
WhizzyTEX∗

Active-DVI

Whizzy-

TeX

Emacs

{\sc
WhizzyTeX

}

An Emacs minor-mode for
incremental viewing of

LATEX documents

Didier Rémy

Version 1.3.0, September 12, 2007

Abstract

WhizzyTEX is an Emacs minor mode for incrementally viewing LATEX documents
that you are editing. It works under Unix with gv and xdvi viewers, but the Active-

DVI viewer will provide much better visual effects and offer more functionalities.
In addition, when used with Active-DVI, WhizzyTEX allows for mouse edition

of dimensions and floats, which can be used to adjust spaces, move or resize objects
visually.

∗WhizzyTEX is free software, Copyright c©2001, 2002 INRIA and distributed under the GNU General
Public License (See the COPYING file enclosed with the distribution).

1

Contents

1 Installation 3
1.1 Requirements . 3
1.2 Get the source . 3
1.3 Warning! . 3
1.4 Automatic installation . 4
1.5 Customizing the installation . 4
1.6 Manual installation . 6
1.7 Automatic upgrading (depreciated) . 6

2 Using WhizzyTEX 7
2.1 Loading whizzytex.el . 7
2.2 Quick start . 7
2.3 Editing . 8

3 Error recovery and debugging 9
3.1 Errors while WhizzyTEX-ing . 9
3.2 Error during initialization . 9
3.3 Errors while editing . 11
3.4 Debugging . 12

4 On line help 12

5 Configuration 13
5.1 Emacs global configuration . 13
5.2 File-based configuration . 13
5.3 Modes . 16
5.4 Viewer types . 16
5.5 Configuration via whizzy.sh . 17
5.6 Watching other files . 17
5.7 Frequency of recompilation . 18
5.8 WhizzyTEX-ing macro files . 18
5.9 Cross-references, page and section numbers 18
5.10 Per session LATEX customization . 18
5.11 System, user, and local customization . 19

6 Viewers 19
6.1 Viewing with Active-DVI . 19
6.2 Defining your own previewer . 20
6.3 Viewing with xpdf . 20

7 Whizzy Effects 20

8 WhizzyEdiTing 21
8.1 Enabling edition with the \adviedit macro 22
8.2 Performing mouse edition under Active-DVI control 22
8.3 Examples . 23
8.4 Writing whizzy-editable macros . 25

9 A quick overview of the implementation 26
9.1 Emacs code . 27
9.2 LATEX code . 27
9.3 Bash code . 28
9.4 Interaction between the components . 28
9.5 Whizzy edition . 28

1 Installation

1.1 Requirements

WhizzyTEX is designed for Unix plateforms1.
To use WhizzyTEX, you need Emacs or XEmacs, some standard latex distribution, bash,

and at least one DVI, Postscript or PDF previewer, such as advi, xdvi, or dvips combined
with gv, or xpdf.

WhizzyTEX has been developed under Linux but has not been extensively tested on other
platforms. However, LATEX and Emacs are quite portable and possible compatibility problem
with the bash shell-script should be minor and easily fixable. Hence WhizzyTEX should work
with all distributions of latex that are compliant to the standard.

1.2 Get the source

Get the source whizzytex-1.3.0.tgz from the distribution, uncompress and untar it in
some working directory, as follows:

gunzip whizzytex-1.3.0.tgz

tar -xvf whizztex-1.3.0.tar

cd whizzytex-1.3.0

Then, the installation can be automatic (default or customized), or manual.

1.3 Warning!

Many Linux installations make xdvi a shell-script that erroneously end with the line xdvi.bin "$@"

instead of exec xdvi.bin "$@". The later is needed to preserve the process id, so that sig-
nals sent to xdvi are correctly received and handled by xdvi.bin.

1It has been reported to successfully work on Windows under Cygwin—See the FAQ.

Since correct signal handling is crucial for WhizzyTEX, and this problem is so common
we provide a script to check your configuration with the command

./checkconfig

By default, this check is performed by automatic installation below.

1.4 Automatic installation

By default, shell-script whizzytex will be installed in /usr/local/bin/ and, library files in a
subdirectory of /usr/local/share/whizzytex/ and the documentation in /usr/local/share/doc/whizzytex/.
Moreover, Emacs-lisp code will not be byte-compiled.

For default installation, just type:

make all

This will create a Makefile.config file (only if nonexistent) by taking a copy of the template
Makefile.config.in. This will also check the Makefile.config (whether it is the default
or a modified version) against the software installed on your machine. If you wish to change
the default configuration, or if your configuration is rejected, see Section 1.5. This will also
prepared configured versions of the files for installation.

Finally, to install files, become superuser (unless you are making an installation for
yourself) and do:

umask 022 make install

The first line ensures that you give read and execute permission to all.
See Using WhizzyTEX (Section 2) to test your installation.

1.5 Customizing the installation

To customize the installation, you can edit Makefile.config, manually. You may also use
either the command

./configure

This command may be passed arguments to customize your installation. Call it with the
option -help to see a list of all options. By default, the configuration is not interactive.
However, you may call it with option -helpme to have the script do more guessing for you
and prompt for choices if needed.

Note that by default, the Emacs-lisp code whizzytex.el is not byte-compiled. You need
to pass the option -elc to configure in order to byte-compiled it.

Checking Makefile.config A misconfiguration of your installation, or —much more
subttle— a misconfiguration of other commands (it appears that some installations wrap
scripts around standard commands that are sometimes incorrect and break their normal
advertized interface) may lead to systematic errors when launching WhizzyTEX. To prevent
delaying such obvious errors, some sanity checks are done after Makefile.config has been
produced and before building other files. These include checking for mandatory bindings
(useful for manual configuration) and for the conformance of initex, latex, and viewers
commands to their expected interface.

Checking viewers interface implies simulating a small WhizzyTEX session: a small test file
is created for which a specializled version of latex format is built and used to run LATEX on
the test file; finally, required viewers are tested on the DVI output, which opens windows,
temporarily.

If the sanity check fails, at least part of your configuration is suspicious. If some windows
remain opened, your confirguration is likely to be erronesous (and so, even if not detected
by the script).

However, if you really know what you are doing, you may bypass the check by typing
make config.force, which will stamp your Makefile.config as correct without checking
it. Checking compliance to viewers interface is also bypassed if you you do not have a
connection to X. Conversely, you may force checking manually by typing ./checkconfig.

At the end of customization, proceed as described in Section 1.4.

Customization notes By default, WhizzyTEX assumes the standard convention that
latex is the command name used to call LATEX, initex the command name used to build a
new format, and latex is the predefined latex format.

