
Nuitka User Manual

Contents
Overview 1

Usage 1

Requirements 1

Command Line 1

License 2

Use Cases 2

Use Case 1 - Program compilation with all modules embedded 2

Use Case 2 - Extension Module compilation 3

Use Case 3 - Package compilation 3

Where to go next 4

Subscribe to its mailing lists 4

Report issues or bugs 4

Contact me via email with your questions 4

Word of Warning 4

Join Nuitka 4

Donations 5

Unsupported functionality 5

The co_code attribute of code objects 5

Optimization 5

Constant Folding 5

Constant Propagation 6

Builtin Call Prediction 6

Conditional Statement Prediction 6

Exception Propagation 7

Exception Scope Reduction 7

Exception Block Inlining 8

Empty Branch Removal 8

Unpacking Prediction 9

Builtin Type Inference 9

Quicker Function Calls 9

Lowering of iterated Container Types 10

Credits 10

Contributors to Nuitka 10

Projects used by Nuitka 11

Updates for this Manual 11

Overview
This document is the recommended first read if you are interested in using Nuitka, understand its use
cases, check what you can expect, license, requirements, credits, etc.

Nuitka is the Python compiler. It is a good replacement for the Python interpreter and compiles every
construct that CPython 2.6, 2.7, 3.2, 3.3, and 3.4 have. It then executed uncompiled code, and compiled
code together in an extremely compatible manner.

You can use all Python library modules or and all extension modules freely. It translates the Python into a
C level program that then uses "libpython" to execute in the same way as CPython does. Any optimization
is aimed at avoiding overhead, where it's unnecessary. None is aimed at removing compatibility, although
there is an "improved" mode, where not every bug of standard Python is emulated.

Usage
Requirements

• C++ Compiler: You need a compiler with support for C++03 1

Currently this means, you need to use either of these compilers:

• GNU g++ compiler of at least version 4.4

• The clang compiler on MacOS X or FreeBSD, based on LLVM version 3.2 or higher.

• The MinGW 2 or MinGW64 3 compiler on Windows

• Visual Studion 2013 or higher on Windows 4

• Python: Version 2.6, 2.7 or 3.2, 3.3, 3.4

You need the standard Python implementation, called CPython, to execute Nuitka, because it is
closely tied to using it.

Note

The created binaries can be made executable independent of the Python installation, with
--standalone option.

• Operating System: Linux, FreeBSD, NetBSD, MacOS X, and Windows (32/64 bits).

Others may work as well. The portability is expected to be generally good, but the e.g. Scons usage
may have to be adapted.

• Architectures: x86, x86_64 (amd64), and arm.

Other architectures may also work, out of the box, as Nuitka is generally not using much hardware
specifics. These are just the ones tested and known to be good. Feedback is welcome. Generally the
architectures that Debian supports should be considered good.

Command Line
No environment variable changes are needed, you can call the nuitka and nuitka-run scripts
directly without any changes to the environment. You may want to add the bin directory to your PATH
for your convenience, but that step is optional.

Nuitka User Manual - Overview

Nuitka User Manual - page 1 - Overview

Nuitka has a --help option to output what it can do:

nuitka --help

The nuitka-run command is the same as nuitka, but with different default. It tries to compile and
directly execute a Python script:

nuitka-run --help

These option that is different is --run, and passing on arguments after the first non-option to the created
binary, so it is somewhat more similar to what plain python will do.

License
Nuitka is licensed under the Apache License, Version 2.0; you may not use it except in compliance with
the License.

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

Use Cases
Use Case 1 - Program compilation with all modules embedded
If you want to compile a whole program recursively, and not only the single file that is the main program,
do it like this:

nuitka --recurse-all program.py

Note

The is more fine grained control than --recurse-all available. Consider the output of nuitka
--help.

In case you have a plugin directory, i.e. one which cannot be found by recursing after normal import
statements via the PYTHONPATH (which would be recommended way), you can always require that a
given directory shall also be included in the executable:

nuitka --recurse-all --recurse-directory=plugin_dir program.py

Nuitka User Manual - License

Nuitka User Manual - page 2 - License

http://www.apache.org/licenses/LICENSE-2.0

Note

If you don't do any dynamic imports, simply setting your PYTHONPATH at compilation time will be
sufficient for all your needs normally.

Use --recurse-directory only if you make __import__() calls that Nuitka cannot predict,
because they e.g. depend on command line parameters. Nuitka also warns about these, and point
to the option.

