The default isfast for
presets0−3 andnormal for presets4−9.

Usually fast is used with Hash Chain match finders andnormal with Binary
Tree match finders. This is also what thepresetsdo.

nice=nice
Specify what is considered to be a nice length for a match.Once a match of at
least nice bytes is found, the algorithm stops looking for possibly better
matches.

Nice can be 2−273 bytes. Higher values tend to give better compression ratio
at the expense of speed. The default depends on thepreset.

depth=depth
Specify the maximum search depth in the match finder. The default is the spe-
cial value of 0, which makes the compressor determine a reasonabledepthfrom
mf andnice.

Reasonabledepth for Hash Chains is 4−100 and 16−1000 for Binary Trees.
Using very high values fordepthcan make the encoder extremely slow with
some files.Av oid setting thedepthover 1000 unless you are prepared to inter-
rupt the compression in case it is taking far too long.

When decoding raw streams (−−format=raw), LZMA2 needs only the dictionarysize.
LZMA1 needs alsolc, lp, andpb.

−−x86[=options]
−−powerpc[=options]
−−ia64[=options]
−−arm[=options]
−−armthumb[=options]
−−sparc[=options]

Add a branch/call/jump (BCJ) filter to the filter chain.These filters can be used only as
a non-last filter in the filter chain.

A BCJ filter converts relative addresses in the machine code to their absolute counter-
parts. Thisdoesn’t change the size of the data, but it increases redundancy, which can
help LZMA2 to produce 0−15% smaller .xz file. TheBCJ filters are always reversible,
so using a BCJ filter for wrong type of data doesn’t cause any data loss, although it may

Tukaani 2013-10-25 13

XZ(1) XZ Utils XZ(1)

make the compression ratio slightly worse.

It is fine to apply a BCJ filter on a whole executable; there’s no need to apply it only on
the executable section.Applying a BCJ filter on an archive that contains both exe-
cutable and non-executable files may or may not give good results, so it generally isn’t
good to blindly apply a BCJ filter when compressing binary packages for distribution.

These BCJ filters are very fast and use insignificant amount of memory. If a BCJ filter
improves compression ratio of a file, it can improve decompression speed at the same
time. Thisis because, on the same hardware, the decompression speed of LZMA2 is
roughly a fixed number of bytes of compressed data per second.

These BCJ filters have known problems related to the compression ratio:

• Some types of files containing executable code (e.g. object files, static libraries, and
Linux kernel modules) have the addresses in the instructions filled with filler values.
These BCJ filters will still do the address conversion, which will make the compres-
sion worse with these files.

• Applying a BCJ filter on an archive containing multiple similar executables can
make the compression ratio worse than not using a BCJ filter. This is because the
BCJ filter doesn’t detect the boundaries of the executable files, and doesn’t reset the
address conversion counter for each executable.

Both of the above problems will be fixed in the future in a new filter. The old BCJ filters
will still be useful in embedded systems, because the decoder of the new filter will be
bigger and use more memory.

Different instruction sets have hav edifferent alignment:

Filter Alignment Notes
x86 1 32-bit or 64-bit x86
PowerPC 4 Big endian only
ARM 4 Little endian only
ARM-Thumb 2 Little endian only
IA-64 16 Big or little endian
SPARC 4 Big or little endian

Since the BCJ-filtered data is usually compressed with LZMA2, the compression ratio
may be improved slightly if the LZMA2 options are set to match the alignment of the
selected BCJ filter. For example, with the IA-64 filter, it’s good to setpb=4 with
LZMA2 (2ˆ4=16). The x86 filter is an exception; it’s usually good to stick to LZMA2’s
default four-byte alignment when compressing x86 executables.

All BCJ filters support the sameoptions:

start=offset
Specify the startoffsetthat is used when converting between relative and abso-
lute addresses.The offsetmust be a multiple of the alignment of the filter (see
the table above). The default is zero. In practice, the default is good;

Tukaani 2013-10-25 14

XZ(1) XZ Utils XZ(1)

specifying a customoffsetis almost never useful.

−−delta[=options]
Add the Delta filter to the filter chain.The Delta filter can be only used as a non-last fil-
ter in the filter chain.