If your implementation of LATEX uses other names, you may redefine the variables INITEX,
LATEX, and FORMAT accordingly in the file Makefile.config. For instance, platex could be
use the default configuration

INITEX = iniptex

LATEX = platex

FORMAT = platex

BIBTEX = jbibtex

This would be produced directly with the configuration line:

./configure -initex iniptex -latex platex -format latex -bibtex jbibtex

If you wish to run WhizzyTEX with several configurations, you must still choose a default
configuration, but you will still be able to call WhizzyTEX with another configuration from
Emacs (see Section 5.2 below).

It is possible to load this setup dynamically by creating, for example, by including the
following lines:

INITEX = iniptex

LATEX = platex

FORMAT = platex

BIBTEX = jbibtex

in a configuration file (see Section 5.2).
During the configuration, you must at least choose one default previewer type among

advi, xdvi, and ps, and at most one default previewer for each previewer type you chose.
You will still be able to call WhizzyTEX with other previewers from Emacs, via Emacs
configuration (see Section 5.1).

1.6 Manual installation

Since WhizzyTEX only need three files to run, installation can also be done manually:

whizzytex.el

This could be installed in a directory visible by Emacs, but does not need to, since you
can always use the full path when you load it or declare autoload.

No default location.

whizzytex

This file is a bash-shell script that should be executable. There is not reason to have
it visible from the executable path, since it should not be used but with WhizzyTEX.

The variable whizzy-command-name defined in whizzytex.el contains its full path (or
just its name if visible from the executable path).

Default value is /usr/local/bin/whizzytex

You may need to adjust the path of bash in the very first line of the script, as well as
some variables in the manual configuration section of the script.

whizzytex.sty

This file are latex2e macros. There is no reason to put this visible from LATEX path,
since it should not be used but with WhizzyTEX.

Variable PACKAGE defined in whizzytex the full path (or just the name if the path is
visible from LATEX.

Default value is /usr/local/share/whizzytex/latex/whizzytex.sty

1.7 Automatic upgrading (depreciated)

For convenience, the distribution also offers a facility to download and upgrade new versions
of WhizzyTEX (this requires wget to be installed). If automatic upgrading does not work,
just do it manually.

All operations should be performed in the WhizzyTEX top directory, i.e. where you
untar whizzytex for the first time, that is right above the directory from were you made the
installation. We assume that have created a link to the current version subdirectory:

ln -s whizzytex-1.3.0 whizzytex

(the manager will then update this link when version changes). Alternatively, you can also
use the full name whizzytex-1.3.0 in place of whizzytex below. The main commands are:

make -f whizzytex/Manager upgrade

make -f whizzytex/Manager install

The command upgrade will successively download the newest version, unpack it, copy the
configuration of the current version to the newest version, and bring the newest version
up-to-date. The command install will install files of the newest version.

The following command will (re-)install an old version:

make VERSION=<version> download downgrade install

2 Using WhizzyTEX

2.1 Loading whizzytex.el

Maybe, whizzytex is already installed on your (X)Emacs system, which you may check by
typing:

ESC x whizzytex-mode RET

If the command is understood, skip this section. Otherwise, you should first load the library
whizzytex.el or, better, declare it autoload. To do this permanently, include the following
declaration in your Emacs startup file (which probably is ~/.emacs if you are using Emacs):

(autoload ’whizzytex-mode

"whizzytex"

"WhizzyTeX, a minor-mode WYSIWIG environment for LaTeX" t)

This asumes that whizzytex.el has been installed in your (X)Emacs load-path. Otherwise,
you may either adjust the load-path appropriately, or replace whizzytex by the full path to
the file whizzytex.el, which depends on your installation and can be obtained by typing
make where in the installation root directory. For instance, if you are using Emacs, the
default location for whizzytex.el is /usr/local/share/whizzytex/lisp/whizzytex.el

(but it will be different if you are using XEmacs or a customized installation).

2.2 Quick start

WhizzyTEX runs as a minor mode of Emacs to be launched on a LATEX Emacs buffer. The
extension of the buffer should be .tex. WhizzyTEX also understands .ltx extensions, but
gives priority to the former when it has to guess the extension. Other extensions are possible
but not recommended.

The file attached to the buffer must exists and either be a well-formed LATEX source
file, or be mastered, i.e. loaded by another LATEX source file. Thus, whenever the
buffer does not contain a \begin{document} command), WhizzyTEX will search
for its master file, asking the user if need be, so as to first launch itself on a
buffer visiting the master file. In particular, an empty buffer will be considered
as beeing mastered, which may not be what you intend.

To start WhizzyTEX on either kind of buffer, type:

ESC x whizzytex-mode RET

By default, this should add new bindings so that you can later turn mode on and off with
key strokes C-c C-w. This will also add a new menu Whizzy in the menu bar call “the”
menu below. (If you are using the auctex, your may use other configuration key strokes to
avoid clashes (see online emacs-help).

When whizzytex-mode is started for the first time on a new buffer, it attempts to
configure buffer local variables automatically by examining the content of file, and using
default values of global bindings.

You may customize default settings globally by running appropriate hooks or locally by
inserting appropriate comments in the source file —see the manual below.

You may also change the settings interactively using the menu, or tell whizzytex-mode to
prompt the user for confirmation of file configuration by passing prefix argument 4 (using,
for instance, key sequence C-u C-c C-w).

2.3 Editing

Once whizzytex-mode is on, just type in as usual. WhizzyTEX should work transparently,
refreshing the presentation as you type or move into your LATEX buffer.

Additionally, a gray overlay is put outside of the current slice (the slice is the region of
your buffer under focus, which is automatically determined by WhizzyTEX). When a LATEX
error occurs and it can be localized in the source buffer, a yellow overlay also is put on the
region around the error, and removed when the error is fixed.

Furthermore, when an error is persistent for several slices or some amount of time, the
interaction-buffer will pop up with the error log (this option can be toggled with the Auto

interaction menu entry).
The buffer mode line also displays a brief summary of WhizzyTEX’s status. When

whizzytex-mode is on, the line contain Whizzy.n where n is a numeric indication of the
load in number of buffer changes between two slices (so the higher, the slower).

However, Whizzy.n is changed to Whizzy-e where err range over FORMAT, LATEX, or SLICE
an indicates that while formating or LATEXing the full document, or while recompiling the
current slice. Errors have priority in this order. That is, if there is both an error in the
format and the slice, only the FORMAT error will be repported.

When a SLICE error occurs, emacs attempts to locate the error and overlay the region
that caused the error. (This identifies the text around which the error was detected by

LATEX, which may not be the text that caused the error.) One can jump to the current error
location by calling the Jump to error menu emty (or the equivalent key sequence).