Note

The resulting binary still depends on CPython and used C extension modules being installed.

If you want to be able to copy it to another machine, use --standalone and copy the created
program.dist directory and execute the program.exe put inside.

Use Case 2 - Extension Module compilation
If you want to compile a single extension module, all you have to do is this:

nuitka --module some_module.py

The resulting file "some_module.so" can then be used instead of "some_module.py". It's left as an
exercise to the reader, what happens if both are present.

Note

The option --recurse-all and other variants work as well.

Use Case 3 - Package compilation
If you need to compile a whole package and embedded all modules, that is also feasible, use Nuitka like
this:

nuitka --module some_package --recurse-directory=some_package

Note

The recursion into the package directory needs to be provided manually, otherwise the package is
empty. Data files located inside the package will not be embedded yet.

Nuitka User Manual - Use Case 2 - Extension Module compilation

Nuitka User Manual - page 3 - Use Case 2 - Extension Module compilation

Where to go next
Remember, this project is not completed yet. Although the CPython test suite works near perfect, there is
still more work needed, to make it do more optimization. Try it out.

Subscribe to its mailing lists
Please visit the mailing list page in order to subscribe the relatively low volume mailing list. All Nuitka
issues can be discussed there.

Report issues or bugs
Should you encounter any issues, bugs, or ideas, please visit the Nuitka bug tracker and report them.

Contact me via email with your questions
You are welcome to contact me via email with your questions. But it is increasingly true that for user
questions the mailing list is the best place to go.

Word of Warning
Consider using this software with caution. Your feedback and patches to Nuitka are very welcome.

Especially report it please, if you find that anything doesn't work, because the project is now at the stage
that this should not happen and most definitely will mean you encountered an unknown bug.

Join Nuitka
You are more than welcome to join Nuitka development and help to complete the project in all minor and
major ways.

The development of Nuitka occurs in git. We currently have these 2 branches:

• master:

This branch contains the stable release to which only hotfixes for bugs will be done. It is supposed to
work at all times and is supported.

• develop:

This branch contains the ongoing development. It may at times contain little regressions, but also
new features. On this branch the integration work is done, whereas new features might be developed
on feature branches.

• factory:

This branch contains unfinished and incomplete work. It is very frequently subject git rebase and
the public staging ground, where my work for develop branch lives first. It is intended for testing only
and recommended to base any of your own development on. When updating it, you very often will
get merge conflicts. Simply resolve those by doing git reset --hard origin/factory and
switch to the latest version.

Nuitka User Manual - Where to go next

Nuitka User Manual - page 4 - Where to go next

http://www.nuitka.net/pages/mailinglist.html
http://bugs.nuitka.net
mailto:Kay.Hayen@gmail.com
http://nuitka.net/gitweb/?p=Nuitka.git;a=shortlog;h=refs/heads/master
http://nuitka.net/gitweb/?p=Nuitka.git;a=shortlog;h=refs/heads/develop
http://nuitka.net/gitweb/?p=Nuitka.git;a=shortlog;h=refs/heads/factory

Note

I accept patch files, git formatted patch queues (use git format-patch origin command), or
if you prefer git pull on the social code platforms.

I will do the integration work. If you base your work on "master" or "develop" at any given time, I
will do any re-basing required and keep your authorship intact.

Note

The Developer Manual explains the coding rules, branching model used, with feature branches
and hotfix releases, the Nuitka design and much more. Consider reading it to become a
contributor. This document is intended for Nuitka users.

Donations
Should you feel that you cannot help Nuitka directly, but still want to support, please consider making a
donation and help this way.

Unsupported functionality
The co_code attribute of code objects
The code objects are empty for for native compiled functions. There is no bytecode with Nuitka's compiled
function objects, so there is no way to provide it.

Optimization
Constant Folding
The most important form of optimization is the constant folding. This is when an operation can be
predicted. Currently Nuitka does these for some built-ins (but not all yet), and it does it for binary/unary
operations and comparisons.

Constants currently recognized:

5 + 6 # operations
5 < 6 # comparisons
range(3) # built-ins

Literals are the one obvious source of constants, but also most likely other optimization steps like constant
propagation or function inlining will be. So this one should not be underestimated and a very important
step of successful optimizations. Every option to produce a constant may impact the generated code
quality a lot.