Currently only simple byte-wise delta calculation is supported.It can be useful when
compressing e.g. uncompressed bitmap images or uncompressed PCM audio.However,
special purpose algorithms may give significantly better results than Delta + LZMA2.
This is true especially with audio, which compresses faster and better e.g. withflac(1).

Supportedoptions:

dist=distance
Specify thedistanceof the delta calculation in bytes.distancemust be 1−256.
The default is 1.

For example, withdist=2 and eight-byte input A1 B1 A2 B3 A3 B5 A4 B7, the
output will be A1 B1 01 02 01 02 01 02.

Other options
−q, −−quiet

Suppress warnings and notices. Specify this twice to suppress errors too.This option
has no effect on the exit status. That is, even if a warning was suppressed, the exit status
to indicate a warning is still used.

−v, −−verbose
Be verbose. Ifstandard error is connected to a terminal,xz will display a progress indi-
cator. Specifying−−verbosetwice will give even more verbose output.

The progress indicator shows the following information:

• Completion percentage is shown if the size of the input file is known. Thatis, the
percentage cannot be shown in pipes.

• Amount of compressed data produced (compressing) or consumed (decompressing).

• Amount of uncompressed data consumed (compressing) or produced (decompress-
ing).

• Compression ratio, which is calculated by dividing the amount of compressed data
processed so far by the amount of uncompressed data processed so far.

• Compression or decompression speed.This is measured as the amount of uncom-
pressed data consumed (compression) or produced (decompression) per second.It is
shown after a few seconds have passed sincexz started processing the file.

• Elapsed time in the format M:SS or H:MM:SS.

• Estimated remaining time is shown only when the size of the input file is known and
a couple of seconds have already passed sincexz started processing the file.The

Tukaani 2013-10-25 15

XZ(1) XZ Utils XZ(1)

time is shown in a less precise format which never has any colons, e.g. 2 min 30 s.

When standard error is not a terminal,−−verbosewill make xz print the filename, com-
pressed size, uncompressed size, compression ratio, and possibly also the speed and
elapsed time on a single line to standard error after compressing or decompressing the
file. Thespeed and elapsed time are included only when the operation took at least a
few seconds. Ifthe operation didn’t finish, e.g. due to user interruption, also the com-
pletion percentage is printed if the size of the input file is known.

−Q, −−no−warn
Don’t set the exit status to 2 even if a condition worth a warning was detected.This
option doesn’t affect the verbosity level, thus both−−quiet and−−no−warn have to be
used to not display warnings and to not alter the exit status.

−−robot
Print messages in a machine-parsable format. This is intended to ease writing frontends
that want to usexz instead of liblzma, which may be the case with various scripts.The
output with this option enabled is meant to be stable acrossxz releases. Seethe section
ROBOT M ODE for details.

−−info−memory
Display, in human-readable format, how much physical memory (RAM)xz thinks the
system has and the memory usage limits for compression and decompression, and exit
successfully.

−h, −−help
Display a help message describing the most commonly used options, and exit success-
fully.

−H, −−long−help
Display a help message describing all features ofxz, and exit successfully

−V, −−version
Display the version number ofxz and liblzma in human readable format.To get
machine-parsable output, specify−−robot before−−version.

ROBOT M ODE
The robot mode is activated with the−−robot option. Itmakes the output ofxz easier to parse by
other programs.Currently −−robot is supported only together with−−version, −−info−mem-
ory, and−−list. It will be supported for compression and decompression in the future.

Version
xz −−robot −−versionwill print the version number ofxz and liblzma in the following format:

XZ_VERSION= XYYYZZZS
LIBLZMA_VERSION= XYYYZZZS

X Major version.

YYY Minor version. Even numbers are stable. Odd numbers are alpha or beta versions.

Tukaani 2013-10-25 16

XZ(1) XZ Utils XZ(1)

ZZZ Patch level for stable releases or just a counter for development releases.

S Stability. 0 is alpha, 1 is beta, and 2 is stable.S should be always 2 whenYYYis even.

XYYYZZZSare the same on both lines ifxz and liblzma are from the same XZ Utils release.

Examples: 4.999.9beta is49990091and 5.0.0 is50000002.

Memory limit information
xz −−robot −−info−memoryprints a single line with three tab-separated columns:

1. Total amount of physical memory (RAM) in bytes

2. Memory usage limit for compression in bytes.A special value of zero indicates the default
setting, which for single-threaded mode is the same as no limit.