3 Error recovery and debugging

WhizzyTEX makes a good attempt at doing everything automatically. However, there remain
situations where the user need to understand WhizzyTEX —when WhizzyTEX does not seem
to understand the user anymore.

3.1 Errors while WhizzyTEX-ing

Quite often, the error overlay is sufficient to fix a latex source error. Actually, the error
overaly may just indicate that you are in the middle of typing a command or an environment,
in which cases WhizzyTEX will indicate temporarily report an undefined command or and ill-
balanced environment. Whether an overlay is ephemerous and mean an incomplete edition
or persistent and mean a real LATEX error is usually unambiguous. In addition, because
WhizzyTEXing is dynamic and the error is repported immediately it is usually easier to fix
a real error than it would be in a batch compilation, and without even looking at the error
message.

Indeed, WhizzyTEX also display the LATEX error message (and other processsing mes-
sages) in its interaction buffer. The interaction buffer is named from the master file name
surrounded by * characters. By default, the interaction buffer appears in a pop up window
a few seconds after an error persists and is pop down when the error disapears.

For serious debugging, you may unset Auto interaction menu entry so as to see the
interaction buffer permanently. You may also unset Auto Shrink output menu entry to
keep all log information (by default, the interaction window is shrunk at every slice).

The View Log... menu entry can be used to view the compele log files of last actions
performed by whizzytex (format, latex, slice).

3.2 Error during initialization

The most delicate part of WhizzyTEX is when starting whizzytex-mode, and usually for the
first time in a new buffer, since at that time all kinds of initialization errors may occur (in
addition to LATEX errors.

WhizzyTEX will attempt to identify the error and report appropriate messages in the
interaction buffer. (In case an error occurs —or nothing happens— always have a look at
the interaction buffer first, even if it did not prompt automatically.)

WhizzyTEX keeps more debugging information during initialization phase, and if an er-
ror occurs during initialization, it will keep all log files. Once initialization has succeeded
WhizzyTEX turns into normal more and by default all log and auxiliary files will be removed
error et exit (including at exit on error). However, WhizzyTEX can also be launched in debug
more, which will keep additional debugging information including after initialization.

To see log information, use the View log... menu entry and the completion buffer.
Available log files are command, format, latex, slice, and view. The command log is simple
the list of arguments—one per line—with which the shell script whizzytex was called; the
log file view is the content of the standard error description the viewer. Some logs may not
be available if an error occured before the corresponding command has been called.

Most frequent errors are described below, in chronological order.

Emacs fails during setup This is the easiest case, because WhizzyTEX has not been called
yet, so it is only involves debugging under emacs. You may check the emacs error messages
(emacs buffer *Messages*), check the on-line documentatino of variables set or functions
calls, and in case of uncaught fatal errors, you may ESC X toggle-debug-on-error to get
help from Emacs, and try to fix the problem.

Note that setup may succeed, but not be result as expected. You may see what config-
uration files have been loaded in different buffers: *Message* for emacs customization, the
interaction buffer for shell-script customozation, and the format log file for latex configura-
tion.

Emacs cannot find whizzytex This should typically be an installation problem, where
the variable whizzytex-command-name is erroneous (maybe you need to give the full path).
Try to evaluate (shell-command whizzy-command-name) in the minibuffer, which of course
should fail, but only after the command has been reached.

WhizzyTEX cannot build a format Then WhizzyTEX will refuse to start.
The problem could result from an abnormal interaction between your macros and WhizzyTEX

macros, but this situation seems rather unfrequent. So there is most probably an error in
your macros. Try to compile LATEX your file.

By default the interaction window will pop-up with an section of the format log, but you
can also view the log of latex formatting

. If this is not enough, you may need view log files. However, log files are normally
removed when WhizzyTEX exits. To keep log files on, you must retart WhizzyTEX in debug
mode (select the debug mode in the menu and restart WhizzyTEX). Then, you can check the
format log and if necessary the command with which WhizzyTEX has been launched. (Once
the bug is fixed, you should switch off the debug mode, which may slow down WhizzyTEX.)

WhizzyTEX cannot launch the previewer Usually, this is because whizzytex received
wrong previewer parameter. See the command echoed in the interaction buffer or try to
evaluate (whizzy-get whizzytex-view-mode).

Other errors There are two remaining problems that could happen at launch time, but
that are not particular to launch time: WhizzyTEX could not recompiled the whole document
or the current slice. However, these should not be fatal. In the former case, whizzytex will
proceed, ignoring the whole document (or using the slice instead if you are in duplex mode).

In the later case, whizzytex will replace the slice by an empty slice —and print a welcoming
document, as if you launched WhizzyTEX outside of any slice.

3.3 Errors while editing

After initialization time, WhizzyTEX will keep recompiling slices as you type or move, but
also recompiles the format and the whole document when you save a file. Each of this step
may failed, but this should not be fatal, and Emacs should report the error, possible pop up
the interaction window, and continue.

WhizzyTEX fails on the current slice This should not be considered as an error, it must
happen during edition. In particular, WhizzyTEX is not much aware of LATEX and could very
well slice in the middle of the typesetting of an environment or a macro command. This
should not matter, since the erroneous slice will be ignore temporarily until the slice is correct
again.

WhizzyTEX keeps failing on the current slice The slice can also be erroneous because
the Emacs did not correctly inferred where to insert the cursor, which may slice erroneous,
although what you typed is correct. Hopefully, this will not occur too often, and disappear as
you move the point. It should also disappear if you switch off both Point visible and Page

to Point options, which is actually a good thing to do when you suspect some misbehavior.
This will make WhizzyTeX more robust, but less powerful and more boring.

WhizzyTEX does not seem to slice at all The interaction window does not produce
any output. Try to move in the slice, or to another slice.

If nothing happens, check the interaction window, to see if it did attempt to recompile
the slice. If nothing happens in the interaction window, check for Emacs messages (in the
Messages buffer). You may also check for the presence (and content) of the slice by
visiting _whizzy_filename.tex or

_whizzy_filename/input/_whizzy_name.new

If neither file exists, it means that Emacs did not succeed to slice, which you may force by
evaluating (whizzy-observe-changes t). This can be run in even if whizzytex-mode is
suspended, which may avoid automatic processing of slices, and their erasure.

If the slice is present, you may try to compile it by hand (outside of Emacs) with

latex ’&_whizzy_filename’ _whizzy_filename.tex

and see if it succeeds.