Status: The folding of constants is considered implemented, but it might be incomplete. Please report it as
a bug when you find an operation in Nuitka that has only constants are input and is not folded.

Nuitka User Manual - Donations

Nuitka User Manual - page 5 - Donations

http://nuitka.net/doc/developer-manual.html
http://nuitka.net/pages/donations.html
http://nuitka.net/pages/donations.html

Constant Propagation
At the core of optimizations there is an attempt to determine values of variables at run time and
predictions of assignments. It determines if their inputs are constants or of similar values. An expression,
e.g. a module variable access, an expensive operation, may be constant across the module of the
function scope and then there needs to be none, or no repeated module variable look-up.

Consider e.g. the module attribute __name__ which likely is only ever read, so its value could be
predicted to a constant string known at compile time. This can then be used as input to the constant
folding.

if __name__ == "__main__":
 # Your test code might be here
 use_something_not_use_by_program()

From modules attributes, only __name__ is currently actually optimized. Also possible would be at least
__doc__.

Also built-in exception name references are optimized if they are uses as module level read only
variables:

try:
 something()
except ValueError: # The ValueError is a slow global name lookup normally.
 pass

Builtin Call Prediction
For builtin calls like type, len, or range it is often possible to predict the result at compile time, esp. for
constant inputs the resulting value often can be precomputed by Nuitka. It can simply determine the result
or the raised exception and replace the builtin call with it allowing for more constant folding or code path
folding.

type("string") # predictable result, builtin type str.
len([1, 2]) # predictable result
range(3, 9, 2) # predictable result
range(3, 9, 0) # predictable exception, range hates that 0.

The builtin call prediction is considered implemented. We can simply during compile time emulate the call
and use its result or raised exception. But we may not cover all the built-ins there are yet.

Sometimes the result of a built-in should not be predicted when the result is big. A range() call e.g. may
give too big values to include the result in the binary. Then it is not done.

range(100000) # We do not want this one to be expanded

Status: This is considered mostly implemented. Please file bugs for built-ins that are predictable but are
not computed by Nuitka at compile time.

Conditional Statement Prediction
For conditional statements, some branches may not ever be taken, because of the conditions being
possible to predict. In these cases, the branch not taken and the condition check is removed.

This can typically predict code like this:

Nuitka User Manual - Constant Propagation

Nuitka User Manual - page 6 - Constant Propagation

if __name__ == "__main__":
 # Your test code might be here
 use_something_not_use_by_program()

or

if False:
 # Your deactivated code might be here

It will also benefit from constant propagations, or enable them because once some branches have been
removed, other things may become more predictable, so this can trigger other optimization to become
possible.

Every branch removed makes optimization more likely. With some code branches removed, access
patterns may be more friendly. Imagine e.g. that a function is only called in a removed branch. It may be
possible to remove it entirely, and that may have other consequences too.

Status: This is considered implemented, but for the maximum benefit, more constants needs to be
determined at compile time.

Exception Propagation
For exceptions that are determined at compile time, there is an expression that will simply do raise the
exception. These can be propagated, collecting potentially "side effects", i.e. parts of expressions that
must still be executed.

Consider the following code:

print side_effect_having() + (1 / 0)
print something_else()

The (1 / 0) can be predicted to raise a ZeroDivisionError exception, which will be propagated
through the + operation. That part is just Constant Propagation as normal.

The call to side_effect_having will have to be retained though, but the print statement, can be
turned into an explicit raise. The statement sequence can then be aborted and as such the
something_else call needs no code generation or consideration anymore.

To that end, Nuitka works with a special node that raises an exception and has so called "side_effects"
children, yet can be used in generated code as an expression.

Status: The propagation of exceptions is implemented on a very basic level. It works, but exceptions will
not propagate through all different expression and statement types. As work progresses or examples
arise, the coverage will be extended.

Exception Scope Reduction
Consider the following code:

try:
 b = 8
 print range(3, b, 0)
 print "Will not be executed"
except ValueError, e:
 print e

Nuitka User Manual - Exception Propagation

Nuitka User Manual - page 7 - Exception Propagation

The try block is bigger than it needs to be. The statement b = 8 cannot cause a ValueError to be
raised. As such it can be moved to outside the try without any risk.

b = 8
try:
 print range(3, b, 0)
 print "Will not be executed"
except ValueError, e:
 print e

Status: Not yet done yet. The infrastructure is in place, but until exception block inlining works perfectly,
there is not much of a point.