3. Memory usage limit for decompression in bytes.A special value of zero indicates the
default setting, which for single-threaded mode is the same as no limit.

In the future, the output ofxz −−robot −−info−memorymay have more columns, but never more
than a single line.

List mode
xz −−robot −−list uses tab-separated output.The first column of every line has a string that indi-
cates the type of the information found on that line:

name This is always the first line when starting to list a file. The second column on the line is
the filename.

file This line contains overall information about the.xz file. Thisline is always printed after
thename line.

stream This line type is used only when−−verbosewas specified. Thereare as many stream
lines as there are streams in the.xz file.

block This line type is used only when−−verbosewas specified. Thereare as many block
lines as there are blocks in the.xz file. Theblock lines are shown after all thestream
lines; different line types are not interleaved.

summary
This line type is used only when−−verbosewas specified twice. This line is printed
after allblock lines. Like the file line, thesummary line contains overall information
about the.xz file.

totals This line is always the very last line of the list output. It shows the total counts and
sizes.

The columns of thefile lines:
2. Number of streams in the file
3. Total number of blocks in the stream(s)

Tukaani 2013-10-25 17

XZ(1) XZ Utils XZ(1)

4. Compressed size of the file
5. Uncompressed size of the file
6. Compression ratio, for example0.123. If ratio is over 9.999, three dashes (−−−)

are displayed instead of the ratio.
7. Comma-separated list of integrity check names. The following strings are used for

the known check types:None, CRC32, CRC64, and SHA−256. For unknown
check types,Unknown−N is used, whereN is the Check ID as a decimal number
(one or two digits).

8. Total size of stream padding in the file

The columns of thestream lines:
2. Stream number (the first stream is 1)
3. Number of blocks in the stream
4. Compressed start offset
5. Uncompressed start offset
6. Compressed size (does not include stream padding)
7. Uncompressed size
8. Compression ratio
9. Name of the integrity check
10. Size of stream padding

The columns of theblock lines:
2. Number of the stream containing this block
3. Block number relative to the beginning of the stream (the first block is 1)
4. Block number relative to the beginning of the file
5. Compressed start offset relative to the beginning of the file
6. Uncompressed start offset relative to the beginning of the file
7. Total compressed size of the block (includes headers)
8. Uncompressed size
9. Compression ratio
10. Name of the integrity check

If −−verbosewas specified twice, additional columns are included on theblock lines. Theseare
not displayed with a single−−verbose, because getting this information requires many seeks and
can thus be slow:

11. Value of the integrity check in hexadecimal
12. Block header size
13. Block flags:c indicates that compressed size is present, andu indicates that uncom-

pressed size is present.If the flag is not set, a dash (−) is shown instead to keep the
string length fixed. New flags may be added to the end of the string in the future.

14. Size of the actual compressed data in the block (this excludes the block header,
block padding, and check fields)

15. Amount of memory (in bytes) required to decompress this block with thisxz ver-
sion

16. Filter chain. Note that most of the options used at compression time cannot be
known, because only the options that are needed for decompression are stored in
the.xz headers.

The columns of thesummary lines:

Tukaani 2013-10-25 18

XZ(1) XZ Utils XZ(1)

2. Amount of memory (in bytes) required to decompress this file with thisxz version
3. yes or no indicating if all block headers have both compressed size and uncom-

pressed size stored in them
Sincexz 5.1.2alpha:
4. Minimumxz version required to decompress the file

The columns of thetotals line:
2. Number of streams
3. Number of blocks
4. Compressed size
5. Uncompressed size
6. Av erage compression ratio
7. Comma-separated list of integrity check names that were present in the files
8. Stream padding size
9. Number of files.This is here to keep the order of the earlier columns the same as

onfile lines.

If −−verbosewas specified twice, additional columns are included on thetotals line:
10. Maximum amount of memory (in bytes) required to decompress the files with this

xz version
11. yes or no indicating if all block headers have both compressed size and uncom-

pressed size stored in them
Sincexz 5.1.2alpha:
12. Minimumxz version required to decompress the file

Future versions may add new line types and new columns can be added to the existing line types,
but the existing columns won’t be changed.

EXIT STATUS
0 All is good.