Reformatting failed Formatting errors are fatal during initialization, but accepted once
initialized. In case of an error during reformatting, WhizzyTEX will ignore the error and
continue with the old format. This means that new macros may be ignored leading to
further slicing errors. When rebuilding the format failed, the mode-line string will display
the suffix FMT until the error is fixed. See the interaction buffer or select format from the
log... menu entry).

You may also force reformatting by typing the reformat command in the interaction
buffer.

Whizzytex cannot process the whole document This is very likely a problem with
you document, so try to LATEX it first. There is a small possibility of strange interaction
between your macros and WhizzyTEX package. Try to turn options Page to Point and
Point visible off and retry. This will make WhizzyTEX more robust (but also less powerful
and more boring).

3.4 Debugging

If you are still completely lost after trying all of the above help, you may turn on the
debugging mode by typing either line in the interaction window:

trace on

trace off

or with the menu entry Debug. The entry can also be called to start WhizzyTEX, which will
then start in debugging mode, including during initialization.

If need be, you can also turn emacs debug mode on and off with

ESC x toggle-debug-on-error RET

If you are still stuck, then you are left on your own and need real debugging. If this is
your first attempt at WhizzyTEX, you should suspect your global configuration. You should
then try it first with the examples of the distribution. Otherwise, you may rollback to a file
and configuration that used to work (e.g. one of the distribution), and make incremental or
logarithmic changes until you hit the problem.

4 On line help

The Emacs source is fully documented and most of the documentation is available as on-
line Emacs help, through the Help entry of the Whizzy menu and following hyperlinks.
Alternatively, you can type

ESC x describe-function RET whizzytex-mode RET

(In XEmacs, you may need to use

ESC x hyper-describe-function RET whizzytex-mode RET

instead of describe-function to see hyper-links.)
To avoid redundancy, on-line help is not reproduced here, configuration described in the

next section.

5 Configuration

This section describes how to use and parameterize WhizzyTEX. Section 5.2, 5.3 and 5.4 are
also available as online help.

5.1 Emacs global configuration

See Emacs help for whizzy-default-bindings and whizzytex-mode-hook for list of bind-
ings.

The Emacs on-line help for whizzytex-mode lists all user-configurable variables, which
may be given default values in your Emacs startup file to be used instead of WhizzyTEX own
default values.

5.2 File-based configuration

WhizzyTEX allows for inlined customization in the source file, as described below. While this
mecanism is quit convenient for short and simple customization (such as selecting the output
format and previewer or sectioning), it is harsh and depreciated for advanced customization,
for which you should prefer local customozation files (see Section 5.11).

A configuration line is one that starts with regexp prefix “^%; +” followed by a config-
uration keyword. If two configuration lines have the same keyword, only the first one is
considered. The argument of a configuration line is the rest of the line stripped of its white
space.

The keywords are:

whizzy-master 〈master〉
This only makes sense for a file loaded by a master file. 〈master〉 is the relative or
full name of the master file. Optional surrounding quotes (character ") stripped off,
so that "foo.tex" and foo.tex are equivalent.

whizzy-macros 〈master〉
This is equivalent to whizzy-master 〈master〉, but for a file containing macros. The
file is not sliced while editing, but saving it reformats the master.

whizzy [〈slicing〉] [〈viewer〉 [〈command〉]]
[-mkslice 〈command〉] [-mkfile 〈command〉]
[-tex 〈suffix〉] [-initex 〈initex〉] [-latex 〈latex〉] [-fmt 〈format〉]
[-bibtex 〈bibtex〉] [-dvicopy 〈command〉] [-watch] [-duplex] [-trace]

All arguments are optional, but if present they must appear in order and on a single
line:

〈slicing〉
determines the way the document is sliced (see section 5.3).

〈viewer〉
is the type of viewer and can only be one of -advi, -xdvi, -ps, or -pdf (see
section 5.4)

-display 〈display〉
specifies which X display to show the DVI previewer in, such as :0.1 for multi-
display set-ups.

〈command〉
is optional and is the command used to call the viewer (of course, it should agree
with 〈viewer〉).

-mkslice 〈command〉
tells WhizzyTEX to use 〈command〉 to preprocess the slice. The command 〈make〉
will receive one argument whizzy basename.new and should produce whizzy basename.tex

(or whizzy basename.ltx if the extension of the master file is .ltx). By default,
mv is simply used.

The Unix make can itself be used as a preprocessor (with an appropriate Makefile).
However, one may have to work around make’s notion of time (using FORCE),
which is usually too rough. This is safe, since WhizzyTEX tests itself for needed
recompilations.

-mkfile 〈command〉
executes “〈command〉 〈filename〉” before recompiling every time a buffer is saved.
The argument “〈filename〉” is the buffer-file-name path relative to the path of
the master file directory.

-makeindex 〈command〉
uses “〈command〉 〈filename.idx〉” for rebuilding the index instead the default
“〈makeindex〉 〈filename.idx〉”. If “〈command〉” is false, then do not attempt to
rebuild the index.

-bibtex 〈bibtex〉

uses 〈bibtex〉 for the bibtex command instead of the value assign to BIBTEX in
Makefile.config (or whizzytex)

-initex 〈initex〉

uses 〈initex〉 for the initex command instead of the value assign to INITEX in
Makefile.config (or whizzytex)

-latex 〈latex〉

uses 〈latex〉 for the latex command instead of the value assign to LATEX in
Makefile.config (or whizzytex)

-fmt 〈format〉

uses 〈format〉 for the latex format instead of the default value, usually fmt (see
configuration).

This can either be used in combination with -latex and -initex, or alone. For
instance, hugelatex could be used (depending on your LATEX configuration) to
build a larger format to process huge files.

-dvicopy 〈command〉

uses 〈command〉 instead of the default (mv) to copy DVI files (from FILE.dvi to
FILE.wdvi). This can be used with command dvicopy so as to expand virtual
font, which advi does not understand yet)

-watch

watches other files than just the slice (see Section 5.6).

-duplex

launches another window with the whole document (which is recompiled every
time the source buffer is saved).

With -advi previewers, both views communicate with Emacs and can be used to
navigate through source buffers and positions.

-trace

traces all script commands (for debugging purposes only.)

For instance, a typical configuration line will be:

%; whizzy subsection -dvi "xdvi -s 3"

It tells whizzytex to run in subsection slicing mode and use a dvi style viewer called
with the command xdvi -s 3. This is also equivalent to

%; whizzy subsection -dvi xdvi -s 3

since Emacs removes outer double-quotes in option arguments.

A more evolved configuration line is:

%; whizzy -mkslice make -initex iniptex -latex platex -fmt platex

It tells WhizzyTEX to use iniptex and platex comands instead of initex and latex

and to use the format file platex.fmt instead of latex.fmt. Moreover, it should use
make to preprocess the slice.

whizzy-paragraph regexp

This sets the Emacs variable whizzy-paragraph to regexp.