Exception Block Inlining
With the exception propagation it is then possible to transform this code:

try:
 b = 8
 print range(3, b, 0)
 print "Will not be executed"
except ValueError, e:
 print e

try:
 raise ValueError, "range() step argument must not be zero"
except ValueError, e:
 print e

Which then can be reduced by avoiding the raise and catch of the exception, making it:

e = ValueError("range() step argument must not be zero")
print e

Status: This is not implemented yet.

Empty Branch Removal
For loops and conditional statements that contain only code without effect, it should be possible to remove
the whole construct:

for i in range(1000):
 pass

The loop could be removed, at maximum it should be considered an assignment of variable i to 999
and no more.

Another example:

if side_effect_free:
 pass

Nuitka User Manual - Exception Block Inlining

Nuitka User Manual - page 8 - Exception Block Inlining

The condition should be removed in this case, as its evaluation is not needed. It may be difficult to predict
that side_effect_free has no side effects, but many times this might be possible.

Status: This is not implemented yet.

Unpacking Prediction
When the length of the right hand side of an assignment to a sequence can be predicted, the unpacking
can be replaced with multiple assignments.

a, b, c = 1, side_effect_free(), 3

a = 1
b = side_effect_free()
c = 3

This is of course only really safe if the left hand side cannot raise an exception while building the
assignment targets.

We do this now, but only for constants, because we currently have no ability to predict if an expression
can raise an exception or not.

Status: Not really implemented, and should use mayHaveSideEffect() to be actually good at things.

Builtin Type Inference
When a construct like in xrange() or in range() is used, it is possible to know what the iteration
does and represent that, so that iterator users can use that instead.

I consider that:

for i in xrange(1000):
 something(i)

could translate xrange(1000) into an object of a special class that does the integer looping more
efficiently. In case i is only assigned from there, this could be a nice case for a dedicated class.

Status: Future work, not even started.

Quicker Function Calls
Functions are structured so that their parameter parsing and tp_call interface is separate from the
actual function code. This way the call can be optimized away. One problem is that the evaluation order
can differ.

def f(a, b, c):
 return a, b, c

f(c = get1(), b = get2(), a = get3())

This will evaluate first get1(), then get2() and then get3() and then make the call.

In C++ whatever way the signature is written, its order is fixed.

Therefore it will be necessary to have a staging of the parameters before making the actual call, to avoid
an re-ordering of the calls to get1(), get2() and get3().

Nuitka User Manual - Unpacking Prediction

Nuitka User Manual - page 9 - Unpacking Prediction

To solve this, we may have to create wrapper functions that allow different order of parameters to C++.

Status: Not even started.

Lowering of iterated Container Types
In some cases, accesses to list constants can become tuple constants instead.

Consider that:

for x in [1, 2, 7]:
 something(x)

Can be optimized into this:

for x in (1, 2, 7):
 something(x)

This allows for simpler code to be generated, and less checks needed, because e.g. the tuple is clearly
immutable, whereas the list needs a check to assert that.

Something similar is possible for set and in theory also for dict. For the later it will be non-trivial though
to maintain the order of execution without temporary values introduced. The same thing is done for pure
constants of these types, they change to tuple values when iterated.

Status: Implemented, needs other optimization to become generally useful, will help others to become
possible.

Credits
Contributors to Nuitka
Thanks go to these individuals for their much valued contributions to Nuitka. Contributors have the license
to use Nuitka for their own code even if Closed Source.

The order is sorted by time.

• Li Xuan Ji: Contributed patches for general portability issue and enhancements to the environment
variable settings.

• Nicolas Dumazet: Found and fixed reference counting issues, import packages work, improved
some of the English and generally made good code contributions all over the place, solved code
generation TODOs, did tree building cleanups, core stuff.

• Khalid Abu Bakr: Submitted patches for his work to support MinGW and Windows, debugged the
issues, and helped me to get cross compile with MinGW from Linux to Windows. This was quite a
difficult stuff.

• Liu Zhenhai: Submitted patches for Windows support, making the inline Scons copy actually work on
Windows as well. Also reported import related bugs, and generally helped me make the Windows
port more usable through his testing and information.

• Christopher Tott: Submitted patches for Windows, and general as well as structural cleanups.

• Pete Hunt: Submitted patches for MacOS X support.

• "ownssh": Submitted patches for built-ins module guarding, and made massive efforts to make high
quality bug reports. Also the initial "standalone" mode implementation was created by him.