1 An error occurred.

2 Something worth a warning occurred, but no actual errors occurred.

Notices (not warnings or errors) printed on standard error don’t affect the exit status.

ENVIRONMENT
xz parses space-separated lists of options from the environment variablesXZ_DEFAULT S and
XZ_OPT, in this order, before parsing the options from the command line.Note that only
options are parsed from the environment variables; all non-options are silently ignored.Parsing
is done withgetopt_long(3) which is used also for the command line arguments.

XZ_DEFAULT S
User-specific or system-wide default options.Typically this is set in a shell initialization
script to enablexz’s memory usage limiter by default. Excludingshell initialization
scripts and similar special cases, scripts must never set or unsetXZ_DEFAULT S.

Tukaani 2013-10-25 19

XZ(1) XZ Utils XZ(1)

XZ_OPT
This is for passing options toxz when it is not possible to set the options directly on the
xz command line.This is the case e.g. whenxz is run by a script or tool, e.g. GNU
tar (1):

XZ_OPT=−2v tar caf foo.tar.xz foo

Scripts may useXZ_OPT e.g. to set script-specific default compression options. It is
still recommended to allow users to override XZ_OPT if that is reasonable, e.g. insh(1)
scripts one may use something like this:

XZ_OPT=${XZ_OPT−"−7e"}
export XZ_OPT

LZMA UTILS COMP ATIBILITY
The command line syntax ofxz is practically a superset oflzma, unlzma, and lzcat as found
from LZMA Utils 4.32.x. In most cases, it is possible to replace LZMA Utils with XZ Utils
without breaking existing scripts. There are some incompatibilities though, which may some-
times cause problems.

Compression preset levels
The numbering of the compression level presets is not identical inxz and LZMA Utils. The most
important difference is how dictionary sizes are mapped to different presets. Dictionary size is
roughly equal to the decompressor memory usage.

Level xz LZMA Utils
−0 256KiB N/A
−1 1MiB 64 KiB
−2 2MiB 1 MiB
−3 4MiB 512 KiB
−4 4MiB 1 MiB
−5 8MiB 2 MiB
−6 8MiB 4 MiB
−7 16MiB 8 MiB
−8 32MiB 16 MiB
−9 64MiB 32 MiB

The dictionary size differences affect the compressor memory usage too, but there are some other
differences between LZMA Utils and XZ Utils, which make the difference even bigger:

Level xz LZMA Utils 4.32.x
−0 3MiB N/A
−1 9MiB 2 MiB
−2 17MiB 12 MiB
−3 32MiB 12 MiB
−4 48MiB 16 MiB
−5 94MiB 26 MiB
−6 94MiB 45 MiB
−7 186MiB 83 MiB

Tukaani 2013-10-25 20

XZ(1) XZ Utils XZ(1)

−8 370MiB 159 MiB
−9 674MiB 311 MiB

The default preset level in LZMA Utils is −7 while in XZ Utils it is−6, so both use an 8 MiB dic-
tionary by default.

Streamed vs. non-streamed .lzma files
The uncompressed size of the file can be stored in the.lzma header. LZMA Utils does that when
compressing regular files. The alternative is to mark that uncompressed size is unknown and use
end-of-payload marker to indicate where the decompressor should stop. LZMA Utils uses this
method when uncompressed size isn’t known, which is the case for example in pipes.

xz supports decompressing.lzma files with or without end-of-payload marker, but all .lzma files
created byxz will use end-of-payload marker and have uncompressed size marked as unknown in
the .lzma header. This may be a problem in some uncommon situations.For example, a.lzma
decompressor in an embedded device might work only with files that have known uncompressed
size. If you hit this problem, you need to use LZMA Utils or LZMA SDK to create.lzma files
with known uncompressed size.

Unsupported .lzma files
The .lzma format allows lc values up to 8, andlp values up to 4. LZMA Utils can decompress
files with any lc and lp, but always creates files withlc=3 and lp=0. Creating files with otherlc
andlp is possible withxz and with LZMA SDK.

The implementation of the LZMA1 filter in liblzma requires that the sum oflc and lp must not
exceed 4. Thus,.lzma files, which exceed this limitation, cannot be decompressed withxz.