5.3 Modes

WhizzyTEX recognizes three modes slide, section, and document. The mode determines
the slice of the document being displayed and indirectly the frequently of slicing.

Note that in any mode but none slices are always included in the file beeing editing and
files that it may include. Thus, when slice delimitors are not found, the slice default to the
whole file. The slice may also be empty if the cursor is located before \begin{document} or
after \end{document}.

slide The mode slide is mainly used for documents of the class seminar. In slide mode,
the slide is the text between two \begin {slide} comments (thus, the text between
two slides is displayed after the preceding slide).

In slice modes, overlays are ignored i.e. all overlays all displayed in the same slide,
unless a command \overlay {n} occurs on the left of the point, on the same line (if
several commands are on the same line, the right-most one is taken), in which case
only layers p ≤ n are displayed.

section In section mode, the slice of text is the current chapter, section.

subsection As section but also slice at subsections.

paragraph The paragraph mode is a variation on section mode where, the separator
whizzy-paragraph is defined by the user (set to two empty lines by default) instead
of using \section and \subsection commands. subsection.

document The document take the region between \begin{document} and \end{document}

as the slice. Hence it defaults to the file when the file is a slave, which does not contain
\begin{document}.

none In none slicing mode, there is no sectioning unit at all and the whole document is
recompiled altogether. Currently, pages are not turned to point and the cursor is not
shown in document mode, because full documents are not sliced. (A slicing document
mode could be obtained by working in paragraph mode, with an appropriate regexp.)

5.4 Viewer types

See help for whizzy-viewers.
The previewer types can have three possible values: -advi, -dvi, -ps, or -pdf.
The previewer type should agree with the previewer command in several ways:

• They tell how to trigger reload on the previewer. This may signal the previewer with
signal SIGHUP for -ps or SIGUSR1 for -dvi and -advi, or to establish the previewer as
a remote server with -pdf.

In particular, if you write a front-hand shell-script viewer to the call previewer, and
want to use viewer as the previewer, you should arrange for viewer to understand

these signals (and forward them to the previewer). The simplest way is to hand your
script with an exec command calling the gv, dvi or advi.

Also, the option -pdf assumes xpdf remote server (launched with the whizzytex process
id as name) and its reload protocol. Thus, if you wish to use another previewer, you
also need to cutomize the variable RELOAD of the shell-script.

• They tell whizzytex whether to process the slice to Postscript (with -ps) or to DVI
format (with -dvi and -advi or directly generate pdf output with pdflatex.

• Moreover, -advi requires the previewer to recognize additional \special commands,
in particular source line information of the form:

#line 780, 785 <<to<<rec>><<ognize>>additional>> manual.tex

Then, the previewer command is the command to call the previewer. This string will be
passed as such to the WhizzyTEX shell-script. Note that the name of the dvi or postscript
file will be appended to the previewer command.

5.5 Configuration via whizzy.sh

This is preferable to file-based configuration. File whizzy.sh is read by the script whizzytex
after some defaults values (usually determined by the configuration) have being assigned to
variables. Hence, it can be used to redefined those values.

Here are typical default values that can be redefined.

Variable default value other value Meaning

LATEX latex elatex latex program
FORMAT latex elatex format basefile name
FMT fmt efmt format extenstions
DVICOPY mv dvicopy transformation f.dvi file into f.wdvi

BIBTEX bibtex ebibtex bibtex program
MKSLICE defaultmkslice . hook for preprocessing slices
MKFILE defaultmkfile . hook for preprocessing files
MAKEINDEX makeindex . command for making index

See whizzytex for other bindings.
Other shells environment values such as TEXINPUTS may be defined here as well.

5.6 Watching other files

WhizzyTEX is designed to watch other files and not just the slice saved by Emacs. In fact, it
watches any file dropped in the pool directory. For instance, if your source file uses images,
you can just change the image and drop the new version in the pool. Then WhizzyTEX will
pick the new version, move it to the working directory and recompile a new slice. Be aware

of name clashes: if you drop a file in the pool, it will automatically be move to the working
directory with the same name, overriding any file of the same name sitting there.

However, activity is entirely controlled by Emacs, since after every iteration WhizzyTEX

waits for Emacs to send a new command (usually the empty command that means iterate
again). Hence, other files will only be taken into account at the next iteration. If you really
wish these files to be watched you need to instrument emacs to send and empty line input
to the interaction buffer regularly, even when idle.

5.7 Frequency of recompilation

To obtain maximum WhizzyTEX effect, a new slice should be save after any edition changed
or any displacement that outside of the current slice. However, to avoid overloading the
machine with useless and annoying refreshments, some compromise is made, depending on
Emacs several parameters: edition v.s. move Emacs last commands, successful v.s. erroneous
last slice, and the duration of last slice recompilation. This usually works well. However,
different behavior may wish to be obtained in different situations. For instance, when editing
on a lab-top, one may wish to save batteries by keeping the load rather low, hence not using
the full power of the processor. Conversely, one may wish WhizzyTEX to be as responsive as
possible. There is an function whizzy-load-factor that control a variable of the same name,
which can be used to adjust the responsiveness (by increasing or decreasing the load-factor).
This simply adds extra delays between slicing.

The format is automatically recompiled at the beginning of each session, and whenever
the buffer containing the file is saved. That is, to load new packages or define new global
macros (before the \begin{document}), it suffices to save the current file.

5.8 WhizzyTEX-ing macro files

Macro files can be WhizzyTEX-ed as well. The effect is them only to automatically call
reformat when the file is saved. Files can also be declared as macro-files with whizzy-macro

file configuration keyword (see Section 5.2), which argument should then indicate the master
file. Files with .sty extension are by default considered as macro files and their master file
is guessed if possible.

5.9 Cross-references, page and section numbers

The slice is always recompiled with the .aux file of the whole document. In paragraph
mode, cross references and section numbers are recompiled whenever the buffer itself is
saved (manually). The recompilation of the whole document is off in slide mode.

5.10 Per session LATEX customization

The Emacs variable whizzy-customize (that can be set interactively from the Customize slice

menu) may contain a few LATEX commands to be inserted at the beginning of each slice, which

allows a per-session customization. Customization can be easily changed anytime in the mid-
dle of a session. For instance, setting this variable to \large can be used to temporarily
enlarge the text, while keeping the same page layout.