Nuitka User Manual - Lowering of iterated Container Types

Nuitka User Manual - page 10 - Lowering of iterated Container Types

• Juan Carlos Paco: Submitted cleanup patches, creator of the Nuitka GUI, creator of the Ninja IDE
plugin for Nuitka.

• "dr. Equivalent": Submitted the Nuitka Logo.

• Johan Holmberg: Submitted patch for Python3 support on MacOS X.

• Umbra: Submitted patches to make the Windows port more usable, adding user provided application
icons, as well as MSVC support for large constants and console applications.

Projects used by Nuitka
• The CPython project

Thanks for giving us CPython, which is the base of Nuitka. We are nothing without it.

• The GCC project

Thanks for not only the best compiler suite, but also thanks for supporting C++11 which helped to get
Nuitka off the ground. Your compiler was the first usable for Nuitka and with little effort.

• The Scons project

Thanks for tackling the difficult points and providing a Python environment to make the build results.
This is such a perfect fit to Nuitka and a dependency that will likely remain.

• The valgrind project

Luckily we can use Valgrind to determine if something is an actual improvement without the noise.
And it's also helpful to determine what's actually happening when comparing.

• The NeuroDebian project

Thanks for hosting the build infrastructure that the Debian and sponsor Yaroslav Halchenko uses to
provide packages for all Ubuntu versions.

• The openSUSE Buildservice

Thanks for hosting this excellent service that allows us to provide RPMs for a large variety of
platforms and make them available immediately nearly at release time.

• The MinGW project

Thanks for porting the gcc to Windows. This allowed portability of Nuitka with relatively little effort.
Unfortunately this is currently limited to compiling CPython with 32 bits, and 64 bits requires MSVC
compiler.

• The Buildbot project

Thanks for creating an easy to deploy and use continous integration framework that also runs on
Windows and written and configured in Python. This allows to run the Nuitka tests long before
release time.

Updates for this Manual
This document is written in REST. That is an ASCII format which is readable as ASCII, but used to
generate PDF or HTML documents.

You will find the current source under: http://nuitka.net/gitweb/?p=Nuitka.git;a=blob_plain;f=README.rst

And the current PDF under: http://nuitka.net/doc/README.pdf

Nuitka User Manual - Projects used by Nuitka

Nuitka User Manual - page 11 - Projects used by Nuitka

https://github.com/juancarlospaco/nuitka-gui
https://github.com/juancarlospaco/nuitka-ninja
https://github.com/juancarlospaco/nuitka-ninja
http://www.python.org
http://gcc.gnu.org
http://www.scons.org
http://valgrind.org
http://neuro.debian.net
http://openbuildservice.org
http://www.mingw.org
http://buildbot.net
http://nuitka.net/gitweb/?p=Nuitka.git;a=blob_plain;f=README.rst
http://nuitka.net/doc/README.pdf

1 Support for this C++03 language standard is practically a given on any C++ compiler
you encounter. Nuitka used to have higher requirements in the past, but it changed.

2 Download MinGW from http://www.mingw.org/category/wiki/download but beware
that 32 bits Python must be used with it, and that it may not work for very large
programs. Use MinGW64 and 64 bits Python if you have the choice.

3 Download MinGW64 from here and choose the "win32" and "seh" variant for best
results.

4 Download for free from
http://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx the
Express edition will do.

Nuitka User Manual - Projects used by Nuitka

Nuitka User Manual - page 12 - Projects used by Nuitka

http://www.mingw.org/category/wiki/download
http://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx

	Overview
	Usage
	Requirements
	Command Line
	License

	Use Cases
	Use Case 1 - Program compilation with all modules embedded
	Use Case 2 - Extension Module compilation
	Use Case 3 - Package compilation

	Where to go next
	Subscribe to its mailing lists
	Report issues or bugs
	Contact me via email with your questions
	Word of Warning

	Join Nuitka
	Donations
	Unsupported functionality
	The co_code attribute of code objects

	Optimization
	Constant Folding
	Constant Propagation
	Builtin Call Prediction
	Conditional Statement Prediction
	Exception Propagation
	Exception Scope Reduction
	Exception Block Inlining
	Empty Branch Removal
	Unpacking Prediction
	Builtin Type Inference
	Quicker Function Calls
	Lowering of iterated Container Types

	Credits
	Contributors to Nuitka
	Projects used by Nuitka

	Updates for this Manual