LZMA Utils creates only.lzma files which have a dictionary size of 2n̂ (a power of 2) but
accepts files with any dictionary size. liblzma accepts only.lzma files which have a dictionary
size of 2n̂ or 2 n̂ + 2ˆ(n−1). Thisis to decrease false positives when detecting.lzma files.

These limitations shouldn’t be a problem in practice, since practically all.lzma files have been
compressed with settings that liblzma will accept.

Tr ailing garbage
When decompressing, LZMA Utils silently ignore everything after the first.lzma stream. In
most situations, this is a bug. Thisalso means that LZMA Utils don’t support decompressing
concatenated.lzma files.

If there is data left after the first.lzma stream,xz considers the file to be corrupt unless−−sin-
gle−streamwas used. Thismay break obscure scripts which have assumed that trailing garbage
is ignored.

NOTES
Compressed output may vary

The exact compressed output produced from the same uncompressed input file may vary between
XZ Utils versions even if compression options are identical. This is because the encoder can be
improved (faster or better compression) without affecting the file format. The output can vary
ev en between different builds of the same XZ Utils version, if different build options are used.

Tukaani 2013-10-25 21

XZ(1) XZ Utils XZ(1)

The above means that once−−rsyncablehas been implemented, the resulting files won’t neces-
sarily be rsyncable unless both old and new files have been compressed with the same xz version.
This problem can be fixed if a part of the encoder implementation is frozen to keep rsyncable out-
put stable across xz versions.

Embedded .xz decompressors
Embedded.xz decompressor implementations like XZ Embedded don’t necessarily support files
created with integrity check types other thannone and crc32. Since the default is
−−check=crc64, you must use−−check=noneor −−check=crc32when creating files for embed-
ded systems.

Outside embedded systems, all.xz format decompressors support all thecheck types, or at least
are able to decompress the file without verifying the integrity check if the particularcheck is not
supported.

XZ Embedded supports BCJ filters, but only with the default start offset.

EXAMPLES
Basics

Compress the filefoo into foo.xzusing the default compression level (−6), and remove foo if
compression is successful:

xz foo

Decompressbar.xzinto bar and don’t remove bar.xzev en if decompression is successful:

xz −dk bar.xz

Createbaz.tar.xzwith the preset−4e (−4 −−extreme), which is slower than e.g. the default −6,
but needs less memory for compression and decompression (48 MiB and 5 MiB, respectively):

tar cf − baz | xz −4e > baz.tar.xz

A mix of compressed and uncompressed files can be decompressed to standard output with a sin-
gle command:

xz −dcf a.txt b.txt.xz c.txt d.txt.lzma > abcd.txt

Parallel compression of many files
On GNU and *BSD,find(1) andxargs(1) can be used to parallelize compression of many files:

find . −type f \! −name ’*.xz’ −print0 \
| x args −0r −P4 −n16 xz −T1

The −P option toxargs(1) sets the number of parallelxz processes. Thebest value for the−n
option depends on how many files there are to be compressed. If there are only a couple of files,
the value should probably be 1; with tens of thousands of files, 100 or even more may be appro-
priate to reduce the number ofxz processes thatxargs(1) will eventually create.

The option−T1 for xz is there to force it to single-threaded mode, becausexargs(1) is used to
control the amount of parallelization.

Tukaani 2013-10-25 22

XZ(1) XZ Utils XZ(1)

Robot mode
Calculate how many bytes have been saved in total after compressing multiple files:

xz −−robot −−list *.xz | awk ’/ˆtotals/{print $5−$4}’

A script may want to know that it is using new enoughxz. The following sh(1) script checks that
the version number of thexz tool is at least 5.0.0. This method is compatible with old beta ver-
sions, which didn’t support the−−robot option:

if ! eval "$(xz −−robot −−version 2> /dev/null)" ||
[" $XZ_VERSION" −lt 50000002]; then

echo "Your xz is too old."
fi
unset XZ_VERSION LIBLZMA_VERSION

Set a memory usage limit for decompression usingXZ_OPT, but if a limit has already been set,
don’t increase it:

NEWLIM=$((123 << 20)) # 123 MiB
OLDLIM=$(xz −−robot −−info−memory | cut −f3)
if [$OLDLIM −eq 0 −o $OLDLIM −gt $NEWLIM]; then

XZ_OPT="$XZ_OPT −−memlimit−decompress=$NEWLIM"
export XZ_OPT

fi

Custom compressor filter chains
The simplest use for custom filter chains is customizing a LZMA2 preset.This can be useful,
because the presets cover only a subset of the potentially useful combinations of compression set-
tings.