5.11 System, user, and local customization

WhizzyTEX is a three-part engine, with Emacs, Latex, and the glue Bash-script running
altogether. Some of the parameters can be adjusted at installation-time by modifying the
respective files whizzytex.el, whizzytex.sty, or whizzytex of the distribution. However,
you should normally not have to do that after installation (and even only exceptionnally
during installation), and instead use system, user, or local configuration files.

When launched, each engine looks for configuration files in appropriate directories with
basenames whizzy.el, whizzy.sh, whizzy.sty and whizzy.cfg, respectively. The Emacs
configuration search path is defined by the emacs variable variable whizzy-configuration-path.
Search path for Bash and Latex settings are composed of the directories CONFIGDIR/,
$HOME/.whizzytex/ and the current directory (actually $TEXINPUTS for latex). All configu-
ration files found are loaded, in the order given above. The difference between whizzy.sty

and whizzy.cfg is that the former is loaded after all latex packages and typically use to
change the behavior of those packages while the later is loaded first, before \documentclass
and is rather use used to redefined commands of ”whizzytex” or defined extra macros before
loading the document (e.g. as arguments that could normally be defined on the commandline
while calling latex).

Remark that a local configuration file (i.e. one in the current directory) can be used to
make per-document configuration by testing on jobname.

6 Viewers

6.1 Viewing with Active-DVI

Active-DVI is a DVI previewer with several additional features. In particular, it recognizes
extra specials, some of which are particular useful for whizzytex that allows a two way
communication between the source Emacs buffer and the previewer:

• The previewer will automatically turn pages for you, as you are editing. This is done
by telling Emacs to save the current position in the slice. Then, the recompilation
of the slice will include the current position as an hyperref location Start-Document

whenever possible. Then, just tell Active-DVI to automatically jump at this location
when it opens/reloads the file (option -html Start-Document).

• Conversely, Active-DVI can dump source file positions on clicks, when available (usu-
ally on shift-mouse-1 or mouse-1 in edit mode), that is forwarded to Emacs so that
it can move to the corresponding line.

To enjoy this feature, the option -advi should be used instead of -dvi. This will
produce extra information (such as source line numbers) using \special that most
DVI previewers do not recognize and may complain about.

• Active-DVI does not currently recognizes virtual fonts, but dvicopy can be used to
expand them. See the option -dvicopy in Section 5.2.

• If you have a recent version of Active-DVI (version number exists and is greater than
1.5.2), you can also enjoy the multiple view mode, which is configured by default
(variable MULTIPLE is set to true in Makefile.config). In this case, WhizzyTEX will
call the previewer both the slice and the whole document in the same window and
may automatically switch from the slice to the whole document when clicking on local
hyperrefs that are out of the slice (press Esc to come back). You can also switch
between views by pressing w and when on the whole document view, goto the page
when the cursor is in Emacs by pressing W.

Warning! If by mistake or misconfiguration, the multiple view is enable and your
version of advi does not support multiple views, you will only see the full document
view and never see the slice.

6.2 Defining your own previewer

To use your own command as a previewer, you must choose either type -dvi or -ps . In
particular, your previewer should accept SIGUSR1 (for -dvi) signal or SIGHUP (for -ps) signal
and respond by reloading the file.

6.3 Viewing with xpdf

WhizzyTEX also works with pdf using the xpdf previewer and its remote server capabilities
to reload the file and jump to the cursor position (this does not work with acroread because
they is no simple way to tell acroread to reload its file in batch). You must choose -pdf

as previewer type, which will also set other variables so as to compile the document with
pdflatex instead of latex. You must leave the default previewer command, i.e. enter -pdf .

and not -pdf xpdf (or else understand the internals of the whizzytex script) because other
options need to be passed to xpdf.

When compiling with pdflatex, you need to explicitly use the package hyperref.

7 Whizzy Effects

Since WhizzyTEX knowns about the current point in the buffer, rendering of the document
may depend on that possition. For examples, an environment may be displayed differently
when the point is inside or outside the environment. A natural choice is to make drawer-like
environments that are closed when the point is outside and open when the point is inside.

WhizzyTEX provides a the macro \WhizzyInsideEnvironment to help make such effects.
It takes the same parameters as the command \newenvironnement. The first argument
should be the name of an existing environment, which will behave as before when the point
appears outside and according to the new definition when the points is inside. The second
and first arguments defines the behavoir as do the arguments of \newenvironment. However,
\WhizzyInsideEnvironment also defines the macro \out@myenv and endout@myenv to refers
to the cursor-outside version of the environment. Typically, these macros can be used in the
second and third argument of \WhizzyInsideEnvironment to define the cursor-inside version
by difference with the cursor-outside version.

The example effects shows two applications. First, a drawer environment is used to
delimit sections and make them open or closed automatically as cursor moves. Second, using
the exercise package, we provide a cursor-inside version of the answer environment that
inline the answer rather than pushing it to the Appendix.

8 WhizzyEdiTing

This feature requires at least version 1.60 of Active-DVI.

When used together with Active-DVI, WhizzyTEX can be made much mode powerful. In
particular, it is not difficult to lift WhizzyTEX from an incremental viewer to an assistant
editor.

What was a dream has now become real. The latest version Active-DVI provides a notion
of active boxes. The DVI may be annotated with advi: edit specials commands. When
Active-DVI is put in edition mode, active boxes are drawn on top of the previewer window
and can be move or resized with the mouse. When the mouse is released, the new size or
position is printed on standard output together with the action to be taken and received by
emacs watching the output. Emacs has then enough information to adjust some dimensional
parameters in the source buffer. Just after this edition, the new slice is processed and the
new position is displayed. Thanks to the short incremental loop, this almost appears as if
actions where executed by Active-DVI itself.

Indeed, WhizzyEdiTing is not meant to break up the structual edition philosophy of
TEX and LATEX. Its incremental viewing is an assistant to an not a replacement of structural
source edition. Mouse editing should also be seen similarly. In particular, all editions are
visible in the emacs source buffer, can be saved, manually changed or disable. Moreover,
Whizzy-editing is not meant for document layout (even it can occassionally be used for that,
e.g. in slides), but rather to help adjust dinmensions that require manual tuning.

For instance, imaging you are importing an Encapsulated Postscript picture you would
like to place some bubble whose origin must be position precisely inside the picture. Then,
you’d better do it with the mouse rather than by small measurements or adjustements.
Drawing a graph with a few nodes may now become quite confortable with PStricks, with
the advantage of remaining within LATEX rather than using some external tool. Finally,
Whizzy-editing is likely to be convenient when writting slides with visual gadgets. For

instance, adjusting bubbles with the mouse is likely to be more efficient than doing it by
hand.

8.1 Enabling edition with the \adviedit macro

Active-DVI provides one general editing command that can be used by WhizzyTEX for all
mouse editing. The syntax of this command is

\adviedit[tag]{〈options〉}{〈body〉}

where 〈options〉 is a comma separated list of bindings according to the keyval package. Each
binding is either of the form 〈var〉=〈float〉 where 〈var〉 ranges other letters x, y, h, w, d in
lowercase or uppercase, or field=〈dimension〉 where 〈field〉 ranges over 〈unit〉 and 〈min〉.

The 〈field〉 respectively bindings specifies the unit, which default to 1em, and the min-
imal dimension of boxes. Both fields are inherited, which enable inner edition to be scale
altogether. The 〈var〉 bindings defines values for the corresponding variables. The are not
inherited. On the opposite, they are always reset to default values. Lowercase letters mean
that the corresponding variables are whizzy-editable, while uppercase letters treat them as
constants. The expression body should be horizontal box material: it is then placed in an
\hbox at coordinates (x, y) relatively to the current position. Moreover, a virtual box of
width w, height h, and depth d is draw at that position when editing is made active. The
box can this float around the current point and has no dimension. However, a box with no
coordinates specified is fixed and has the dimensions of w, h, and d. When not specified,
these fields takes the value of the box in which body is typeset. All dimensions x, y, w,
h, and d are bound to advix, advix, adviy, adviw, advih, and advid macros during the
evaluation of 〈body〉.

Whizzy-editable objects can be nested. All parameters are reset to default values, within
the new object. Sometimes, emacs may be confused and take an object for another. In these
rare cases, the two objects can use the 〈tag〉 argument to be distinguished. This argument
does nothing but being passed to Active-DVI and sent back to Emacs to identified the object
exactly.

8.2 Performing mouse edition under Active-DVI control

This section depends entirely on Active-DVI. Hence, it may depend on your
version of Active-DVI or how you have parameterized it. The appearance and
description below is based on default bindings for version 1.50+3.

To actually edit whizzy-editable objects, you need to toggle the edit mode of Active-DVI.
You can do this interactively by key stoke e in the Active-DVI window. You may also start
Active-DVI in edit mode by passing the option -edit.

When in edit mode, whizzy-editable objects are drawn as below:

This small page contains

This whizzy-editable parbox drawn in a blue
rectangle. The blue line in the middle of the
rectangle marks the baseline of the box. The
green line is attached to the left hand-side of
the baseline on the one hand and to the anchor
of this object, dran as a small green circle, on
the other hand.

and right
below is. . .

a whizzy-editable vertical space.
The vertical space is an unmovable resizable box whose dimensions

are as displayed in blue. In contrast, the parbox above is movable (and
width-resizable) and behaved as an empty box.

You may edit such objects in two ways:

• move them, using the middle button.

• resize them, using the right button for width and height or the shift-right button for
depth.

When pressing the button on the corresponding rectangle, the mouse shape should intuitively
illustrate the action to be perfomed. However, some actions may be inhibited. For instance,
the \parbox can only be moved or resized in width and the vertical space can only be
resized in depth but not be moved. When an action (either move or resize) is disable in
all directions, the cursor will not changed. When resizing is enabled both in height and in
depth, the default action is height and you must press the shift key to perform the depth
resizing.

Finally, an edition can be aborted by pressing the meta key (actually the one bound to
modifier-1) while release the mouse.

8.3 Examples

Several examples can be found in file example/edit/main.tex coming with Active-DVI

distribution. Here are a couple of simple ones. For example,

\adviedit{x=-2.8845,y=0.2717}{A}

will simply place make the letter A whizzy-movable. The values of x and y when unspecified
defaults to 0. Values for W , H or D when not given, will default to the value of A. However,
if W , H, or D are zero (or too small) they will default to some small value.

\adviedit{X=2,Y=3}{A}

can simply be used instead of the latex \put command. Spaces are also whizzy-adjustables:
an horizontal space is just

\adviedit{w}{\hspace{\adviw}}

Note that the material is placed into a default \hbox. Thus, for vertical spaces, one need
and explicit \vbox:

\adviedit{d}{\vtop {\vspace {\advid}}}

Note that

\adviedit{h}{\vbox {\vspace {\advih}}}

would do as well, but would usually be less intuitive, graphically.
A paragraph of adjustable size:

\adviedit{w}{\parbox[c]{\adviw}{text material}}

Whizzy-edition can also be used to resize images (as well as return them)

\adviedit{w,h}{\includegraphics[width=\adviw,height=\advih]{caml.eps}}

Note that while “adviedit must remain in the should, hence the whole line cannot be abbre-
viated into a macro, one can freely abbreviate its body, and it is quite easy to build a camel
caravan:

\adviedit[A]{w,unit=\hsize}{%

\setedit{unit=0.2\adviw}%

\def \camel{\includegraphics[width=\adviw,height=\advih]{caml.eps}}%

\adviedit{x,y,w,h}{\camel}%

\adviedit{x,y,w,h}{\camel}%

\adviedit{x,y,w,h}{\camel}%

\adviedit{d}{\vtop{\vspace\advid}}%

\hspace{\adviw}%

}

Be aware that a camel may hide another one! Indeed, at the beginning all camels are
superposed. The first caml you pick is the one in front. An interesting use of units is to let
an inner editable command sets its unit according to the dimension of an outer command, as
illustrated above. Here the outer object (tagged A) is used to control the origin and scale of
the projection. Then, each camel can be translated and resized, but relatively to this origin
and this scale. Thus moving of rescaling the outer object will treate the caravan as a whole.
The last line allow expansion of the bounding box as needed. The one before last sets the
vertical ratio of the bounding box. The result can be seen in Figure 1. Below is another
example with two circles:

Joe

Figure 1: A Whizzy-editable Camel Caravan

\adviedit[A]{w=4}

{\setedit{unit=\adviw}%

\psset{boxsep=0pt,framesep=0pt}%

\hbox to \adviw

{\circlenode{A}{\hspace {\adviw}}\hss

\adviedit[B]{w=0.5}{\circlenode{B}{\hspace{\adviw}}}}}

Many LATEX commands such as \hspace, \parbox, etc. are parameterized by dimensions.
However, some other commands, such as \picture, \pspicture and most PsTricks com-
mands, \bubble, and \adviedit itself are parameterized by a coefficients (floats) and, sep-
arately, a dimension.