The CompCPU columns of the tables from the descriptions of the options−0 ... −9 and
−−extreme are useful when customizing LZMA2 presets.Here are the relevant parts collected
from those two tables:

Preset CompCPU
−0 0
−1 1
−2 2
−3 3
−4 4
−5 5
−6 6
−5e 7
−6e 8

If you know that a file requires somewhat big dictionary (e.g. 32 MiB) to compress well, but you
want to compress it quicker thanxz −8 would do, a preset with a low CompCPU value (e.g. 1)
can be modified to use a bigger dictionary:

xz −−lzma2=preset=1,dict=32MiB foo.tar

Tukaani 2013-10-25 23

XZ(1) XZ Utils XZ(1)

With certain files, the above command may be faster thanxz −6 while compressing significantly
better. Howev er, it must be emphasized that only some files benefit from a big dictionary while
keeping the CompCPU value low. The most obvious situation, where a big dictionary can help a
lot, is an archive containing very similar files of at least a few meg abytes each. The dictionary
size has to be significantly bigger than any individual file to allow LZMA2 to take full advantage
of the similarities between consecutive files.

If very high compressor and decompressor memory usage is fine, and the file being compressed
is at least several hundred megabytes, it may be useful to use an even bigger dictionary than the
64 MiB thatxz −9would use:

xz −vv −−lzma2=dict=192MiB big_foo.tar

Using −vv (−−verbose −−verbose) like in the above example can be useful to see the memory
requirements of the compressor and decompressor. Remember that using a dictionary bigger
than the size of the uncompressed file is waste of memory, so the above command isn’t useful for
small files.

Sometimes the compression time doesn’t matter, but the decompressor memory usage has to be
kept low e.g. to make it possible to decompress the file on an embedded system. The following
command uses−6e(−6 −−extreme) as a base and sets the dictionary to only 64KiB. The result-
ing file can be decompressed with XZ Embedded (that’s why there is−−check=crc32) using
about 100 KiB of memory.

xz −−check=crc32 −−lzma2=preset=6e,dict=64KiB foo

If you want to squeeze out as many bytes as possible, adjusting the number of literal context bits
(lc) and number of position bits (pb) can sometimes help.Adjusting the number of literal posi-
tion bits (lp) might help too, but usuallylc and pb are more important. E.g. a source code ar-
chive contains mostly US-ASCII text, so something like the following might give slightly (like
0.1 %) smaller file thanxz −6e(try also withoutlc=4):

xz −−lzma2=preset=6e,pb=0,lc=4 source_code.tar

Using another filter together with LZMA2 can improve compression with certain file types.E.g.
to compress a x86-32 or x86-64 shared library using the x86 BCJ filter:

xz −−x86 −−lzma2 libfoo.so

Note that the order of the filter options is significant.If −−x86 is specified after−−lzma2, xz will
give an error, because there cannot be any filter after LZMA2, and also because the x86 BCJ filter
cannot be used as the last filter in the chain.

The Delta filter together with LZMA2 can give good results with bitmap images. It should usu-
ally beat PNG, which has a few more advanced filters than simple delta but uses Deflate for the
actual compression.

The image has to be saved in uncompressed format, e.g. as uncompressed TIFF. The distance
parameter of the Delta filter is set to match the number of bytes per pixel in the image.E.g.
24-bit RGB bitmap needsdist=3, and it is also good to passpb=0 to LZMA2 to accommodate
the three-byte alignment:

Tukaani 2013-10-25 24

XZ(1) XZ Utils XZ(1)

xz −−delta=dist=3 −−lzma2=pb=0 foo.tiff

If multiple images have been put into a single archive (e.g..tar), the Delta filter will work on that
too as long as all images have the same number of bytes per pixel.

SEE ALSO
xzdec(1), xzdiff (1), xzgrep(1), xzless(1), xzmore(1), gzip(1), bzip2(1), 7z(1)

XZ Utils: <http://tukaani.org/xz/>
XZ Embedded: <http://tukaani.org/xz/embedded.html>
LZMA SDK: <http://7-zip.org/sdk.html>

Tukaani 2013-10-25 25