To whizzy-edit such coefficients, there are also commands \advicx, \advicy, \advicw,
\advich, and \advicd that contain the float ratio of the corresponding dimension with
respect to \adviunit—whenever the dimension is itself defined. As an example, the position
of bubble can whizzy-edited as follows:

\adviedit{h=1.8902,w=1.5259,unit=\bubbleunit}

{\bubble{anchored text}(\advicw,\advich){bulle text}}

8.4 Writing whizzy-editable macros

Although the command \whizzyedit is quite general and powerful, the user may wish to
write its own versions. One must then be careful that the macro correctly passes its name
to Active-DVI. For instance, rebinding or partially evaluating the macro \adviedit does
not work, since then the text-source macro will not be \adviedit anymore. See the latex
advi.sty source package for envolved examples.

Below are just a couple of simple examples. We can abbreviate the example of adjustable
horizontal spaces defining the following macro:

anchor

first
second

third

Figure 2: A bubble flower

\newcommand{\advihspace}[1]

{\adviedit{comm=\advihspace,#1}{\hspace{\adviw}}}

The argument comm=\advihspace set the name of the calling source text macro to \advihspace.
Then, you may simply write:

\advihspace{w}

instead of

\adviedit{w}{\hspace{\adviw}}

The macro could additionally check that w is indeed defined.
Another example of specialization is to place bubbles: so as to be more intuitive, the

orgin of the edition should start at the center rather then at the left of the anchor, which
requires a small acrobatics with boxes and dimensions:

\newcommand{\editbubble}[3]

{\setbox0=\hbox{#2}\copy0\hbox to 0em {\kern-0.5\wd0\relax

\bbb@dima=\ht0\bbb@dimb=\dp0

\setbox0=\null\ht0=\bbb@dima\dp0=\bbb@dimb

{\adviedit{comm=\editbubble,unit=\bubbleunit,#1}

{\bubble{\box0}(\advicw,\advich){#3}}}\hfilneg}}

Then a nicely editable bublle can be obtained with

\editbubble{w,h}

{\editbubble{w,h}

{\editbubble{w,h}{flowers}{First}}

{Second}}

{third}

(See the result in Figure 2)

9 A quick overview of the implementation

In short, WhizzyTEX is selecting a small slice of the document that you are editing around
the cursor (according to the selected mode) and redisplay the slice incrementally as it changes
through edition.

• Emacs is watching you typing and moving in the Emacs buffer attached to the LATEX
source file that your editing and keeps saving the current slice (current slide, section,
or subsection, according to the mode).

• A shell-script daemon keeps recompiling whenever a new slice (or other files) are
produced, and if recompilation succeeds, tels the previewer to updates the display of
the slice.

• A few LATEX macros allow to build a specialized format with all macro loaded, which
considerably speed up the time for slicing. Additionally, the slice is a bit instrumented
to show the cursor, and includes specials that allows back-pointing from the DVI file
into the Emacs buffer.

The rest of this section briefly describe these three parts2, and their interactions.

9.1 Emacs code

The main trick is to use post-command-hook to make Emacs watch changes. It uses
buffer-modified-tick to tell if any editing has actually occurred, and compare the point
position with the (remembered) position of the region being displayed to see if saving should
occur. It uses sit-for to delay slicing until at least the time of slice computation has
ellapsed since last saving, a significant number of editing changes has occurred, or iddleness.

WhizzyTEX can also display the cursor position, in which case slices are also recomputed
when the cursor moves, but with lower priority.

9.2 LATEX code

The main TeX trick is to build a format specialized to the current document so as to avoid
reloading the whole macros at each compilation. This is (almost3) entirely transparent, that
is, the source file does not have to understand this trick.

This is implemented by redefining \documentclass which in turn redefines \document

to execute \dump (after redefining \document to its old value and \documentclass so that
it skips everything till \document). This is robust —and seems to work with rather complex
macros.

The specialized format can be used in two modes: by default it expects a full document:
it them dumps counters at sectioning commands (chapters, sections, and subsections). This
is useful to correctly numberred sections and pages on slices.

There are also a a few other used to get more advanced behavior, especially to dump
source line numbers and file names so that the previewer can transform clicks into source
file positions.

2This section is not quite up-to-date, hence it puts emphasis on the original design, but several aspects
have changed significantly since the first version. Implementation of more recent features is thus omitted.

3\begin{document} should be typed as such without any white white space

When building the format, WhizzyTEX also look for a local file of name whizzy.sty,
which if existing is loaded at the end of the macros. This may be used to add other macros
in whizzy mode, e.g. some TEX environments may be redefined to changed they type setting,
according to whether the current line is inside or outside the environment. (We have written
such an extension for an exercise package that sends the answers at the end in an appendix,
unless the cursor is inside the answer, in which case the answer is in-lined.)

9.3 Bash code

There is no real trick there. This is a shell-script watching the pool (a directory where slices
and other new version of files must be dropped). It them recompiles a slice and wait for
input (in stdin). It recognizes a few one-line commands as input reformat, dupplex, and
by default just watch for the presence of a new slice. It recompiles the format file (and the
page and section number, but in batch mode) whenever the source file (its Unix date) has
changed and recompiles the slice whenever it is present (since WhizzyTEX renames —hence
removes— the slice before processing it).

If the file has been recompiled successfully, it triggers the previewer (ghostscript or xdvi)
so that it rereads the dvi or ps file. Otherwise, it processes the TEX log file and tries to locate
the error. It then sends part of the log file with annotations to the *TeX-shell* buffer from
which Emacs has been WhizzyTEX, so that Emacs can report the error.

9.4 Interaction between the components

The control is normally done by Emacs, which launches and kills the Unix daemon. Quitting
the previewer should be noticed by the daemon, which tells Emacs to turn mode off before
exiting.

Muliple WhizzyTEX running on the same file would certainly raise racing conditions be-
tween files and would not make sense. For that purpose, the daemon pid is saved in a file
and WhizzyTEX will kill any old WhizzyTEX process on startup.

9.5 Whizzy edition

The macros \adviedit passes information to Active-DVI inside edit specials. This infor-
mation is used to identify the source file command that requested some edition and is passed
by from Active-DVI to emacs as command strings of the form:

<edit "\adviedit" ""[x=1.2001]" #56 @main.tex moveto 5.1529,-1.1708>

This command emitted by Active-DVI in its standard output is thus received by emacs via
WhizzyTEX in the process buffer associated to the current session.

Emacs interprets such commands starting with the “<edit ” prefix as whizzy edition
commands. In the above example, the string \adviedit is a latex commands that should
be present the master buffer main.tex at line 56 and with x coordinate equal to 1.2001.
Its x and y coordinates should be changed by 5.1529 and -1.1708. Usually, the command

can be precisely located by its line position in the buffer and one significant coordinates. In
case of conflict, a tag optional argument pass \adviedit will be passed to Active-DVI and
then sent back to emacs (which is filled in the empty string above).

